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Today there are numerous robots in different applica-
tions domains despite the fact that they still have lim-
itations in perception, actuation and decision process. 
Consequently, robots usually have limited autonomy, 
they are domain specific or have difficulty to adapt 
on new environments. Learning is the property that 
makes an agent intelligent and the crucial property that 
a robot should have to proliferate into the human soci-
ety. Embedding the learning ability into the robot may 
simplify the development of the robot control mech-
anism. The motivation for this research is to develop 
the agent architecture of the universal robot – Unibot. 
In our approach the agent is the robot i.e. Unibot that 
acts in the physical world and is capable of learning. 
The Unibot conducts several simultaneous simula-
tions of a problem of interest like path-finding. The 
novelty in our approach is the Multi-Agent Decision 
Support System which is developed and integrated 
into the Unibot agent architecture in order to execute 
simultaneous simulations. Furthermore, the Unibot 
calculates and evaluates between multiple solutions, 
decides which action should be performed and per-
forms the action. The prototype of the Unibot agent 
architecture is described and evaluated in the exper-
iment supported by the Lego Mindstorms robot and 
the NetLogo.
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1. Introduction

Intelligence can be regarded as a concept hu-
mans employ to describe actions of a certain 
quality [1]. However, it is obvious that, after 
the decades of study, we still do not know very 
much about it [2]. In between plethora of in-
telligence definitions [3], experts tend to agree 
that intelligence is presented by the capacity to 
learn from experience and the capacity to adapt 
to an environment. Traditional artificial intel-
ligence (AI) proceeds to developmental, hu-
man-like, functional computer models. In gen-
eral, AI can be understood regarding computer 
programs where provided input is processed 
to generate desired output at the end. Analo-
gously, the natural intelligence is perceived as 
a result of complex computer operations [4]. 
When applying these ideas to build robots in 
the real world, it is difficult to achieve good 
results relying on mentioned intelligence per-
ception. In this situation, robot's intelligence is 
limited by the programmer's expressiveness in 
a specific formal programming language. As 
social robots are entering into a human physical 
environment, efficient concept and task learn-
ing, and collaboration between both robots and 
humans are to be expected [5]. If the robot is 
unable to perform a given task, a teacher must 
be able to teach it without the necessity to be 
an expert programmer. To be able to learn, the 
robot first has to share the mental representa-
tion of the concepts in the world used by its 
teacher. It must be able to quickly learn some 
new concept from the human or robot teacher 
after just a few trials. It is unacceptable to re-
quire several hundred or thousands of trials 
as in classical machine learning approaches. 
Knowledge transfer as a new learning frame-
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work, if done successfully, would greatly im-
prove the performance of machine learning 
[6]. Deep-learning (DL) is currently one of the 
most commonly used techniques in machine 
learning [7]. DL methods can be divided in two 
categories: recognition (perception) and control 
(decision making). Deep-learning has many ap-
plications in artificial intelligence [8]. Although 
DL provides a great advantage in high-dimen-
sional data representation and processing by 
using multiple levels of abstraction [8], it re-
quires complex computations and a big train-
ing set. Also, those levels of abstraction are not 
easily recognizable by humans. Given an Ar-
tificial Neural Network (ANN) trained by one 
of common DL techniques, it is not clearly ob-
vious what each level of ANN represents. Our 
aim is to be able to teach a robot complex tasks 
that can later be easily executed, explained, 
and formalized to be used by another robot or 
a person. That means that every layer of trained 
ANN must represent a series of concepts that 
are easily recognizable by humans. Conse-
quently, learning techniques described in this 
paper do not use standard DL methods. More-
over, once a new skill is learned, the robot is 
competent, therefore able to provide assistance 
to a robot or human partner by sharing acquired 
knowledge. Corresponding experimental study 
belongs to the category of applied researches 
that consider both theoretical and practical re-
search goal [9]. The theoretical research goal 
is achieved by formulating and evaluating the 
formal model of the proposed agent architec-
ture for selecting appropriate search algorithm 
based on problem classification. The practical 
goal is carried out by implementing and evalu-
ating knowledge, methods, and tools based on 
the observed system for solving path-finding 
problems in a maze, which is one of the most 
commonly used problem representations. Main 
goals of this experimental research are design-
ing new intelligent agent architecture and de-
veloping a prototype based on described ap-
proach. The long term goal of this research is 
to contribute to the theory of intelligent agent 
architectures, multi-agent systems, and prob-
lem-solving systems, with the emphasis on the 
field of robotics. While considering what char-
acteristics the Unibot must have to effectively 
be part of the human world, we examine both 
the problem of learning and that of collaborat-
ing with other robots and humans. By observ-
ing how people and animals learn, other forms 

of individual and social learning, and training 
techniques have been investigated, like learning 
from demonstration [10], clicker training [11], 
learning by observation [12], and tutelage [13]. 
Those learning techniques are based on learning 
perspectives: behavioral, cognitive and social 
cognitive, used in synergy in education [14]. 
Learning perspectives for the creation of the 
Unibot are interesting as a logical alternative to 
programming robots. In the following section 
the robot learning based on human learning per-
spective is presented, creating both the theoreti-
cal and the practical frameworks for the Unibot 
realization. In the second section two learning 
perspectives implemented in the proposed ar-
chitecture are explained. The third section de-
scribes the problem solving process that is 
comprised of the agent environment definition, 
the problem representation, the explanation of 
used distance metrics and search algorithms. In 
the fourth section, the agent learning process, 
the overview of the Unibot agent architecture 
and the Multi-Agent Decision Support System 
is presented. The experimental evaluation sup-
ported by the Lego Mindstorms robot and the 
NetLogo, a programmable modeling environ-
ment, is given in the fifth section.

2. Learning

Learning can be defined as the change in behav-
ior that must be brought about by the interaction 
of a person with its environment. Thus, learn-
ing can be defined as any relatively permanent 
change in behavior, knowledge, and cognitive 
skills, which comes about through experiences 
[15]. As previously mentioned, human learning 
can be viewed from three major perspectives. In 
the following sections two of those perspectives 
will be presented, taking into account that the 
learner in this study is the robot that can be used 
in robotic engineering and artificial intelligence 
course [16].

2.1 Behavioral Learning Perspective

From the behavioral perspective, learning is 
defined regarding observable events, called 
stimuli and responses. Stimulus is an observ-
able environmental event that has a potential to 
exert control over a behavioral response. The 
response is an obvious behavior by a learner. 

Human-style tutelage is a social and a collabo-
rative process [12] and usually takes the form of 
dialogue, a fundamentally cooperative activity 
[13]. To be a good instructor, one must main-
tain an accurate mental model of the learner's 
state (e.g., what is understood so far, what re-
mains confusing or unknown) to appropriately 
structure the learning task with timely feedback 
and guidance. The learner (robot or otherwise) 
helps the instructor by expressing their internal 
state via communicative acts (e.g. expressions, 
gestures, or vocalizations that reveal under-
standing, confusion, attention, etc.). Through 
reciprocal and tightly coupled interaction, the 
learner and instructor cooperate to help both, 
the instructor to maintain a good mental model 
of the learner, and the learner to leverage from 
the instruction to build the appropriate models, 
representations, and associations.
Regardless of the learning perspective used, af-
ter forming a proper mental model the learner 
will be able to apply it to a problem-solving.

3. Problem Solving

Problem-solving in Artificial Intelligence (AI) 
can be presented as a systematical search of 
possible outcomes with a task of finding some 
predefined goal or solution. One of the most fre-
quently used approaches to problem-solving in 
AI is applying search algorithms [17]. In com-
puter science, a search algorithm is considered 
an algorithm that is used for evaluating a set of 
all possible states and selecting the appropriate 
solution. To successfully implement a particu-
lar problem-solving system one or more search 
algorithms capable of performing the appropri-
ate search are required. A set of all states of a 
particular problem is called state-space and can 
be denoted as:

                  { }{ }: 1, , ,kS S k n= ∈                 
(1)

The main goal of every algorithm is to make 
a transition from an initial state to a goal state 
which represents a solution of a given problem. 
These states can be marked as Si and Sg (initial 
and goal states, consecutively), where:

       { } { }\ ,  , 1, , ,  .i gS S S i g n i g∈ ∈ ≠

      
(2)

Behavioral learning perspective includes the 
concept of classical conditioning. Classical 
conditioning is a type of learning based on the 
association of a stimulus that does not ordinarily 
elicit a particular response with another stim-
ulus that does elicit the response [16]. A brief 
presentation of robot learning principles based 
on the classical conditioning through reinforced 
response and operant conditioning, and cogni-
tive learning is described. Classical condition-
ing defines two types of stimulus and two types 
of response. They are unconditioned stimulus, 
conditioned stimulus, unconditioned response, 
and conditioned response, as explained in Fig-
ure 1.

2.2. Cognitive Learning Perspective

From the cognitive learning perspective, learn-
ing involves the transformation of information 
from the environment into knowledge stored in 
mind. Learning occurs when new knowledge 
is acquired, or existing knowledge is modified 
by experience. Cognitive learning theories are 
used to explain simple tasks such as remem-
bering the name of a new friend as well as the 
complex ones such as interpreting an abstract 
drawing. This learning approach focuses on 
how children process information through at-
tention, memory, thinking, and other cognitive 
processes. Social cognitive learning perspective 
examines the process involved as people learn 
from observing others and gradually acquire 
control over their behavior. In other words, so-
cial cognitivist believes that people learn a new 
behavior simply by watching what other people 
do.

Figure 1. Types of stimuli and responses in classical 
conditioning.
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The problem with designing such systems is the 
absence of formal procedures that can be used, 
given an initial and goal states, to determine a 
finite set of intermediate states. For this paper, 
let us define that every system possesses a finite 
set of actions, defined as:

                  { }{ }: 1, , .kA A k m= ∈                (3)

Transition from one state to another is achieved 
by performing a single action Ak from the set A:

           { }{ }: , 1, , ,kA A S S k m= → ∈           (4)

    { }( ) ,   , ,   , 1, , .k l j l jA S S S S S l j n= ∈ ∈    (5)

This means that in every state Sl we can per-
form any action from the set A, but there could 
be a subset (B ⊂ A) of actions that do not cause 
state change:

            ( ) ( ) ,    .k k l l lA B A S S S S∀ ∈ = ∈          (6)

These actions are called illegal actions, and are 
not taken into consideration during state-space 
search. Legal actions are all actions that cause 
a transition from one state to another. It is pos-
sible to have less legal actions than remaining 
states; therefore, for every state Sk we define a 
set S' ⊆ S which contains the states that can be 
achieved by performing legal actions:

             

( )( ' )( ' )
( ') ( ) '.
k

k k k

S S S S A A
A A A S S

∀ ∈ ∃ ⊆ ∃ ⊆

∀ ∈ ∈           
(7)

State-space search can be complete or partial, 
depending on the selected search algorithm. 
Method of searching itself is simple and re-
quires linear exploration of all possible states 
whilst testing the current state against the goal 
state. However, it can be resource demanding as 
in some cases it would be necessary to explore 
all possible system states. Solution to a given 
problem is represented as a sequence of actions 
that lead from the initial to the goal state. We 
can denote this sequence as a vector  s . Set 
of states between initial and goal states is not 
always unambiguous, because it is possible 
to have multiple paths between the two above 
mentioned states, and consequently multiple 

sequences of actions (solution vectors) leading 
to the goal state. Those sequences (vectors) are 
often different, based on their complexity and 
number of necessary actions (states between 
initial and goal state). In cases with multiple 
solutions, a single solution is chosen using ar-
bitrary evaluation function eval(G), where G is 
a set of all possible solution vectors:

                   
{ }{ };  1, , ,jG s j k= ∈ 

               
(8)

where k is the number of possible solutions, 
and k ≥ 2. Using different search algorithms 
can produce different solutions. Efficiency of 
a given solution is determined using different 
characteristics like termination, completeness, 
admissibility, time complexity and space com-
plexity [18]. Every problem possesses a related 
problem domain, i.e. the area of expertise or 
application that needs to be examined to solve 
a problem. In the context of a robot and intelli-
gent agent, problem domain can be represented 
as agent's environment.

3.1. Environment

Every agent (simulated or physical) is situated 
inside some particular environment and inter-
acts with that environment. Type and intensity 
of an interaction depends on an agent's archi-
tecture and capabilities. The agent cannot be 
observed isolated from its environment. There-
fore, properties of the agent environment should 
be defined. Russell and Norvig [19] identified 
different kinds of the environment: fully ob-
servable vs. partially observable, deterministic 
vs. stochastic, episodic vs. sequential, static vs. 
dynamic, discrete vs. continuous, and single 
agent vs. multi-agent. Identifying the environ-
ment in which the agent (robot) operates is an 
important step in valid problem representation. 
The proposed agent architecture is suitable for 
partially observable, stochastic, dynamic, se-
quential, discrete multi-agent environments.

3.2. Problem Representation

There are many different problems applicable 
to AI and search algorithms, but most of them 
can be placed in one of three main categories 
[18]: path-finding problems, two-player games 

and constraint-satisfaction problems. In real 
world situations, especially those involving ro-
bots, path-finding problems are the ones most 
frequently occurring [20], [21]. Furthermore, 
path-finding problems are closest to state-based 
model of the world, with each position repre-
senting a single state. One of the most common 
problems used for testing robots and their AI 
are maze traversal problems [22]. A maze is, 
in most cases, a two-dimensional lattice-like 
structure, consisting of finite number of identi-
cal sized cells [23]. The robot is placed in one 
empty cell (initial state) called starting cell, with 
the task of finding the way to the target cell in 
the maze (goal state). Not all cells are adjacent, 
so the robot must traverse through multiple 
cells to reach its goal. Some cells can contain 
obstacles, thus preventing a robot from passing 
through that cell. There can be multiple pas-
sageways to the target cell. This is equivalent 
to the above described state-space search. That 
leads to a conclusion that almost every problem 
can be represented as a maze, with each cell 
representing a single state of a problem space, 
and a solution to the problem is a sequence of 
actions. Each maze can be described and classi-
fied according to some of its characteristics like 
size, density, some obstacles, etc. [24]. Another 
advantage of using mazes for problem repre-
sentation is that every maze can be easily con-
verted to a graph and thus formally represented 
using graph theory [25].
For the purpose of this paper, we represent a 
maze as a directed weighted graph consisting of 
nodes and links. A starting cell represents root 
node. Other (non-root) graph nodes represent 
maze cells in which the agent (robot) must 
make a decision, e.g. a cell where a robot can 
turn left or continue forward. Additionally, dead 
end cells (agent has nowhere to go but back) 
are represented as leaf nodes. A target cell that 
marks the goal state of the robot is also consid-
ered a leaf node but is marked differently than 
dead end nodes. Figure 2 shows an example 
how a single maze is transformed in a directed 
weighted graph (tree).
Every link has its weight that represents an arbi-
trary cost of performing an action that induces 
state change from parent to a child node. This 
approach enables search algorithms to perform 
evaluation function on a given solution. In the 
context of mazes and path-finding approach, a 
cost of action is associated with distance, so it 

is important to mention most common ways of 
calculating distance. The Euclidean distance 
measurement is based on a real world measure-
ment. It represents a shortest two-dimensional 
distance between two objects and can be calcu-
lated using a formula based on the Pythagorean 
Theorem. When using Euclidean distance in 
the path-finding problems, it is considered that 
the agent is located in the continuous environ-
ment. The Euclidean distance is used primarily 
in real-world applications where precise mea-
surement is required. The Manhattan distance 
represents grid distance and is also referred to 
as taxicab distance, as it represents a taxi driv-
ing on a city (originally Manhattan) grid [26]. 
The Manhattan distance between two points 
is calculated by adding the absolute distance 
of each of the dimensions [27]. Agents using 
Manhattan distance are considered to be in a 
discrete environment using von Neumann type 
of neighborhood [28] i.e. an agent can move 
only in four directions (north, east, south, and 
west). The Manhattan distance is simple to un-
derstand, and it is used for agents or robots that 
have limited set of actions e.g. can only make 
90 degrees turns. This also makes it appropri-
ate for educational purposes [29]. The third 
distance metric is the Chebyshev distance, also 
known as the chessboard metric. The Cheby-
shev distance is calculated by taking the max-
imum of the dimension differences [27]. Sim-
ilar to the Manhattan distance, agents that use 

Figure 2. Converting maze to a directed weighted graph.

→
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servable vs. partially observable, deterministic 
vs. stochastic, episodic vs. sequential, static vs. 
dynamic, discrete vs. continuous, and single 
agent vs. multi-agent. Identifying the environ-
ment in which the agent (robot) operates is an 
important step in valid problem representation. 
The proposed agent architecture is suitable for 
partially observable, stochastic, dynamic, se-
quential, discrete multi-agent environments.

3.2. Problem Representation
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to AI and search algorithms, but most of them 
can be placed in one of three main categories 
[18]: path-finding problems, two-player games 

and constraint-satisfaction problems. In real 
world situations, especially those involving ro-
bots, path-finding problems are the ones most 
frequently occurring [20], [21]. Furthermore, 
path-finding problems are closest to state-based 
model of the world, with each position repre-
senting a single state. One of the most common 
problems used for testing robots and their AI 
are maze traversal problems [22]. A maze is, 
in most cases, a two-dimensional lattice-like 
structure, consisting of finite number of identi-
cal sized cells [23]. The robot is placed in one 
empty cell (initial state) called starting cell, with 
the task of finding the way to the target cell in 
the maze (goal state). Not all cells are adjacent, 
so the robot must traverse through multiple 
cells to reach its goal. Some cells can contain 
obstacles, thus preventing a robot from passing 
through that cell. There can be multiple pas-
sageways to the target cell. This is equivalent 
to the above described state-space search. That 
leads to a conclusion that almost every problem 
can be represented as a maze, with each cell 
representing a single state of a problem space, 
and a solution to the problem is a sequence of 
actions. Each maze can be described and classi-
fied according to some of its characteristics like 
size, density, some obstacles, etc. [24]. Another 
advantage of using mazes for problem repre-
sentation is that every maze can be easily con-
verted to a graph and thus formally represented 
using graph theory [25].
For the purpose of this paper, we represent a 
maze as a directed weighted graph consisting of 
nodes and links. A starting cell represents root 
node. Other (non-root) graph nodes represent 
maze cells in which the agent (robot) must 
make a decision, e.g. a cell where a robot can 
turn left or continue forward. Additionally, dead 
end cells (agent has nowhere to go but back) 
are represented as leaf nodes. A target cell that 
marks the goal state of the robot is also consid-
ered a leaf node but is marked differently than 
dead end nodes. Figure 2 shows an example 
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weighted graph (tree).
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trary cost of performing an action that induces 
state change from parent to a child node. This 
approach enables search algorithms to perform 
evaluation function on a given solution. In the 
context of mazes and path-finding approach, a 
cost of action is associated with distance, so it 

is important to mention most common ways of 
calculating distance. The Euclidean distance 
measurement is based on a real world measure-
ment. It represents a shortest two-dimensional 
distance between two objects and can be calcu-
lated using a formula based on the Pythagorean 
Theorem. When using Euclidean distance in 
the path-finding problems, it is considered that 
the agent is located in the continuous environ-
ment. The Euclidean distance is used primarily 
in real-world applications where precise mea-
surement is required. The Manhattan distance 
represents grid distance and is also referred to 
as taxicab distance, as it represents a taxi driv-
ing on a city (originally Manhattan) grid [26]. 
The Manhattan distance between two points 
is calculated by adding the absolute distance 
of each of the dimensions [27]. Agents using 
Manhattan distance are considered to be in a 
discrete environment using von Neumann type 
of neighborhood [28] i.e. an agent can move 
only in four directions (north, east, south, and 
west). The Manhattan distance is simple to un-
derstand, and it is used for agents or robots that 
have limited set of actions e.g. can only make 
90 degrees turns. This also makes it appropri-
ate for educational purposes [29]. The third 
distance metric is the Chebyshev distance, also 
known as the chessboard metric. The Cheby-
shev distance is calculated by taking the max-
imum of the dimension differences [27]. Sim-
ilar to the Manhattan distance, agents that use 

Figure 2. Converting maze to a directed weighted graph.

→



36 37G. Zaharija et al. Unibot, a Universal Agent Architecture for Robots

this metric are in a discrete environment, but 
instead of the von Neumann neighborhood, the 
Moore neighborhood [30] is applied. Figure 3 
shows described types of distance metrics. The 
described metrics are used for determining the 
distance between two points in the environ-
ment, and usually are the important part of the 
decision-making process, but to find a solution 
to a given problem, a search algorithm must be 
applied.

3.3. Search Algorithms

Search algorithms can be classified regarding 
different characteristics. Most common classi-
fications are: uninformed vs. informed, 
local vs. global, and systematic vs. stochastic. 
In the rest of the paper, search strategies (al-
gorithms) will be divided according to the first 
mentioned classification - informed and unin-
formed (sometimes referred to as blind) [31]. 
Blind search strategy algorithms may only use 
information available in the problem definition: 
initial state, allowed operations on states and 
terminal state (they do not take into account lo-
cation of the goal). Algorithms generate succes-
sors and differentiate goal (terminal) state from 
non-goal states. Strategies are distinguished by 
the order in which nodes are expanded. Directed 
search strategies use the additional (heuristic) 
information to determine which node will be 
expanded (whether one node is more promising 
than the other). Heuristic information is prob-
lem dependent (domain specific information) 
and must be known in advance. The heuristic 
function h(n) takes a node n and returns the non
-negative real number.That is an estimate of the 
path cost from node n to a goal node. It provides 
a way to inform the search about the direction 
to a goal. Using heuristics reduces problem di-
mension from exponential to polynomial. There 

is no guarantee that the goal will be found, or 
that solution would be optimal [32], [33]. These 
algorithms can be used by agents located in a 
fully or partially observable environments. The 
only condition, in the latter case, is that the part 
of the visible environment includes the goal 
node. Classical implementations of state search 
algorithms are well known and have a variety 
of applications in AI [34]. Taking into consid-
eration that there are many different search al-
gorithms, including their variations, it is neces-
sary to design an intelligent agent architecture 
that will be able to support multiple search al-
gorithms and apply them to problem-solving. A 
detailed description will be given in the follow-
ing sections concerning agent architecture and 
experimental study.

4. Unibot Agent Architecture

An intelligent agent (robot) is composed of sen-
sors, actuators, the mental model of its world 
and decision-making mechanism (system). 
An interaction with the environment is man-
aged through sensors and actuators. Sensors 
enable the agent to perceive its surrounding 
(input data) while actuators enable it to affect 
the surroundings. The agent creates its mental 
model by processing raw perceptual data ob-
tained through sensors. This mental model rep-
resents agent's reality and can be different from 
the physical ("real") world or even some other 
agent's mental model. This paper does not spe-
cifically address the problems of creating such 
model as it is too specific and greatly depends 
on the individual agent. A mental model is con-
sidered, from the agent's perspective, as a real 
environment.
The mental model is represented as a set of 
concepts and relations between those concepts. 
Concepts can be divided into concepts describ-
ing the perception of the world and concepts 
describing physical actions that the agent can 
perform. 
The agent model for environment information 
representation can be described as ordered tri-
ple (objects, attributes, relations).  Set O is a 
countable finite set of objects uniquely defined 
by the symbolic notation:

                   { }{ }: k 1, , .iO O n= ∈                (9)

For every i-th element of the set O, there ex-
ists a countable finite set of attributes Ati that 
uniquely describes that particular object:

                { }{ }: j 1, , ,i ijAt At m= ∈ 

          (10)

and is implemented as artificial neural network 
(multi-layer perceptron).  The function of this 
neural network is to establish a relation be-
tween object Oi and related set of attributes Ati.  
Similarly, the agent can be defined as ordered 
triple (Sn, At, M), where Sn denotes a countable 
finite set of sensors:

                 { }{ }: 1, , .nSn Sn n i= ∈              (11)

Element Ac denotes a countable finite set of ac-
tuators:

               { }{ }: 1, , ,nAc Ac n j= ∈              (12)

and M denotes a countable finite set of mental 
models:

                { }{ }: 1, , ,nM M n k= ∈              (13)

where i, j, and k are the numbers of sensors, 
actuators and mental models, respectively. For 
example, in our experiment, physical represen-
tation of an agent was implemented using Lego 
Mindstorms robot that was equipped with two 
sensors (colour and ultrasound), two actuators 
(left and right motors) and possessed one men-
tal model (maze):
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In the proposed agent architecture there are two 
distinct operating modes: a) problem explo-
ration and b) problem-solving. Each of these 
modes is described in the following sections.

4.1. Problem Exploration

When presented with a problem, it cannot be 
presumed that the agent already possesses com-
plete knowledge about that particular problem 
and related concepts, as well as its full state-
space. By doing so, we would limit the agent 
usability to only a predefined set of problems. 
To conform to previously unknown problems 
and environments, the agent must possess a 
mechanism to learn and adapt to its current en-
vironment and given problem. The agent can 
acquire new knowledge using one of the prin-
ciples described in previous sections. Uncondi-
tioned learning corresponds to the reactive part 
of the architecture, which produces a simple 
set of rules for the agent's primitive actions. 
Cognitive and social cognitive approaches are 
associated with proactive agent's behavior and 
knowledge acquisition. Origin (and type) of 
knowledge is not important, as it can be self-
taught or transferred from another agent. To be 
able to learn from each other, agents must have 
at least one common characteristic that will be 
used as a foundation for knowledge exchange 

Figure 3. Different types of distance metrics: 
a) Euclidian; b) Manhattan; c) Chebyshevh.

Figure 4. Learning process for the agent space navigation.
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this metric are in a discrete environment, but 
instead of the von Neumann neighborhood, the 
Moore neighborhood [30] is applied. Figure 3 
shows described types of distance metrics. The 
described metrics are used for determining the 
distance between two points in the environ-
ment, and usually are the important part of the 
decision-making process, but to find a solution 
to a given problem, a search algorithm must be 
applied.

3.3. Search Algorithms

Search algorithms can be classified regarding 
different characteristics. Most common classi-
fications are: uninformed vs. informed, 
local vs. global, and systematic vs. stochastic. 
In the rest of the paper, search strategies (al-
gorithms) will be divided according to the first 
mentioned classification - informed and unin-
formed (sometimes referred to as blind) [31]. 
Blind search strategy algorithms may only use 
information available in the problem definition: 
initial state, allowed operations on states and 
terminal state (they do not take into account lo-
cation of the goal). Algorithms generate succes-
sors and differentiate goal (terminal) state from 
non-goal states. Strategies are distinguished by 
the order in which nodes are expanded. Directed 
search strategies use the additional (heuristic) 
information to determine which node will be 
expanded (whether one node is more promising 
than the other). Heuristic information is prob-
lem dependent (domain specific information) 
and must be known in advance. The heuristic 
function h(n) takes a node n and returns the non
-negative real number.That is an estimate of the 
path cost from node n to a goal node. It provides 
a way to inform the search about the direction 
to a goal. Using heuristics reduces problem di-
mension from exponential to polynomial. There 

is no guarantee that the goal will be found, or 
that solution would be optimal [32], [33]. These 
algorithms can be used by agents located in a 
fully or partially observable environments. The 
only condition, in the latter case, is that the part 
of the visible environment includes the goal 
node. Classical implementations of state search 
algorithms are well known and have a variety 
of applications in AI [34]. Taking into consid-
eration that there are many different search al-
gorithms, including their variations, it is neces-
sary to design an intelligent agent architecture 
that will be able to support multiple search al-
gorithms and apply them to problem-solving. A 
detailed description will be given in the follow-
ing sections concerning agent architecture and 
experimental study.

4. Unibot Agent Architecture

An intelligent agent (robot) is composed of sen-
sors, actuators, the mental model of its world 
and decision-making mechanism (system). 
An interaction with the environment is man-
aged through sensors and actuators. Sensors 
enable the agent to perceive its surrounding 
(input data) while actuators enable it to affect 
the surroundings. The agent creates its mental 
model by processing raw perceptual data ob-
tained through sensors. This mental model rep-
resents agent's reality and can be different from 
the physical ("real") world or even some other 
agent's mental model. This paper does not spe-
cifically address the problems of creating such 
model as it is too specific and greatly depends 
on the individual agent. A mental model is con-
sidered, from the agent's perspective, as a real 
environment.
The mental model is represented as a set of 
concepts and relations between those concepts. 
Concepts can be divided into concepts describ-
ing the perception of the world and concepts 
describing physical actions that the agent can 
perform. 
The agent model for environment information 
representation can be described as ordered tri-
ple (objects, attributes, relations).  Set O is a 
countable finite set of objects uniquely defined 
by the symbolic notation:

                   { }{ }: k 1, , .iO O n= ∈                (9)

For every i-th element of the set O, there ex-
ists a countable finite set of attributes Ati that 
uniquely describes that particular object:

                { }{ }: j 1, , ,i ijAt At m= ∈ 

          (10)

and is implemented as artificial neural network 
(multi-layer perceptron).  The function of this 
neural network is to establish a relation be-
tween object Oi and related set of attributes Ati.  
Similarly, the agent can be defined as ordered 
triple (Sn, At, M), where Sn denotes a countable 
finite set of sensors:

                 { }{ }: 1, , .nSn Sn n i= ∈              (11)

Element Ac denotes a countable finite set of ac-
tuators:

               { }{ }: 1, , ,nAc Ac n j= ∈              (12)

and M denotes a countable finite set of mental 
models:

                { }{ }: 1, , ,nM M n k= ∈              (13)

where i, j, and k are the numbers of sensors, 
actuators and mental models, respectively. For 
example, in our experiment, physical represen-
tation of an agent was implemented using Lego 
Mindstorms robot that was equipped with two 
sensors (colour and ultrasound), two actuators 
(left and right motors) and possessed one men-
tal model (maze):
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In the proposed agent architecture there are two 
distinct operating modes: a) problem explo-
ration and b) problem-solving. Each of these 
modes is described in the following sections.

4.1. Problem Exploration

When presented with a problem, it cannot be 
presumed that the agent already possesses com-
plete knowledge about that particular problem 
and related concepts, as well as its full state-
space. By doing so, we would limit the agent 
usability to only a predefined set of problems. 
To conform to previously unknown problems 
and environments, the agent must possess a 
mechanism to learn and adapt to its current en-
vironment and given problem. The agent can 
acquire new knowledge using one of the prin-
ciples described in previous sections. Uncondi-
tioned learning corresponds to the reactive part 
of the architecture, which produces a simple 
set of rules for the agent's primitive actions. 
Cognitive and social cognitive approaches are 
associated with proactive agent's behavior and 
knowledge acquisition. Origin (and type) of 
knowledge is not important, as it can be self-
taught or transferred from another agent. To be 
able to learn from each other, agents must have 
at least one common characteristic that will be 
used as a foundation for knowledge exchange 

Figure 3. Different types of distance metrics: 
a) Euclidian; b) Manhattan; c) Chebyshevh.

Figure 4. Learning process for the agent space navigation.
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to satisfy the main requirement for successful 
knowledge transfer. The agent that is trying 
to learn from another agent needs the ability 
to receive the same type of sensorial input as 
the teacher agent possesses. The advantage of 
this approach is the possibility of the agent to 
learn from many different agents with which it 
shares some common sensorial input. Under-
lying mechanisms for learning and knowledge 
transfer are described in previous research [35], 
[36]. An overview of the cognitive learning 
process for the agent space navigation is pre-
sented in Figure 4.
Once the agent is familiar with a state-space 
of the current problem, informed search algo-
rithms can be applied to find the desired solu-
tion. Depending on solution requirements, it 
is not always necessary for the agent to famil-
iarize itself with the full state-space of a given 
problem, but only with a portion of it. The only 
requirement is that the portion contains at least 
one valid path from the initial to the goal state. 
Once the agent has acquired adequate knowl-
edge, it can progress to the second internal state 
and find the desired solution within given con-
straints.

4.2. Problem Solving

In the second operating mode, the agent per-
forms search within explored state-space and 
tries to find the best available solution for the 
given problem. The final solution may not al-
ways be the optimal one, depending on the algo-
rithm used for the problem exploration, as well 
on the algorithm used for problem-solving. To 
guarantee an optimal solution, state-space ex-
ploration must be fully discovered (exhaustive 
search), and analyzed by one of optimal search 
algorithms (e.g. A*). However, searching for 
the optimal solution is not always the most ad-
visable strategy. In some cases, a sub-optimal 
solution can be calculated faster and therefore is 
more desirable. Because of that, an agent must 
possess the ability to evaluate different solutions 
based on given heuristic. Agents that perform 
a single task, or any predetermined number of 
tasks, usually possess innate knowledge and al-
ways utilize the same search algorithm for the 
same particular problem. This type of behav-
ior influences the agent's adaptability, which is 
one of the basic characteristics of an intelligent 
agent [37]. The agent's ability to operate in a 

dynamic environment is reduced, as well as its 
ability for solving previously unknown prob-
lems. The core idea of the proposed agent ar-
chitecture is to define an agent that is capable of 
learning new tasks and actions to solve newly 
emerged problems. Simultaneously, the agent 
would, through practice, determine the most ap-
propriate (not necessarily optimal) solution for 
the particular problem. Furthermore, by analyz-
ing encountered problems, and classifying them 
into some groups, the agent could be trained to 
solve a particular set of problems, thus avoiding 
the need for learning how to solve every single 
distinct problem. Classification of problems is a 
separate topic and is too complex to be included 
in this paper. However, this is an important part 
of the proposed architecture and is the main fo-
cus of future research.
To meet those requirements, without affect-
ing the agent's performance, it is necessary to 
design a system that allows simultaneous ex-
ecution of several different problem-solving 
approaches (i.e. different algorithms). Such 
system can be implemented using the proposed 
multi-agent approach developed for decision 
making. Algorithms that manage to reach a 
satisfying solution under given constraints cal-
culate the actions that an agent must perform 
to carry out that solution, along with the cost 
of performing that action. Due to an agent op-
erating in a dynamic environment, even when 
the desirable solution is found, the agent must 
examine its environment after every action 
performed to detect any possible changes that 
would interfere with its planned actions. When 
the agent is presented with more than one solu-
tion, the proposed Multi-Agent Decision Sup-
port System (MADSS), depicted in Figure 5, 
uses the operating function to select the most 
appropriate solution, based on a given heuristic. 
Simultaneously, the system updates its mental 
model and knowledge by associating a problem 
set with a particular algorithm. A use case of the 
agent (Unibot) path finding problem is solved 
by using the Multi-Agent Decision Support 
System (MADSS) as presented in Figure 5.
The MADSS is a part of the proposed agent 
architecture enabling the agent to evaluate, 
choose and execute an action based on the op-
erating function result. The complete proposed 
agent architecture is composed of two main 
parts: physical and mental. The physical part 
includes sensors and actuators while the mental 

part consists of: the mental model, the learning 
module, the MADSS, the decision module and 
the available actions set.
Figure 6 gives a complete overview of the pro-
posed agent architecture.
The research methodology and the experimen-
tal evaluation of the proposed agent architec-
ture is presented in the next section.

5. Experimental Evaluation

The research methodology used in this research 
matches the pluralistic approach which com-
bines an understanding of observed phenomena 
with the goal of understanding their cause, and 
empirical/analytical tradition [38]. Experiments 
based on understanding particular phenomena 

are described with a set of question/answer 
structures. Consequently, the goal of this ex-
perimental study is to provide answers to a set 
of research questions regarding the proposed 
intelligent agent architecture. The purpose of 
the research is better understanding of select-
ing appropriate problem-solving techniques in 
intelligent multi-agent systems.
Research questions are related to three distinc-
tive phases of agent behavior: learning, explo-
ration and solving.

 ● Learning phase – Research Question I.: 
How can an agent learn new concepts re-
lated to the environment, allowing him to 
move through the environment?

 ● Exploration phase – Research Question 
II.: How can an agent successfully navi-
gate a maze, simultaneously searching for 
the goal and making the mental model of 
the environment?

 ● Solving phase – Research Question III.: 
How can an agent use the MADSS for se-
lecting the most appropriate path from one 
cell in a maze to another?

5.1. Experimental setup and framework

For the purpose of the experiment, LEGO Mind-
storms robot was used as a physical embodi-
ment of Unibot intelligent agent, because the 
platform is widely used and modular [39]. The 

Figure 5. Overview of the Multi-agent Decision Support System used for calculate and 
evaluate multiple solutions for a given problem.

Figure 6. The proposed agent architecture.
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to satisfy the main requirement for successful 
knowledge transfer. The agent that is trying 
to learn from another agent needs the ability 
to receive the same type of sensorial input as 
the teacher agent possesses. The advantage of 
this approach is the possibility of the agent to 
learn from many different agents with which it 
shares some common sensorial input. Under-
lying mechanisms for learning and knowledge 
transfer are described in previous research [35], 
[36]. An overview of the cognitive learning 
process for the agent space navigation is pre-
sented in Figure 4.
Once the agent is familiar with a state-space 
of the current problem, informed search algo-
rithms can be applied to find the desired solu-
tion. Depending on solution requirements, it 
is not always necessary for the agent to famil-
iarize itself with the full state-space of a given 
problem, but only with a portion of it. The only 
requirement is that the portion contains at least 
one valid path from the initial to the goal state. 
Once the agent has acquired adequate knowl-
edge, it can progress to the second internal state 
and find the desired solution within given con-
straints.

4.2. Problem Solving

In the second operating mode, the agent per-
forms search within explored state-space and 
tries to find the best available solution for the 
given problem. The final solution may not al-
ways be the optimal one, depending on the algo-
rithm used for the problem exploration, as well 
on the algorithm used for problem-solving. To 
guarantee an optimal solution, state-space ex-
ploration must be fully discovered (exhaustive 
search), and analyzed by one of optimal search 
algorithms (e.g. A*). However, searching for 
the optimal solution is not always the most ad-
visable strategy. In some cases, a sub-optimal 
solution can be calculated faster and therefore is 
more desirable. Because of that, an agent must 
possess the ability to evaluate different solutions 
based on given heuristic. Agents that perform 
a single task, or any predetermined number of 
tasks, usually possess innate knowledge and al-
ways utilize the same search algorithm for the 
same particular problem. This type of behav-
ior influences the agent's adaptability, which is 
one of the basic characteristics of an intelligent 
agent [37]. The agent's ability to operate in a 

dynamic environment is reduced, as well as its 
ability for solving previously unknown prob-
lems. The core idea of the proposed agent ar-
chitecture is to define an agent that is capable of 
learning new tasks and actions to solve newly 
emerged problems. Simultaneously, the agent 
would, through practice, determine the most ap-
propriate (not necessarily optimal) solution for 
the particular problem. Furthermore, by analyz-
ing encountered problems, and classifying them 
into some groups, the agent could be trained to 
solve a particular set of problems, thus avoiding 
the need for learning how to solve every single 
distinct problem. Classification of problems is a 
separate topic and is too complex to be included 
in this paper. However, this is an important part 
of the proposed architecture and is the main fo-
cus of future research.
To meet those requirements, without affect-
ing the agent's performance, it is necessary to 
design a system that allows simultaneous ex-
ecution of several different problem-solving 
approaches (i.e. different algorithms). Such 
system can be implemented using the proposed 
multi-agent approach developed for decision 
making. Algorithms that manage to reach a 
satisfying solution under given constraints cal-
culate the actions that an agent must perform 
to carry out that solution, along with the cost 
of performing that action. Due to an agent op-
erating in a dynamic environment, even when 
the desirable solution is found, the agent must 
examine its environment after every action 
performed to detect any possible changes that 
would interfere with its planned actions. When 
the agent is presented with more than one solu-
tion, the proposed Multi-Agent Decision Sup-
port System (MADSS), depicted in Figure 5, 
uses the operating function to select the most 
appropriate solution, based on a given heuristic. 
Simultaneously, the system updates its mental 
model and knowledge by associating a problem 
set with a particular algorithm. A use case of the 
agent (Unibot) path finding problem is solved 
by using the Multi-Agent Decision Support 
System (MADSS) as presented in Figure 5.
The MADSS is a part of the proposed agent 
architecture enabling the agent to evaluate, 
choose and execute an action based on the op-
erating function result. The complete proposed 
agent architecture is composed of two main 
parts: physical and mental. The physical part 
includes sensors and actuators while the mental 

part consists of: the mental model, the learning 
module, the MADSS, the decision module and 
the available actions set.
Figure 6 gives a complete overview of the pro-
posed agent architecture.
The research methodology and the experimen-
tal evaluation of the proposed agent architec-
ture is presented in the next section.

5. Experimental Evaluation

The research methodology used in this research 
matches the pluralistic approach which com-
bines an understanding of observed phenomena 
with the goal of understanding their cause, and 
empirical/analytical tradition [38]. Experiments 
based on understanding particular phenomena 

are described with a set of question/answer 
structures. Consequently, the goal of this ex-
perimental study is to provide answers to a set 
of research questions regarding the proposed 
intelligent agent architecture. The purpose of 
the research is better understanding of select-
ing appropriate problem-solving techniques in 
intelligent multi-agent systems.
Research questions are related to three distinc-
tive phases of agent behavior: learning, explo-
ration and solving.

 ● Learning phase – Research Question I.: 
How can an agent learn new concepts re-
lated to the environment, allowing him to 
move through the environment?
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II.: How can an agent successfully navi-
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the goal and making the mental model of 
the environment?

 ● Solving phase – Research Question III.: 
How can an agent use the MADSS for se-
lecting the most appropriate path from one 
cell in a maze to another?

5.1. Experimental setup and framework

For the purpose of the experiment, LEGO Mind-
storms robot was used as a physical embodi-
ment of Unibot intelligent agent, because the 
platform is widely used and modular [39]. The 
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agent mental model (mapping and learning) and 
Multi-Agent Decision Support System were im-
plemented using NetLogo – a multi-agent pro-
grammable modeling environment [40]. The 
simulated approach was chosen as it provided 
more flexibility, easier data collection, and bet-
ter visualization of the mental model. Two-way 
real-time communication between simulations 
and the physical robot was implemented using 
the framework described in [41]. The proposed 
scenario was placing the Unibot in a maze with 
the goal of finding the shortest path from start-
ing cell to the goal (green cell). The Unibot was 
constructed having two sensors (ultrasound and 
color) and two actuators controlling the wheels 
connected with tracks on each side of the ro-
bot. The environment of the robot was defined 
with three different concepts (wall, space, goal) 
and represented as a maze. The maze was de-
signed with black and white tiles representing 
space, a green tile representing goal and boxes 
placed on the tiles were obstacles (walls). The 
complete software framework is available for 
download (please refer to http://mapmf.pmfst.
unist.hr/heritage/Unibot_software.zip).

5.2. Research Question I

Initially, a robot did not possess the knowledge 
about any of those concepts regarding its envi-
ronment, only its primitive set of actions, and 
was operating in the problem exploration mode 

described in 4.1. An agent activity during this 
phase includes training an artificial neural net-
work (ANN) for each concept. Concepts are 
learned by obtaining perceptual stimuli from 
the robot's sensors in the physical world, which 
are forwarded to the simulation used to gener-
ate the data-set for the ANN associated with 
that particular concept. Each ANN consists of 
two input nodes, one hidden layer with two 
nodes and one output node. Recognized con-
cepts, in the form of trained ANNs, represent 
a layer of the agent's knowledge related to its 
object recognition capability. The second layer 
of knowledge is learning allowed actions i.e. 
when the agent can perform some action. This 
knowledge is linked to object recognition, as 
the agent must be aware of its environment 
(current state) to determine all possible legal 
actions. Allowed actions are trained in the same 
way as concepts, the only difference being the 
source and number of input nodes. Source of 
these input nodes are the output nodes of ANNs 
from object recognition layer, and, accordingly, 
the number of input nodes depends on the num-
ber of concepts the agent has learned to recog-
nize. Finally, individual ANNs from both layers 
were connected in one multi-layered ANN rep-
resenting the agent's acquired knowledge. Fig-
ure 7 depicts different parts of the experiments 
conducted in the first phase. To test the social 
cognitive approach described in previous sec-
tions, the role of the teacher in this experimen-

tal phase was taken by both human and by the 
robot that was previously trained for navigating 
inside the same maze. This covered the first ex-
perimental question and demonstrated the agent 
learning ability.

5.3. Research question II

Having successfully concluded the first part of 
the experiments regarding learning, the second 
part was testing robot's application of gained 
knowledge through navigation across the maze 
while simultaneously building the mental model 
of its environment. This was carried out in both 
simulated and physical environments. Robot's 
sensory input was interpreted using previously 
described multi-layered ANN and recognized 
concepts were depicted in the simulation that 
represented robot's mental model of the world. 
In this case, the agent had perfect memory and 
was operating in a static environment. How-
ever, the agent cannot be self-aware and pos-
sess meta-knowledge about its environment, so 
it is necessary to, at least periodically, update 
the mental model by processing sensory input 
through object recognition module (trained 
ANN) and refresh its mental model accordingly. 
Aside from allowing the agent to operate in a 
dynamic environment, this can also be useful 
for correcting any prior potential errors in the 
agent's mental model. Figure 8 shows the robot 
in the real world and its mental representation 
of fully explored maze. Experiments were then 
conducted in additional three different maze 
configurations with the same type of elements 
(concepts). In all cases, the robot successfully 
managed to explore its environment and create 
an appropriate mental model that was later used 
in the third experimental phase. It should be em-
phasized that there is a difference between re-
al-world and agent's mental models. This is best 
demonstrated by the different color of boxes. 
In the physical world, there are two types of 
boxes, with different height and color on top. 
However, the robot's sensors are not capable 
of distinguishing these differences causing the 
both types of boxes to be identified as the same 
type of object. This is not regarded as an er-
ror in the proposed architecture, but as a lim-
itation of this particular robot. On the contrary, 
the proposed agent architecture is designed to 
overcome limitations of a single agent. By shar-

ing knowledge between different agents and co-
operating, it is possible to associate additional 
properties to any learned concept by using the 
same principles of the classical conditioning 
described in Section 2 and depicted in Figure 1.

5.4. Research question III

The last phase of the experimental study had 
a purpose to test the agent's Multi-Agent De-
cision Support System. This was done with a 
robot that successfully finished two previous 
phases and had explored the entire maze (ex-
haustive search). Fully explored mazes were 
better suitable for this part of the experimen-
tal study because they provided the robot with 
multiple solutions (paths to the goal) to choose 
amongst. For testing purposes, the robot was 
placed in a starting cell and presented with a 
problem of finding the best path to the goal. As 
already mentioned, search algorithms present a 
basis for path-finding problems and, conform-
ing to the proposed architecture, they were re-
quired to run simultaneously with the task of 
choosing the desired solution assigned to the 
MADSS. Multi-agent implementations of clas-
sical search algorithms were used, both blind 
(depth-first, breadth-first, depth-limited, itera-
tive deepening) and informed (greedy best-first, 
A*, hill-climbing, tabu). The Manhattan dis-
tance metric was used. Four physical maze con-
figurations, used in the previous phase, where 
selected to test the performance of the robot's 
decision-making system. Each maze configura-
tion possessed same unique trait compared to 
other three mazes and was classified based on 
the attributes defined by Bagnall and Zatuchna 
[24]. The attributes used in the experiment are:

Figure 7. Learning phase: a) Simulation used for learning different concepts; 
            b) Physical embodiment of agent used for gathering sensors data; 
   c) Trained ANN for simple concept (wall); 
             d) Final results for learned concepts (number of errors over time); 
     e) Multilayered AN representing agent's knowledge.

Figure 8. Physical and simulated representations of the 
agent in the maze.
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agent mental model (mapping and learning) and 
Multi-Agent Decision Support System were im-
plemented using NetLogo – a multi-agent pro-
grammable modeling environment [40]. The 
simulated approach was chosen as it provided 
more flexibility, easier data collection, and bet-
ter visualization of the mental model. Two-way 
real-time communication between simulations 
and the physical robot was implemented using 
the framework described in [41]. The proposed 
scenario was placing the Unibot in a maze with 
the goal of finding the shortest path from start-
ing cell to the goal (green cell). The Unibot was 
constructed having two sensors (ultrasound and 
color) and two actuators controlling the wheels 
connected with tracks on each side of the ro-
bot. The environment of the robot was defined 
with three different concepts (wall, space, goal) 
and represented as a maze. The maze was de-
signed with black and white tiles representing 
space, a green tile representing goal and boxes 
placed on the tiles were obstacles (walls). The 
complete software framework is available for 
download (please refer to http://mapmf.pmfst.
unist.hr/heritage/Unibot_software.zip).

5.2. Research Question I

Initially, a robot did not possess the knowledge 
about any of those concepts regarding its envi-
ronment, only its primitive set of actions, and 
was operating in the problem exploration mode 

described in 4.1. An agent activity during this 
phase includes training an artificial neural net-
work (ANN) for each concept. Concepts are 
learned by obtaining perceptual stimuli from 
the robot's sensors in the physical world, which 
are forwarded to the simulation used to gener-
ate the data-set for the ANN associated with 
that particular concept. Each ANN consists of 
two input nodes, one hidden layer with two 
nodes and one output node. Recognized con-
cepts, in the form of trained ANNs, represent 
a layer of the agent's knowledge related to its 
object recognition capability. The second layer 
of knowledge is learning allowed actions i.e. 
when the agent can perform some action. This 
knowledge is linked to object recognition, as 
the agent must be aware of its environment 
(current state) to determine all possible legal 
actions. Allowed actions are trained in the same 
way as concepts, the only difference being the 
source and number of input nodes. Source of 
these input nodes are the output nodes of ANNs 
from object recognition layer, and, accordingly, 
the number of input nodes depends on the num-
ber of concepts the agent has learned to recog-
nize. Finally, individual ANNs from both layers 
were connected in one multi-layered ANN rep-
resenting the agent's acquired knowledge. Fig-
ure 7 depicts different parts of the experiments 
conducted in the first phase. To test the social 
cognitive approach described in previous sec-
tions, the role of the teacher in this experimen-

tal phase was taken by both human and by the 
robot that was previously trained for navigating 
inside the same maze. This covered the first ex-
perimental question and demonstrated the agent 
learning ability.

5.3. Research question II

Having successfully concluded the first part of 
the experiments regarding learning, the second 
part was testing robot's application of gained 
knowledge through navigation across the maze 
while simultaneously building the mental model 
of its environment. This was carried out in both 
simulated and physical environments. Robot's 
sensory input was interpreted using previously 
described multi-layered ANN and recognized 
concepts were depicted in the simulation that 
represented robot's mental model of the world. 
In this case, the agent had perfect memory and 
was operating in a static environment. How-
ever, the agent cannot be self-aware and pos-
sess meta-knowledge about its environment, so 
it is necessary to, at least periodically, update 
the mental model by processing sensory input 
through object recognition module (trained 
ANN) and refresh its mental model accordingly. 
Aside from allowing the agent to operate in a 
dynamic environment, this can also be useful 
for correcting any prior potential errors in the 
agent's mental model. Figure 8 shows the robot 
in the real world and its mental representation 
of fully explored maze. Experiments were then 
conducted in additional three different maze 
configurations with the same type of elements 
(concepts). In all cases, the robot successfully 
managed to explore its environment and create 
an appropriate mental model that was later used 
in the third experimental phase. It should be em-
phasized that there is a difference between re-
al-world and agent's mental models. This is best 
demonstrated by the different color of boxes. 
In the physical world, there are two types of 
boxes, with different height and color on top. 
However, the robot's sensors are not capable 
of distinguishing these differences causing the 
both types of boxes to be identified as the same 
type of object. This is not regarded as an er-
ror in the proposed architecture, but as a lim-
itation of this particular robot. On the contrary, 
the proposed agent architecture is designed to 
overcome limitations of a single agent. By shar-

ing knowledge between different agents and co-
operating, it is possible to associate additional 
properties to any learned concept by using the 
same principles of the classical conditioning 
described in Section 2 and depicted in Figure 1.

5.4. Research question III

The last phase of the experimental study had 
a purpose to test the agent's Multi-Agent De-
cision Support System. This was done with a 
robot that successfully finished two previous 
phases and had explored the entire maze (ex-
haustive search). Fully explored mazes were 
better suitable for this part of the experimen-
tal study because they provided the robot with 
multiple solutions (paths to the goal) to choose 
amongst. For testing purposes, the robot was 
placed in a starting cell and presented with a 
problem of finding the best path to the goal. As 
already mentioned, search algorithms present a 
basis for path-finding problems and, conform-
ing to the proposed architecture, they were re-
quired to run simultaneously with the task of 
choosing the desired solution assigned to the 
MADSS. Multi-agent implementations of clas-
sical search algorithms were used, both blind 
(depth-first, breadth-first, depth-limited, itera-
tive deepening) and informed (greedy best-first, 
A*, hill-climbing, tabu). The Manhattan dis-
tance metric was used. Four physical maze con-
figurations, used in the previous phase, where 
selected to test the performance of the robot's 
decision-making system. Each maze configura-
tion possessed same unique trait compared to 
other three mazes and was classified based on 
the attributes defined by Bagnall and Zatuchna 
[24]. The attributes used in the experiment are:

Figure 7. Learning phase: a) Simulation used for learning different concepts; 
            b) Physical embodiment of agent used for gathering sensors data; 
   c) Trained ANN for simple concept (wall); 
             d) Final results for learned concepts (number of errors over time); 
     e) Multilayered AN representing agent's knowledge.

Figure 8. Physical and simulated representations of the 
agent in the maze.
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Table 1 shows calculated maze characteristics.
Obtained solutions were evaluated using four 
different operating functions: path length, num-
ber of robots turns (rotations), total number of 

agents in simulation and number of simulation 
steps. Path length determines the number of 
cells that a robot must traverse through to reach 
the final cell and the solution with the minimal 
path is considered the best one. Second oper-
ating function emphasizes the importance of 
keeping the same heading while moving, so 
the solution with least number of turns is most 
desirable. A number of agents in a simulation 
matches the application's memory requirement; 
therefore, the third operating function evaluates 
a solution based on that factor. The fourth oper-
ating function is linked with the time required 
for calculating the solution and represented 
through the number of executed simulation 
steps. Table 2 shows detailed results for all four 
operating functions applied on the solutions 
provided by eight different algorithms in four 
different mazes. Analyzing obtained results, it 
can be noted that some algorithms produced 

identical results according to one operating 
function (heuristic), but opposite results when 
evaluated by some other operating function. 
This leads to the conclusion that there is no 
universally "best" algorithm. Instead, the al-
gorithm selection depends on the chosen prob-
lem. This confirms the importance of problem 
classification and necessity of training agents to 
identify a type of problem and apply adequate 
solution technique.

6. Conclusion and Future Work

The above described experiments were con-
ducted with the goal of responding to the given 
research questions. To conduct experiments, 
five different simulations were developed, each 
constituting a part of the proposed Unibot ar-
chitecture. Additionally, a psychical robot was 
constructed, along with the associated maze, to 
demonstrate the physical embodiment of the 
agent and to test the relation between physical 
and simulated parts of the architecture. The first 
experimental phase demonstrated that the agent 
can use a multi-layered artificial neural network 
to learn new concepts related to its environment. 
The second experimental phase confirmed the 
validity of the first phase by successfully us-
ing learned concepts for maze navigation and 
demonstrated the principles of creating and 
refreshing the agent's mental model. The third 
phase proved the agent's ability to use Multi
-Agent Decision Support System (MADSS) to 
select the most appropriate solution for differ-
ent problem types. Altogether, this proved the 
validity of the proposed agent architecture. As 
previously stated, future work will be focused 
on the topic of problem classification, to fully 
benefit from the proposed agent architecture, 
primarily the MADSS. One drawback of the 
conducted experiments was small number of 
tested maze configurations. This was caused by 
the necessity of physically constructing every 
maze, which was the main limiting factor for 
additional maze configuration. However, con-
ducted experiments proved a correlation be-
tween the physical and the simulated environ-
ments, which enables further experiments to be 
conducted solely in the simulated environment, 
thus removing the aforementioned limitation. 
Experimental studies also drew attention to the 
differences between simulated and physical im-
plementations of the agent.

Although these differences are well known in 
the fields of robotics and artificial intelligence 
[42], future work is planned on implementing 
and testing a localization subsystem inside the 
proposed architecture, with the main goal of 
further extending the adaptability and univer-
sality of the architecture.
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#4 92 0.46 84 9.67 25

Table 2.  Detailed experimental results of the agent's MADSS system, used in four different maze configurations, 
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Maze Operating 
function

Breadth-
first

Depth-
first Limited Iterative Greedy Dijsktra A* Tabu

#1

Path length 
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Agents 
Steps (simulation)

9 
2 
16 
9

9 
2 
16 
16

9 
2 
16 
17
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2 
21 
20
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11 
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Path length 
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Table 1 shows calculated maze characteristics.
Obtained solutions were evaluated using four 
different operating functions: path length, num-
ber of robots turns (rotations), total number of 

agents in simulation and number of simulation 
steps. Path length determines the number of 
cells that a robot must traverse through to reach 
the final cell and the solution with the minimal 
path is considered the best one. Second oper-
ating function emphasizes the importance of 
keeping the same heading while moving, so 
the solution with least number of turns is most 
desirable. A number of agents in a simulation 
matches the application's memory requirement; 
therefore, the third operating function evaluates 
a solution based on that factor. The fourth oper-
ating function is linked with the time required 
for calculating the solution and represented 
through the number of executed simulation 
steps. Table 2 shows detailed results for all four 
operating functions applied on the solutions 
provided by eight different algorithms in four 
different mazes. Analyzing obtained results, it 
can be noted that some algorithms produced 

identical results according to one operating 
function (heuristic), but opposite results when 
evaluated by some other operating function. 
This leads to the conclusion that there is no 
universally "best" algorithm. Instead, the al-
gorithm selection depends on the chosen prob-
lem. This confirms the importance of problem 
classification and necessity of training agents to 
identify a type of problem and apply adequate 
solution technique.

6. Conclusion and Future Work

The above described experiments were con-
ducted with the goal of responding to the given 
research questions. To conduct experiments, 
five different simulations were developed, each 
constituting a part of the proposed Unibot ar-
chitecture. Additionally, a psychical robot was 
constructed, along with the associated maze, to 
demonstrate the physical embodiment of the 
agent and to test the relation between physical 
and simulated parts of the architecture. The first 
experimental phase demonstrated that the agent 
can use a multi-layered artificial neural network 
to learn new concepts related to its environment. 
The second experimental phase confirmed the 
validity of the first phase by successfully us-
ing learned concepts for maze navigation and 
demonstrated the principles of creating and 
refreshing the agent's mental model. The third 
phase proved the agent's ability to use Multi
-Agent Decision Support System (MADSS) to 
select the most appropriate solution for differ-
ent problem types. Altogether, this proved the 
validity of the proposed agent architecture. As 
previously stated, future work will be focused 
on the topic of problem classification, to fully 
benefit from the proposed agent architecture, 
primarily the MADSS. One drawback of the 
conducted experiments was small number of 
tested maze configurations. This was caused by 
the necessity of physically constructing every 
maze, which was the main limiting factor for 
additional maze configuration. However, con-
ducted experiments proved a correlation be-
tween the physical and the simulated environ-
ments, which enables further experiments to be 
conducted solely in the simulated environment, 
thus removing the aforementioned limitation. 
Experimental studies also drew attention to the 
differences between simulated and physical im-
plementations of the agent.

Although these differences are well known in 
the fields of robotics and artificial intelligence 
[42], future work is planned on implementing 
and testing a localization subsystem inside the 
proposed architecture, with the main goal of 
further extending the adaptability and univer-
sality of the architecture.
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25

14 
6 
68 
61

14 
6 
42 
35

18 
6 
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