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Computationally-Heavy Centrality 
Metrics on Real-World Graphs

We identify three different levels of correlation (pair-
wise relative ordering, network-wide ranking and pre-
diction through linearity) that could be assessed be-
tween a computationally-light centrality metric and a 
computationally-heavy centrality metric for real-world 
networks. The Kendall's concordance-based correla-
tion measure could be used to quantitatively assess 
how well we could consider the relative ordering of 
two vertices vi and vj with respect to a computation-
ally-light centrality metric as the relative ordering of 
the same two vertices with respect to a computation-
ally-heavy centrality metric. We hypothesize that the 
pair-wise relative ordering (concordance)-based as-
sessment of the correlation between centrality metrics 
is the strictest of all three levels of correlation and claim 
that the Kendall's concordance-based correlation coef-
ficient will be lower than the correlation coefficient 
observed with the more relaxed levels of correlation 
measures (prediction through linearity-based Pear-
son's product-moment correlation coefficient and the 
network wide ranking-based Spearman's correlation 
coefficient). We validate our hypothesis by evaluating 
the three correlation coefficients between two sets of 
centrality metrics: the computationally-light degree 
and local clustering coefficient complement-based de-
gree centrality metrics and the computationally-heavy 
eigenvector centrality, betweenness centrality and 
closeness centrality metrics for a diverse collection of 
50 real-world networks.
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1. Introduction

Network Science deals with analyzing complex 
networks (e.g., biological networks, social net-
works, citation networks, web, etc) from a graph 
theoretic perspective [1]. We model a complex 
network as an abstract graph of vertices (nodes) 
and edges (links). Centrality of a vertex is a 
quantitative measure of the topological signifi-
cance of the vertex in a graph [1]. There exists a 
slew of centrality metrics for complex network 
analysis. Among these, the commonly studied 
metrics are the degree-based degree centrality 
(DegC) [1] and eigenvector centrality (EVC) 
[2] metrics as well as the shortest path-based 
betweenness centrality (BWC) [3] and close-
ness centrality (CLC) metrics [4]. The degree 
centrality of a vertex is a measure of the num-
ber of neighbors of the vertex. The eigenvec-
tor centrality [2] of a vertex is a measure of the 
degree of the vertex as well as the degree of 
its neighbors. A vertex has a higher EVC if it 
has a high-degree and its neighbors also have 
a high-degree. The betweenness centrality [3] 
of a vertex is a measure of the number of short-
est paths (between any two vertices in the net-
work) that go through the vertex. The closeness 
centrality [4] of a vertex is a measure of the 
hop count of the shortest paths (or the weight 
of the shortest paths in a weighted graph) from 
the vertex to the rest of the vertices in a graph. 
For graphs that are not connected, the centrality 
metrics are typically computed for the largest 
connected component of the graph.
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Among the above four centrality metrics (see 
Section 5 for a comparison of the computation 
time), the degree centrality metric is the only 
computationally-light metric (i.e., can be com-
puted quickly) and the other three metrics are 
computationally-heavy (i.e., will take more 
computation time). For a graph of V vertices 
and E edges, it takes Θ (V3) time to compute the 
EVC of the vertices [2], and Θ (V 2

 + VE) time to 
compute each of the BWC [3] and CLC metrics 
[4]. Recently, some research articles (e.g., [5] 
– [6]) have evaluated the correlation between 
these four commonly used centrality metrics for 
real-world network graphs to see if one or more 
of the computationally-heavy centrality metrics 
(EVC, BWC, CLC) exhibit a strong correlation 
with the degree centrality metric (on the basis 
of the Pearson's correlation coefficient [7]) so 
that one could then employ linear regression to 
predict the strongly correlated computational-
ly-heavy metric(s) using the degree centrality 
metric. On similar lines, the Pearson's correla-
tion coefficient between each of the above four 
centrality metrics and the maximal clique size 
per node (another node-level computational-
ly-heavy metric, the computation of which is a 
NP-hard problem) was evaluated in [8].
In a recent work [9], a new metric called 
the localized clustering coefficient comple-
ment-based degree centrality (LCC'DC) has 
been proposed as a computationally-light al-
ternative to the computationally-heavy BWC 
metric. LCC'DC is computed as the product of 
1 – LCC and DegC; where LCC (local cluster-
ing coefficient) of a vertex [1] is a measure of 
the probability that any two neighbors of the 
vertex are connected and is computed as the ra-
tio of the actual number of edges between the 
neighbors of a vertex to that of the maximum 
possible number of edges between the neigh-
bors of the vertex. For several real-world net-
works analyzed in [9], the Pearson's correlation 
coefficient values observed for LCC'DC-BWC 
are larger than the correlation coefficient val-
ues observed for DegC-BWC. In another re-
cent work [10], it was observed that compared 
to DegC, LCC'DC could be used to more ac-
curately predict BWC values using linear re-
gression (with standard error of residual values 
smaller than those incurred for regression using 
DegC). For all correlation analysis in this pa-
per, we consider DegC and LCC'DC as the two 
computationally-light centrality metrics and 
EVC, BWC and CLC as the three computation-

ally-heavy centrality metrics.
In this paper, we identify three different levels 
of correlation that could be evaluated between 
any two centrality metrics of the vertices (more 
specifically, between a computationally-light 
metric and a computationally-heavy metric) in 
complex network graphs:
(i) A pair-wise relative ordering-based cor-

relation that would be a quantitative mea-
sure of how well the relative ordering 
of a pair of vertices based on a compu-
tationally-light metric could be consid-
ered as the relative ordering of the same 
pair of vertices with respect to a compu-
tationally-heavy metric. For example: if 
LCC'DC(vi) < LCC'DC(vj), how sure are 
we to say BWC(vi) < BWC(vj) for some 
two vertices vi and vj?

(ii) A network wide ranking-based correlation 
that would be a quantitative measure of 
the extent we could use the ranking of the 
vertices based on a computationally-light 
metric as the ranking of the vertices based 
on a computationally-heavy metric.

(iii) A linear regression-based correlation that 
would be a quantitative measure of the ex-
tent we could use the values of a computa-
tionally-light metric to predict the values 
for a computationally-heavy metric.

The Pearson's product-moment correlation co-
efficient is not the only correlation measure 
used in statistical analysis. There are at least two 
other well-known correlation measures such as 
the Spearman's Rank-based correlation mea-
sure [5] and the Kendall's concordance-based 
correlation measure [5] that are widely used 
in statistical analysis, but not that commonly 
used in complex network analysis. We opine 
that the Kendall's correlation coefficient (rather 
than the Pearson's correlation measure) could 
be more apt to do pair-wise relative ordering 
of the vertices with respect to a computation-
ally-heavy metric based on the values incurred 
for a computationally-light metric. Likewise, 
the Spearman's rank-based correlation coeffi-
cient could be an apt measure to decide whether 
a computationally-light metric could be used to 
rank the vertices in a graph in lieu of a computa-
tionally-heavy metric. We claim that real-world 
network graphs are more likely to incur differ-
ent values for the correlation coefficient with 

of concordant pairs of vertices with respect to 
the two centrality metrics X and Y. Hence, we 
claim that the correlation coefficient between 
two centrality metrics for a real-world network 
graph could be bounded below by the Kendall's 
concordance-based correlation coefficient. In 
other words, if we could evaluate the Kendall's 
concordance-based correlation coefficient be-
tween two centrality metrics for a real-world 
network graph, the correlation coefficients ex-
pected between the same two centrality metrics 
with respect to the other two correlation mea-
sures (i.e., the Spearman's and Pearson's mea-
sures) are more likely to be at least the value 
obtained for the Kendall's concordance-based 
correlation coefficient.
We determine the correlation coefficient for 
DegC and LCC'DC with each of the three com-
putationally heavy centrality metrics (EVC, 
BWC and CLC) with respect to the three dif-
ferent measures of correlation for a total of 50 
real-world networks. This generates a huge 
dataset of correlation coefficient values (50 net-
works · 2 computationally-light metrics: DegC 
and LCC'DC · 3 computationally-heavy met-
rics: EVC, BWC and CLC = 300 combinations) 
for each of the three correlation measures. We 
determine the fraction of the combinations for 
which each of the three correlation coefficient 
measures incurs the lowest and largest values. 
We observe the Kendall's concordance-based 
correlation coefficient to be the lowest for 75% 
of the combinations: this strongly indicates the 
validity of the hypothesis.
Throughout the paper, the terms ''network'' and 
''graph'', ''node'' and ''vertex'', ''link'' and ''edge'' 
are used interchangeably; they mean the same. 
All the real-world network graphs and the ex-
ample graphs analyzed in this paper are mod-
eled as undirected graphs. The adjacency matrix 
of an undirected graph of V vertices is a V × V 
binary matrix wherein there is an entry of 1 for 
cells (vi, vj) and (vj, vi) if and only if there is an 
edge between the two vertices vi and vj; other-
wise, the entry is a 0. The rest of the paper is or-
ganized as follows: In Section 2, we review the 
five centrality metrics DegC, LCC'DC, EVC, 
BWC and CLC, and illustrate their computa-
tion with an example graph. In Section 3, we re-
view the three correlation measures (Kendall's, 
Spearman's and Pearson's) and illustrate their 
computation for a computationally-light met-
ric vs. a computationally-heavy metric for the 

respect to each of the above three correlation 
measures and the Pearson's correlation coeffi-
cient alone cannot be used to infer the nature 
of correlation between any two centrality met-
rics with respect to each of the three levels of 
correlation that are of interest in this paper. For 
example: for the US Politics Books Network 
[11], we observed the following values for the 
Kendall's, Pearson's and Spearman's correlation 
coefficients with respect to LCC'DC-BWC: 
0.69, 0.78 and 0.86.
Our hypothesis in this paper is that the pair-
wise relative ordering-based correlation is the 
strictest of the three levels of correlation and 
the Kendall's correlation coefficient is more 
likely to be the lowest of the three correlation 
coefficients evaluated for real-world network 
graphs. This is because the correlation measure 
is quantified as the ratio of the difference be-
tween the number of concordant pairs and the 
number of discordant pairs to that of the total 
number of pairs of vertices. A pair of vertices 
vi and vj are said to be concordant with respect 
to centrality metrics X and Y, if {X(vi) < X(vj) 
and Y(vi) < Y(vj)} or {X(vi) > X(vj) and Y(vi) > 
Y(vj)} or {X(vi) = X(vj) and Y(vi) = Y(vj)}; and 
discordant if {X(vi) < X(vj) and Y(vi) > Y(vj)} or 
{X(vi) > X(vj) and Y(vi) < Y(vj)}. The Kendall's 
concordance-based correlation is evaluated at 
the level of vertex-vertex pairs and hence for 
two centrality metrics to be strongly correlated 
according to this measure, the number of con-
cordant pairs of vertices should be significantly 
larger than the number of discordant pairs of 
vertices. The presence of even few discordant 
pairs of vertices could significantly reduce the 
value for the Kendall's correlation coefficient. 
For two different centrality metrics: if the 
number of concordant pairs of vertices is sig-
nificantly larger than the number of discordant 
pairs of vertices, the network-wide ranking of 
the vertices with respect to the two centrality 
metrics is expected to be more or less the same. 
Likewise, the larger the number of concordant 
pairs of vertices with respect to two centrality 
metrics X and Y, the larger the chances of a de-
pendence of the values for the centrality metric 
Y on the values for centrality metric X and vice-
versa. Unless the centrality value of a vertex 
with respect to metric Y increases (or decreases) 
with an increase (or decrease) in the centrality 
value of the vertex with respect to metric X, it 
would be difficult to find a significant number 
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Among the above four centrality metrics (see 
Section 5 for a comparison of the computation 
time), the degree centrality metric is the only 
computationally-light metric (i.e., can be com-
puted quickly) and the other three metrics are 
computationally-heavy (i.e., will take more 
computation time). For a graph of V vertices 
and E edges, it takes Θ (V3) time to compute the 
EVC of the vertices [2], and Θ (V 2

 + VE) time to 
compute each of the BWC [3] and CLC metrics 
[4]. Recently, some research articles (e.g., [5] 
– [6]) have evaluated the correlation between 
these four commonly used centrality metrics for 
real-world network graphs to see if one or more 
of the computationally-heavy centrality metrics 
(EVC, BWC, CLC) exhibit a strong correlation 
with the degree centrality metric (on the basis 
of the Pearson's correlation coefficient [7]) so 
that one could then employ linear regression to 
predict the strongly correlated computational-
ly-heavy metric(s) using the degree centrality 
metric. On similar lines, the Pearson's correla-
tion coefficient between each of the above four 
centrality metrics and the maximal clique size 
per node (another node-level computational-
ly-heavy metric, the computation of which is a 
NP-hard problem) was evaluated in [8].
In a recent work [9], a new metric called 
the localized clustering coefficient comple-
ment-based degree centrality (LCC'DC) has 
been proposed as a computationally-light al-
ternative to the computationally-heavy BWC 
metric. LCC'DC is computed as the product of 
1 – LCC and DegC; where LCC (local cluster-
ing coefficient) of a vertex [1] is a measure of 
the probability that any two neighbors of the 
vertex are connected and is computed as the ra-
tio of the actual number of edges between the 
neighbors of a vertex to that of the maximum 
possible number of edges between the neigh-
bors of the vertex. For several real-world net-
works analyzed in [9], the Pearson's correlation 
coefficient values observed for LCC'DC-BWC 
are larger than the correlation coefficient val-
ues observed for DegC-BWC. In another re-
cent work [10], it was observed that compared 
to DegC, LCC'DC could be used to more ac-
curately predict BWC values using linear re-
gression (with standard error of residual values 
smaller than those incurred for regression using 
DegC). For all correlation analysis in this pa-
per, we consider DegC and LCC'DC as the two 
computationally-light centrality metrics and 
EVC, BWC and CLC as the three computation-

ally-heavy centrality metrics.
In this paper, we identify three different levels 
of correlation that could be evaluated between 
any two centrality metrics of the vertices (more 
specifically, between a computationally-light 
metric and a computationally-heavy metric) in 
complex network graphs:
(i) A pair-wise relative ordering-based cor-

relation that would be a quantitative mea-
sure of how well the relative ordering 
of a pair of vertices based on a compu-
tationally-light metric could be consid-
ered as the relative ordering of the same 
pair of vertices with respect to a compu-
tationally-heavy metric. For example: if 
LCC'DC(vi) < LCC'DC(vj), how sure are 
we to say BWC(vi) < BWC(vj) for some 
two vertices vi and vj?

(ii) A network wide ranking-based correlation 
that would be a quantitative measure of 
the extent we could use the ranking of the 
vertices based on a computationally-light 
metric as the ranking of the vertices based 
on a computationally-heavy metric.

(iii) A linear regression-based correlation that 
would be a quantitative measure of the ex-
tent we could use the values of a computa-
tionally-light metric to predict the values 
for a computationally-heavy metric.

The Pearson's product-moment correlation co-
efficient is not the only correlation measure 
used in statistical analysis. There are at least two 
other well-known correlation measures such as 
the Spearman's Rank-based correlation mea-
sure [5] and the Kendall's concordance-based 
correlation measure [5] that are widely used 
in statistical analysis, but not that commonly 
used in complex network analysis. We opine 
that the Kendall's correlation coefficient (rather 
than the Pearson's correlation measure) could 
be more apt to do pair-wise relative ordering 
of the vertices with respect to a computation-
ally-heavy metric based on the values incurred 
for a computationally-light metric. Likewise, 
the Spearman's rank-based correlation coeffi-
cient could be an apt measure to decide whether 
a computationally-light metric could be used to 
rank the vertices in a graph in lieu of a computa-
tionally-heavy metric. We claim that real-world 
network graphs are more likely to incur differ-
ent values for the correlation coefficient with 

of concordant pairs of vertices with respect to 
the two centrality metrics X and Y. Hence, we 
claim that the correlation coefficient between 
two centrality metrics for a real-world network 
graph could be bounded below by the Kendall's 
concordance-based correlation coefficient. In 
other words, if we could evaluate the Kendall's 
concordance-based correlation coefficient be-
tween two centrality metrics for a real-world 
network graph, the correlation coefficients ex-
pected between the same two centrality metrics 
with respect to the other two correlation mea-
sures (i.e., the Spearman's and Pearson's mea-
sures) are more likely to be at least the value 
obtained for the Kendall's concordance-based 
correlation coefficient.
We determine the correlation coefficient for 
DegC and LCC'DC with each of the three com-
putationally heavy centrality metrics (EVC, 
BWC and CLC) with respect to the three dif-
ferent measures of correlation for a total of 50 
real-world networks. This generates a huge 
dataset of correlation coefficient values (50 net-
works · 2 computationally-light metrics: DegC 
and LCC'DC · 3 computationally-heavy met-
rics: EVC, BWC and CLC = 300 combinations) 
for each of the three correlation measures. We 
determine the fraction of the combinations for 
which each of the three correlation coefficient 
measures incurs the lowest and largest values. 
We observe the Kendall's concordance-based 
correlation coefficient to be the lowest for 75% 
of the combinations: this strongly indicates the 
validity of the hypothesis.
Throughout the paper, the terms ''network'' and 
''graph'', ''node'' and ''vertex'', ''link'' and ''edge'' 
are used interchangeably; they mean the same. 
All the real-world network graphs and the ex-
ample graphs analyzed in this paper are mod-
eled as undirected graphs. The adjacency matrix 
of an undirected graph of V vertices is a V × V 
binary matrix wherein there is an entry of 1 for 
cells (vi, vj) and (vj, vi) if and only if there is an 
edge between the two vertices vi and vj; other-
wise, the entry is a 0. The rest of the paper is or-
ganized as follows: In Section 2, we review the 
five centrality metrics DegC, LCC'DC, EVC, 
BWC and CLC, and illustrate their computa-
tion with an example graph. In Section 3, we re-
view the three correlation measures (Kendall's, 
Spearman's and Pearson's) and illustrate their 
computation for a computationally-light met-
ric vs. a computationally-heavy metric for the 

respect to each of the above three correlation 
measures and the Pearson's correlation coeffi-
cient alone cannot be used to infer the nature 
of correlation between any two centrality met-
rics with respect to each of the three levels of 
correlation that are of interest in this paper. For 
example: for the US Politics Books Network 
[11], we observed the following values for the 
Kendall's, Pearson's and Spearman's correlation 
coefficients with respect to LCC'DC-BWC: 
0.69, 0.78 and 0.86.
Our hypothesis in this paper is that the pair-
wise relative ordering-based correlation is the 
strictest of the three levels of correlation and 
the Kendall's correlation coefficient is more 
likely to be the lowest of the three correlation 
coefficients evaluated for real-world network 
graphs. This is because the correlation measure 
is quantified as the ratio of the difference be-
tween the number of concordant pairs and the 
number of discordant pairs to that of the total 
number of pairs of vertices. A pair of vertices 
vi and vj are said to be concordant with respect 
to centrality metrics X and Y, if {X(vi) < X(vj) 
and Y(vi) < Y(vj)} or {X(vi) > X(vj) and Y(vi) > 
Y(vj)} or {X(vi) = X(vj) and Y(vi) = Y(vj)}; and 
discordant if {X(vi) < X(vj) and Y(vi) > Y(vj)} or 
{X(vi) > X(vj) and Y(vi) < Y(vj)}. The Kendall's 
concordance-based correlation is evaluated at 
the level of vertex-vertex pairs and hence for 
two centrality metrics to be strongly correlated 
according to this measure, the number of con-
cordant pairs of vertices should be significantly 
larger than the number of discordant pairs of 
vertices. The presence of even few discordant 
pairs of vertices could significantly reduce the 
value for the Kendall's correlation coefficient. 
For two different centrality metrics: if the 
number of concordant pairs of vertices is sig-
nificantly larger than the number of discordant 
pairs of vertices, the network-wide ranking of 
the vertices with respect to the two centrality 
metrics is expected to be more or less the same. 
Likewise, the larger the number of concordant 
pairs of vertices with respect to two centrality 
metrics X and Y, the larger the chances of a de-
pendence of the values for the centrality metric 
Y on the values for centrality metric X and vice-
versa. Unless the centrality value of a vertex 
with respect to metric Y increases (or decreases) 
with an increase (or decrease) in the centrality 
value of the vertex with respect to metric X, it 
would be difficult to find a significant number 
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example graph in Section 2. In Section 4, we 
present the 50 real-world networks analyzed in 
this paper and tabulate the values for some of 
the fundamental metrics. We also tabulate the 
computation time for the five centrality metrics 
(on the 50 real-world networks) justifying their 
classification as computationally-light or com-
putationally-heavy. In Section 5, we present the 
results of the correlation analysis conducted on 
the 50 real-world networks on the basis of com-
putationally-light vs. computationally-heavy 
centrality metrics with respect to the three cor-
relation measures. In Section 6, related work is 
presented and unique contributions of the work 
are highlighted. Section 7 concludes the paper.

2. Review of Centrality Metrics

Centrality metrics quantify the importance of a 
vertex with respect to its position in a graph. 
In this paper, we consider centrality metrics on 
the basis of whether they are computational-
ly-light or computationally-heavy. We identify 
the degree centrality (DegC) [1] and the re-
cently proposed localized clustering coefficient 
complement-based degree centrality (LCC'DC) 
[9] as the two computationally-light centrality 
metrics (as they could be computed quickly 
with time; see Section 4) and identify the other 
three well-known centrality metrics: eigenvec-
tor centrality (EVC) [2], betweenness centrality 
(BWC) [3] and closeness centrality (CLC) [4] 
as the computationally-heavy metrics. In this 
section, we review each of these five metrics 
and illustrate their computation with a running 
example graph.

2.1. Degree Centrality

The degree centrality (DegC) of a vertex is the 
number of neighbors incident on the vertex. Fig-
ure 1 illustrates the degree centrality of the ver-
tices (listed above the vertices) in the example 
graph used in Sections 2 and 3. A key weakness 
of the degree centrality metric is that the met-
ric can take only integer values and ties among 
vertices (with same degree) is quite common 
and unavoidable in network graphs of any size 
(in the graph of Figure 1, we observe five of 
the nine vertices to have a degree of 3). Due 
to this inherent weakness, we opine that degree 
centrality might not be an apt metric for net-

work-wide ranking of the vertices or pair-wise 
relative ordering of the vertices in lieu of the 
computationally-heavy metrics, even though 
DegC has been observed [5] – [6] to be strongly 
correlated with the computationally-heavy cen-
trality metrics (EVC, BWC and CLC) with re-
spect to the Pearson's correlation measure for 
linear dependence.

2.2. Eigenvector Centrality

The eigenvector centrality (EVC) of a vertex is 
a measure of the degree of the vertex as well as 
the degree of its neighbors [2]. The EVC of the 
vertices is a column vector computed using the 
power-iteration algorithm [13]. The algorithm 
takes the adjacency matrix of the graph (say, 
A [vi, vj] for 1 ≤ vi, vj ≤ V, where V is the number 
of vertices) as input and processes it through a 
sequence of iterations. The EVC column vector 
is initialized to a unit vector (all the entries are 
1 s). In the first iteration, we multiply the ad-
jacency matrix A with the EVC column vector 
of all 1 s and divide the entries in the product 
vector P (also a column vector) by the normal-
ized value of its entries. The normalized value 
for a vector is the square root of the sum of 
the squares of the entries in the vector. For the 
subsequent iterations, we set the EVC column 
vector to be the product vector obtained (after 
dividing the individual entries with the normal-
ized value) at the end of the previous iteration. 
We continue the iterations by multiplying the 
adjacency matrix with the EVC column vector 
obtained at the end of the previous iteration. 
The algorithm stops when the entries in the 
EVC column vector are close enough (i.e., do 
not change further to a certain level of preci-
sion) and the vector is then called the principal 
eigenvector.

There is an entry for each vertex in the princi-
pal eigenvector and the values of these entries 
correspond to the eigenvector centrality of the 
vertices. The normalized value of the entries 
in the final product vector that is transformed 
to the principal eigenvector is called the prin-
cipal eigenvalue (a.k.a. the spectral radius) of 
the adjacency matrix of the network graph. The 
power-iteration method is of time-complex-
ity Θ (V 3) as we do Θ (V 2) multiplications in 
each iteration (to compute the product vector) 
and there could be at most V iterations before 
the entries in the product vector converge and 
the product vector becomes the principal ei-
genvector. However, if the real-world network 
graph is a sparse graph, several state-of-the-art 
approaches (like [63]) for sparse matrix-vector 
multiplication (see [64] for a recent survey of 
the available approaches) could be employed 
to reduce the time-complexity that would only 
depend on the number of non-zero entries in the 
adjacency matrix.
Figure 2 presents an example to illustrate the 
computation of the principal eigenvector (i.e., 
the EVC of the vertices) for the example graph. 
The example aptly illustrates the impact of the 
DegC and EVC of the neighbors of a vertex on 
the EVC of the vertex. We notice that though 

vertices 8 and 9 have the same degree of 2, ver-
tex 9 has a relatively larger EVC (0.290) com-
pared to vertex 8 (0.069): this is because, vertex 
9 is attached to two neighboring vertices (verti-
ces 1 and 5) that have a larger DegC as well as 
a larger EVC; whereas, vertex 8 is attached to 
two neighboring vertices (vertices 4 and 7) that 
have a relatively lower DegC and lower EVC 
values.

2.3. Betweenness Centrality

The betweenness centrality (BWC) of a vertex 
is a measure of the number of shortest paths be-
tween any two vertices that go through the ver-
tex [3]. The BWC of a vertex vi is quantitatively 
computed as follows:

# ( , )
( ) ,# ( , )

i

j i
k i

v j k
i

v v j k
v v

sp v v
BWC v sp v v≠

≠

= ∑

where # sp (vj, vk) is the total number of shortest 
paths between any two vertices vj and vk (other 
than vi) and # sp (vj, vk) is the number of such 
shortest paths between vertices vj and vk that go 
through vertex vi.

Figure 2. Eigenvector centrality of the vertices in an example graph.

Figure 1. Degree centrality of the vertices in an example 
graph.
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example graph in Section 2. In Section 4, we 
present the 50 real-world networks analyzed in 
this paper and tabulate the values for some of 
the fundamental metrics. We also tabulate the 
computation time for the five centrality metrics 
(on the 50 real-world networks) justifying their 
classification as computationally-light or com-
putationally-heavy. In Section 5, we present the 
results of the correlation analysis conducted on 
the 50 real-world networks on the basis of com-
putationally-light vs. computationally-heavy 
centrality metrics with respect to the three cor-
relation measures. In Section 6, related work is 
presented and unique contributions of the work 
are highlighted. Section 7 concludes the paper.

2. Review of Centrality Metrics

Centrality metrics quantify the importance of a 
vertex with respect to its position in a graph. 
In this paper, we consider centrality metrics on 
the basis of whether they are computational-
ly-light or computationally-heavy. We identify 
the degree centrality (DegC) [1] and the re-
cently proposed localized clustering coefficient 
complement-based degree centrality (LCC'DC) 
[9] as the two computationally-light centrality 
metrics (as they could be computed quickly 
with time; see Section 4) and identify the other 
three well-known centrality metrics: eigenvec-
tor centrality (EVC) [2], betweenness centrality 
(BWC) [3] and closeness centrality (CLC) [4] 
as the computationally-heavy metrics. In this 
section, we review each of these five metrics 
and illustrate their computation with a running 
example graph.

2.1. Degree Centrality

The degree centrality (DegC) of a vertex is the 
number of neighbors incident on the vertex. Fig-
ure 1 illustrates the degree centrality of the ver-
tices (listed above the vertices) in the example 
graph used in Sections 2 and 3. A key weakness 
of the degree centrality metric is that the met-
ric can take only integer values and ties among 
vertices (with same degree) is quite common 
and unavoidable in network graphs of any size 
(in the graph of Figure 1, we observe five of 
the nine vertices to have a degree of 3). Due 
to this inherent weakness, we opine that degree 
centrality might not be an apt metric for net-

work-wide ranking of the vertices or pair-wise 
relative ordering of the vertices in lieu of the 
computationally-heavy metrics, even though 
DegC has been observed [5] – [6] to be strongly 
correlated with the computationally-heavy cen-
trality metrics (EVC, BWC and CLC) with re-
spect to the Pearson's correlation measure for 
linear dependence.

2.2. Eigenvector Centrality

The eigenvector centrality (EVC) of a vertex is 
a measure of the degree of the vertex as well as 
the degree of its neighbors [2]. The EVC of the 
vertices is a column vector computed using the 
power-iteration algorithm [13]. The algorithm 
takes the adjacency matrix of the graph (say, 
A [vi, vj] for 1 ≤ vi, vj ≤ V, where V is the number 
of vertices) as input and processes it through a 
sequence of iterations. The EVC column vector 
is initialized to a unit vector (all the entries are 
1 s). In the first iteration, we multiply the ad-
jacency matrix A with the EVC column vector 
of all 1 s and divide the entries in the product 
vector P (also a column vector) by the normal-
ized value of its entries. The normalized value 
for a vector is the square root of the sum of 
the squares of the entries in the vector. For the 
subsequent iterations, we set the EVC column 
vector to be the product vector obtained (after 
dividing the individual entries with the normal-
ized value) at the end of the previous iteration. 
We continue the iterations by multiplying the 
adjacency matrix with the EVC column vector 
obtained at the end of the previous iteration. 
The algorithm stops when the entries in the 
EVC column vector are close enough (i.e., do 
not change further to a certain level of preci-
sion) and the vector is then called the principal 
eigenvector.

There is an entry for each vertex in the princi-
pal eigenvector and the values of these entries 
correspond to the eigenvector centrality of the 
vertices. The normalized value of the entries 
in the final product vector that is transformed 
to the principal eigenvector is called the prin-
cipal eigenvalue (a.k.a. the spectral radius) of 
the adjacency matrix of the network graph. The 
power-iteration method is of time-complex-
ity Θ (V 3) as we do Θ (V 2) multiplications in 
each iteration (to compute the product vector) 
and there could be at most V iterations before 
the entries in the product vector converge and 
the product vector becomes the principal ei-
genvector. However, if the real-world network 
graph is a sparse graph, several state-of-the-art 
approaches (like [63]) for sparse matrix-vector 
multiplication (see [64] for a recent survey of 
the available approaches) could be employed 
to reduce the time-complexity that would only 
depend on the number of non-zero entries in the 
adjacency matrix.
Figure 2 presents an example to illustrate the 
computation of the principal eigenvector (i.e., 
the EVC of the vertices) for the example graph. 
The example aptly illustrates the impact of the 
DegC and EVC of the neighbors of a vertex on 
the EVC of the vertex. We notice that though 

vertices 8 and 9 have the same degree of 2, ver-
tex 9 has a relatively larger EVC (0.290) com-
pared to vertex 8 (0.069): this is because, vertex 
9 is attached to two neighboring vertices (verti-
ces 1 and 5) that have a larger DegC as well as 
a larger EVC; whereas, vertex 8 is attached to 
two neighboring vertices (vertices 4 and 7) that 
have a relatively lower DegC and lower EVC 
values.

2.3. Betweenness Centrality

The betweenness centrality (BWC) of a vertex 
is a measure of the number of shortest paths be-
tween any two vertices that go through the ver-
tex [3]. The BWC of a vertex vi is quantitatively 
computed as follows:
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where # sp (vj, vk) is the total number of shortest 
paths between any two vertices vj and vk (other 
than vi) and # sp (vj, vk) is the number of such 
shortest paths between vertices vj and vk that go 
through vertex vi.

Figure 2. Eigenvector centrality of the vertices in an example graph.

Figure 1. Degree centrality of the vertices in an example 
graph.
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BWC is a computationally-heavy metric and 
the best algorithm known so far is the classical 
Brandes's algorithm [14] of time-complexity Θ 
(V 2

 + VE) for undirected graphs. We now briefly 
describe a breadth first search (BFS)-based im-
plementation [15] of the Brandes's algorithm. 
We compute a BFS tree rooted at each of the 
vertices in the graph; we keep track of the level 
number of every vertex (say, vi in general) in 
each of these BFS trees. The level number of a 
vertex vi in a BFS tree rooted at vertex vj cor-
responds to the number of hops on the shortest 
path from vertex vj to vi. One or more vertices 
could exist at a particular level in the BFS trees; 
a vertex vx is considered to be a predecessor for 
a vertex vy in a BFS tree if there exists an edge 
between vx and vy and vx is at a level one less 
than the level of vy (i.e., vx is relatively closer to 
the root of the BFS tree). The root of a BFS tree 
is considered to be at level 0 for the particular 
tree. The number of shortest paths from the root 
of a BFS tree to itself is 1. The number of short-
est paths for a vertex vi from the root vj of a BFS 

tree is the sum of the number of shortest paths 
from the root vj to each of the predecessors of vi 
in the BFS tree rooted at vj. By using the level 
numbers and the set of predecessors of a vertex 
in a BFS tree rooted at a vertex vj, we could 
calculate the number of shortest paths from the 
root vj to every other vertex in the graph. To 
calculate the number of shortest paths from two 
vertices vj to vk that go through vertex vi, we 
would simply take the maximum of the number 
of shortest paths from vj to vi (on the BFS tree 
rooted at vj) and the number of shortest paths 
from vk to vi (on the BFS tree rooted at vk). We 
can calculate the ratio 
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for every vertex vi with respect to the pair of 
vertices vj and vk (vj ≠ vi and vk ≠ vi) and add 
these ratios to calculate the BWC of a vertex 
vi. Figure 3 illustrates the computation of the 
BWC of the vertices in the example graph of 

Figures 1 – 2. To avoid cluttering in the figure, 
we only show the non-zero BWC fractions of a 
vertex with respect to the pairs of vertices.

2.4. Closeness Centrality

The closeness centrality (CLC) of a vertex [4] 
is a measure of the closeness of the vertex to 
the rest of the vertices in a graph. The CLC of 
a vertex is computed as the inverse of the sum 
of the hop counts of the shortest paths from the 
vertex to the rest of the vertices in the graph. 
To determine the CLC of a vertex, we could 
use the Θ (V + E)-BFS algorithm to determine 
a shortest path tree rooted at the vertex and find 
the sum of the level numbers of the vertices on 
this shortest path tree. We want to maintain the 
convention that the larger the centrality value 
for a vertex, the more important the vertex is. 
Hence, we find the inverse of the final sum of 
the level numbers of the vertices on the BFS-
tree of a vertex and use it as the CLC of the ver-
tex (rather than using just the sum of the level 
numbers as the CLC). Since we need to run the 
BFS algorithm once for each vertex, the overall 
time complexity to determine the CLC of the 
vertices is Θ (V(V + E)) = Θ (V 2

 + VE). Figure 
4 illustrates the distance matrix (hop counts of 
the shortest paths between any two vertices) for 
the example graph of Figures 1 – 3 and also dis-
plays the CLC of the vertices. Vertex 1 is the 

closest vertex to the rest of the vertices (sum 
of the distances is 12, the minimum) and hence 
has the largest CLC value of 1/12 = 0.083.

2.5. Localized Clustering 
Coefficient-Complement based 
Degree Centrality

The localized clustering coefficient (LCC) of a 
vertex is a measure of the probability for any 
two neighbors of the vertex to be connected [1]. 
The LCC of a vertex is computed as the ratio of 
the actual number of links between the neigh-
bors of the vertex to that of the maximum pos-
sible number of links between the neighbors of 
the vertex [1]. The LCC of a vertex ranges from 
0.0 to 1.0. If any two neighbors of a vertex are 
directly connected to each other, then the LCC 
of the vertex is 1.0. On the other hand, if no two 
neighbors of a vertex have a link between them, 
then the LCC of the vertex is 0.0. Note that the 
LCC of a vertex vi with just one neighbor is 1.0 
as the neighbor is connected to itself and need 
not go through the vertex vi to reach itself.
If two neighbors vj and vk of a vertex vi are not 
directly connected to each other, then it is more 
likely that the two vertices would use vertex 
vi for shortest path communication. The larger 
the fraction of the pairs of neighbors of a ver-
tex that are not directly connected to each other 
(i.e., lower the LCC of a vertex), the larger 
the chances for several of the neighbors of the 
vertex to go through the vertex for shortest 
path communication. This observation leads 
to the proposal of a new centrality metric [9] 
called the local clustering coefficient comple-
ment-based degree centrality (LCC'DC). The 
local clustering coefficient complement (LCC' 
= 1 – LCC) essentially captures the probability 
that any two neighbors of a vertex would go 
through the vertex for shortest path communi-
cation. The LCC'DC of a vertex is simply the 
product of LCC' and DegC, the degree central-
ity of the vertex.
The hypothesis behind the proposal for LCC'DC 
is that the larger the number of neighbors for 
a vertex and the larger the fraction of pairs of 
these neighbors going through the vertex for 
shortest path communication, the larger are the 
chances of the vertex having a higher BWC. 
It has been observed in [9] that LCC'DC is 
strongly correlated to BWC for a suite of 18 re-Figure 3. Betweenness centrality of the vertices in an example graph.

Figure 4. Closeness centrality of the vertices in an 
example graph.
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BWC is a computationally-heavy metric and 
the best algorithm known so far is the classical 
Brandes's algorithm [14] of time-complexity Θ 
(V 2

 + VE) for undirected graphs. We now briefly 
describe a breadth first search (BFS)-based im-
plementation [15] of the Brandes's algorithm. 
We compute a BFS tree rooted at each of the 
vertices in the graph; we keep track of the level 
number of every vertex (say, vi in general) in 
each of these BFS trees. The level number of a 
vertex vi in a BFS tree rooted at vertex vj cor-
responds to the number of hops on the shortest 
path from vertex vj to vi. One or more vertices 
could exist at a particular level in the BFS trees; 
a vertex vx is considered to be a predecessor for 
a vertex vy in a BFS tree if there exists an edge 
between vx and vy and vx is at a level one less 
than the level of vy (i.e., vx is relatively closer to 
the root of the BFS tree). The root of a BFS tree 
is considered to be at level 0 for the particular 
tree. The number of shortest paths from the root 
of a BFS tree to itself is 1. The number of short-
est paths for a vertex vi from the root vj of a BFS 

tree is the sum of the number of shortest paths 
from the root vj to each of the predecessors of vi 
in the BFS tree rooted at vj. By using the level 
numbers and the set of predecessors of a vertex 
in a BFS tree rooted at a vertex vj, we could 
calculate the number of shortest paths from the 
root vj to every other vertex in the graph. To 
calculate the number of shortest paths from two 
vertices vj to vk that go through vertex vi, we 
would simply take the maximum of the number 
of shortest paths from vj to vi (on the BFS tree 
rooted at vj) and the number of shortest paths 
from vk to vi (on the BFS tree rooted at vk). We 
can calculate the ratio 
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for every vertex vi with respect to the pair of 
vertices vj and vk (vj ≠ vi and vk ≠ vi) and add 
these ratios to calculate the BWC of a vertex 
vi. Figure 3 illustrates the computation of the 
BWC of the vertices in the example graph of 

Figures 1 – 2. To avoid cluttering in the figure, 
we only show the non-zero BWC fractions of a 
vertex with respect to the pairs of vertices.

2.4. Closeness Centrality

The closeness centrality (CLC) of a vertex [4] 
is a measure of the closeness of the vertex to 
the rest of the vertices in a graph. The CLC of 
a vertex is computed as the inverse of the sum 
of the hop counts of the shortest paths from the 
vertex to the rest of the vertices in the graph. 
To determine the CLC of a vertex, we could 
use the Θ (V + E)-BFS algorithm to determine 
a shortest path tree rooted at the vertex and find 
the sum of the level numbers of the vertices on 
this shortest path tree. We want to maintain the 
convention that the larger the centrality value 
for a vertex, the more important the vertex is. 
Hence, we find the inverse of the final sum of 
the level numbers of the vertices on the BFS-
tree of a vertex and use it as the CLC of the ver-
tex (rather than using just the sum of the level 
numbers as the CLC). Since we need to run the 
BFS algorithm once for each vertex, the overall 
time complexity to determine the CLC of the 
vertices is Θ (V(V + E)) = Θ (V 2

 + VE). Figure 
4 illustrates the distance matrix (hop counts of 
the shortest paths between any two vertices) for 
the example graph of Figures 1 – 3 and also dis-
plays the CLC of the vertices. Vertex 1 is the 

closest vertex to the rest of the vertices (sum 
of the distances is 12, the minimum) and hence 
has the largest CLC value of 1/12 = 0.083.

2.5. Localized Clustering 
Coefficient-Complement based 
Degree Centrality

The localized clustering coefficient (LCC) of a 
vertex is a measure of the probability for any 
two neighbors of the vertex to be connected [1]. 
The LCC of a vertex is computed as the ratio of 
the actual number of links between the neigh-
bors of the vertex to that of the maximum pos-
sible number of links between the neighbors of 
the vertex [1]. The LCC of a vertex ranges from 
0.0 to 1.0. If any two neighbors of a vertex are 
directly connected to each other, then the LCC 
of the vertex is 1.0. On the other hand, if no two 
neighbors of a vertex have a link between them, 
then the LCC of the vertex is 0.0. Note that the 
LCC of a vertex vi with just one neighbor is 1.0 
as the neighbor is connected to itself and need 
not go through the vertex vi to reach itself.
If two neighbors vj and vk of a vertex vi are not 
directly connected to each other, then it is more 
likely that the two vertices would use vertex 
vi for shortest path communication. The larger 
the fraction of the pairs of neighbors of a ver-
tex that are not directly connected to each other 
(i.e., lower the LCC of a vertex), the larger 
the chances for several of the neighbors of the 
vertex to go through the vertex for shortest 
path communication. This observation leads 
to the proposal of a new centrality metric [9] 
called the local clustering coefficient comple-
ment-based degree centrality (LCC'DC). The 
local clustering coefficient complement (LCC' 
= 1 – LCC) essentially captures the probability 
that any two neighbors of a vertex would go 
through the vertex for shortest path communi-
cation. The LCC'DC of a vertex is simply the 
product of LCC' and DegC, the degree central-
ity of the vertex.
The hypothesis behind the proposal for LCC'DC 
is that the larger the number of neighbors for 
a vertex and the larger the fraction of pairs of 
these neighbors going through the vertex for 
shortest path communication, the larger are the 
chances of the vertex having a higher BWC. 
It has been observed in [9] that LCC'DC is 
strongly correlated to BWC for a suite of 18 re-Figure 3. Betweenness centrality of the vertices in an example graph.

Figure 4. Closeness centrality of the vertices in an 
example graph.
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al-world networks of different domains (a sub-
set of the networks analyzed in this paper) with 
wide-ranging variations in degree distribution. 
Note that to compute the BWC of even a single 
vertex, we would need to determine the shortest 
path trees rooted at every vertex. On the other 
hand, LCC'DC is a computationally-light met-
ric that could be computed simply on the basis 
of the two-hop neighborhood of a vertex. Fig-
ure 5 illustrates the computation of the LCC'DC 
of the vertices in the example graph of Fig-
ures 1 – 4. A comparison of the BWC and the 
LCC'DC values incurred for the example graph 
in Figures 3 and 5 indicates a strong correlation 
between the two metrics. Vertices 1 and 2 are 
the top two vertices to have the largest BWC 
values of 34 and 30 respectively; vertices 1 and 
2 are also the top two vertices to have the larg-
est LCC'DC values of 3.0 and 2.0 respectively. 
Likewise, the BWC of vertices 3, 6, 8 and 9 are 
0.0 each and the LCC'DC values of these verti-
ces are also 0.0 each.

3. Levels of Correlation and 
the Correlation Measures

We identify three different levels of correlation 
that could be explored between a computation-
ally-light centrality metric and computation-
ally-heavy centrality metric. For discussion 
purposes, let X be a computationally-light cen-
trality metric and Y be a computationally-heavy 
centrality metric. The three levels of correlation 
that are of interest in this paper are as follows:
(i) Pair-wise Relative Ordering of the Verti-

ces: For any two vertices vi and vj, we are 
interested to quantify how well we can use 
the relative ordering of the two vertices 
with respect to the computationally-light 

metric X (i.e., whether X (vi) < X (vj) or X 
(vi) > X (vj) or X (vi) = X (vj)) as the relative 
ordering of the same two vertices with re-
spect to the computationally-heavy metric 
Y.

(ii) Network-wide Ranking of the Vertices: We 
are interested to quantify how well we can 
use the network-wide ranking of the verti-
ces with respect to a computationally-light 
metric X as the network-wide ranking of 
the vertices with respect to a computation-
ally-heavy metric Y.

(iii) Predicting the Actual Centrality Values: 
We are interested to quantify how well we 
can predict the actual centrality values for 
the vertices with respect to a computation-
ally-heavy metric Y based on the actual 
centrality values for the vertices with re-
spect to a computationally-light metric X.

The Pearson's product-moment based correla-
tion measure (r) has been the commonly used 
measure in the literature (e.g., [5] – [6]) to as-
sess the correlation between centrality metrics 
for complex networks. However, the Pearson's 
correlation measure can accurately capture only 
one of the three levels of correlation (i.e., pre-
dicting the actual centrality values) and not the 
other two levels of correlation. The Kendall's 
concordance-based correlation measure (τ) and 
the Spearman's rank-based correlation measure 
(ρ) are the correlation measures that can effec-
tively capture the pair-wise relative ordering of 
the vertices and the network-wide ranking of 
the vertices respectively. This is quite evident 
from their formulation itself (as will be seen 
in this section). The values for all three cor-
relation coefficient measures range from –1 to 
1; the closer the value to 1 or –1, the stronger 
(positive or negative) the correlation between 

the two centrality metrics in consideration. If 
the value for the correlation coefficient is closer 
to 0, it implies that there is no tendency for a 
centrality metric to either decrease or increase 
as the other increases.
Our hypothesis in this paper is that the pair-
wise relative ordering of the vertices is the 
most restrictive level of correlation one could 
impose to assess the correlation among vertices 
with respect to any node-level metric (like cen-
trality metric) and hence the Kendall's concor-
dance-based correlation coefficient has a higher 
chance of being the lowest of the correlation 
coefficient values (compared to Pearson's r and 
Spearman's ρ) for the three levels of correla-
tion. On the other hand, we conjecture that the 
Spearman's rank-based correlation is the least 
restrictive of the three correlation measures as 
it does not require the two centrality metrics to 
have a linear dependence (as is required for the 
Pearson's correlation measure) and minor dif-
ferences in the rank of a vertex with respect to 
the two centrality metrics in consideration do 
not significantly affect the value for the correla-
tion.

3.1. Kendall's Concordance-Based 
Correlation

A pair of vertices vi and vj is said to be concor-
dant with respect to centrality metrics X and Y 
if {X (vi) < X (vj) and Y (vi) < Y (vj)} or {X (vi) > 
X (vj) and Y (vi) > Y (vj)} or {X (vi) = X (vj) and Y 

(vi) = Y (vj)}. A pair of vertices vi and vj is said to 
be discordant with respect to centrality metrics 
X and Y if {X (vi) < X (vj) and Y (vi) > Y (vj)} or 
{X (vi) > X (vj) and Y (vi) < Y (vj)}. The Kendall's 
concordance [5]-based correlation coefficient 
(τ) is computed (see formulation 1) as the ratio 
of the difference between the number of con-
cordant pairs (# conc.pairs) and the number of 
discordant pairs (# disc.pairs) to that of the total 
number of pairs of vertices (which is also the 
sum of the number of concordant pairs and dis-
cordant pairs).

# . ( , ) # . ( , )( , ) # . ( , ) # . ( , )
conc pairs X Y disc pairs X YX Y conc pairs X Y disc pairs X Yτ −

=
+

(1)

Figure 6 illustrates an example on how to calcu-
late the Kendall's concordance-based correla-
tion between the LCC'DC and BWC metrics. 
We use the alphabets ''C'' (for concordance) 
and ''D'' (for discordance) to indicate whether 
a pair of vertices is concordant or discor-
dant. In this example graph, there is a total of 
9 · (9 – 1) / 2 = 36 pairs of vertices that could be 
tested for concordance. Except the two pairs of 
vertices: pairs 4 – 5 and 5 – 7, all the other 34 
pairs of vertices are observed to be concordant 
with respect to LCC'DC and BWC. Hence, the 
Kendall's concordance-based correlation coef-
ficient τ (LCC'DC, BWC) = (34 – 2) / 36 = 0.89.
Note that due to the nature of the formulation 
(# concordant pairs – # discordant pairs) in 
the numerator, Kendall's concordance-based 

Figure 5. LCC'DC of the vertices in an example graph. Figure 6. Example to compute the Kendall's concordance-based correlation coefficient.
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al-world networks of different domains (a sub-
set of the networks analyzed in this paper) with 
wide-ranging variations in degree distribution. 
Note that to compute the BWC of even a single 
vertex, we would need to determine the shortest 
path trees rooted at every vertex. On the other 
hand, LCC'DC is a computationally-light met-
ric that could be computed simply on the basis 
of the two-hop neighborhood of a vertex. Fig-
ure 5 illustrates the computation of the LCC'DC 
of the vertices in the example graph of Fig-
ures 1 – 4. A comparison of the BWC and the 
LCC'DC values incurred for the example graph 
in Figures 3 and 5 indicates a strong correlation 
between the two metrics. Vertices 1 and 2 are 
the top two vertices to have the largest BWC 
values of 34 and 30 respectively; vertices 1 and 
2 are also the top two vertices to have the larg-
est LCC'DC values of 3.0 and 2.0 respectively. 
Likewise, the BWC of vertices 3, 6, 8 and 9 are 
0.0 each and the LCC'DC values of these verti-
ces are also 0.0 each.

3. Levels of Correlation and 
the Correlation Measures

We identify three different levels of correlation 
that could be explored between a computation-
ally-light centrality metric and computation-
ally-heavy centrality metric. For discussion 
purposes, let X be a computationally-light cen-
trality metric and Y be a computationally-heavy 
centrality metric. The three levels of correlation 
that are of interest in this paper are as follows:
(i) Pair-wise Relative Ordering of the Verti-

ces: For any two vertices vi and vj, we are 
interested to quantify how well we can use 
the relative ordering of the two vertices 
with respect to the computationally-light 

metric X (i.e., whether X (vi) < X (vj) or X 
(vi) > X (vj) or X (vi) = X (vj)) as the relative 
ordering of the same two vertices with re-
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are interested to quantify how well we can 
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ces with respect to a computationally-light 
metric X as the network-wide ranking of 
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We are interested to quantify how well we 
can predict the actual centrality values for 
the vertices with respect to a computation-
ally-heavy metric Y based on the actual 
centrality values for the vertices with re-
spect to a computationally-light metric X.

The Pearson's product-moment based correla-
tion measure (r) has been the commonly used 
measure in the literature (e.g., [5] – [6]) to as-
sess the correlation between centrality metrics 
for complex networks. However, the Pearson's 
correlation measure can accurately capture only 
one of the three levels of correlation (i.e., pre-
dicting the actual centrality values) and not the 
other two levels of correlation. The Kendall's 
concordance-based correlation measure (τ) and 
the Spearman's rank-based correlation measure 
(ρ) are the correlation measures that can effec-
tively capture the pair-wise relative ordering of 
the vertices and the network-wide ranking of 
the vertices respectively. This is quite evident 
from their formulation itself (as will be seen 
in this section). The values for all three cor-
relation coefficient measures range from –1 to 
1; the closer the value to 1 or –1, the stronger 
(positive or negative) the correlation between 

the two centrality metrics in consideration. If 
the value for the correlation coefficient is closer 
to 0, it implies that there is no tendency for a 
centrality metric to either decrease or increase 
as the other increases.
Our hypothesis in this paper is that the pair-
wise relative ordering of the vertices is the 
most restrictive level of correlation one could 
impose to assess the correlation among vertices 
with respect to any node-level metric (like cen-
trality metric) and hence the Kendall's concor-
dance-based correlation coefficient has a higher 
chance of being the lowest of the correlation 
coefficient values (compared to Pearson's r and 
Spearman's ρ) for the three levels of correla-
tion. On the other hand, we conjecture that the 
Spearman's rank-based correlation is the least 
restrictive of the three correlation measures as 
it does not require the two centrality metrics to 
have a linear dependence (as is required for the 
Pearson's correlation measure) and minor dif-
ferences in the rank of a vertex with respect to 
the two centrality metrics in consideration do 
not significantly affect the value for the correla-
tion.

3.1. Kendall's Concordance-Based 
Correlation

A pair of vertices vi and vj is said to be concor-
dant with respect to centrality metrics X and Y 
if {X (vi) < X (vj) and Y (vi) < Y (vj)} or {X (vi) > 
X (vj) and Y (vi) > Y (vj)} or {X (vi) = X (vj) and Y 

(vi) = Y (vj)}. A pair of vertices vi and vj is said to 
be discordant with respect to centrality metrics 
X and Y if {X (vi) < X (vj) and Y (vi) > Y (vj)} or 
{X (vi) > X (vj) and Y (vi) < Y (vj)}. The Kendall's 
concordance [5]-based correlation coefficient 
(τ) is computed (see formulation 1) as the ratio 
of the difference between the number of con-
cordant pairs (# conc.pairs) and the number of 
discordant pairs (# disc.pairs) to that of the total 
number of pairs of vertices (which is also the 
sum of the number of concordant pairs and dis-
cordant pairs).

# . ( , ) # . ( , )( , ) # . ( , ) # . ( , )
conc pairs X Y disc pairs X YX Y conc pairs X Y disc pairs X Yτ −

=
+

(1)

Figure 6 illustrates an example on how to calcu-
late the Kendall's concordance-based correla-
tion between the LCC'DC and BWC metrics. 
We use the alphabets ''C'' (for concordance) 
and ''D'' (for discordance) to indicate whether 
a pair of vertices is concordant or discor-
dant. In this example graph, there is a total of 
9 · (9 – 1) / 2 = 36 pairs of vertices that could be 
tested for concordance. Except the two pairs of 
vertices: pairs 4 – 5 and 5 – 7, all the other 34 
pairs of vertices are observed to be concordant 
with respect to LCC'DC and BWC. Hence, the 
Kendall's concordance-based correlation coef-
ficient τ (LCC'DC, BWC) = (34 – 2) / 36 = 0.89.
Note that due to the nature of the formulation 
(# concordant pairs – # discordant pairs) in 
the numerator, Kendall's concordance-based 

Figure 5. LCC'DC of the vertices in an example graph. Figure 6. Example to compute the Kendall's concordance-based correlation coefficient.
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correlation coefficient has the tendency to re-
duce appreciably even in the presence of few 
discordant pairs. We more formally analyze the 
relationship between the number of concordant 
pairs and the number of discordant pairs on the 
Kendall's correlation coefficient as follows. Let 
fc (X, Y) be the fraction of the concordant pairs 
of vertices with respect to any two metrics X 
and Y; the formulation for Kendall's concor-
dance-based correlation coefficient could be 
written as follows.
Fraction of concordant pairs of vertices,

# . ( , )( , ) # . ( , ) # . ( , )c
conc pairs X Yf X Y conc pairs X Y disc pairs X Y=

+

# . ( , )1 ( , ) # . ( , ) # . ( , )c
conc pairs X Yf X Y conc pairs X Y disc pairs X Y− =

+

# . ( , )( , ) # . ( , ) # . ( , )
# . ( , )

# . ( , ) # . ( , )

conc pairs X YX Y conc pairs X Y disc pairs X Y
disc pairs X Y

conc pairs X Y disc pairs X Y

τ =
+

−
+

( ) ( )( )( , ) , 1 ,c cX Y f X Y f X Yτ = − −

                  ( )( , ) 2 , 1.cX Y f X Yτ = −              
(2)

Figure 7 illustrates how τ (X, Y) decreases with 
decrease in fc (X, Y). We can notice that for a 
0.01 decrease in fc (X, Y), τ (X, Y) decreases by 
0.02.

3.2. Spearman's Rank-Based Correlation

The rank of a vertex with respect to a centrality 
metric is a measure of where the vertex stands 
if the vertices in the network are to be ordered 
in the decreasing order of the values for the 
centrality metric (we assume decreasing order 
for all the centrality metrics). The earlier a ver-
tex appears in the listing with respect to a par-
ticular centrality metric, the higher the rank for 
the vertex with respect to the metric. We use 
the Spearman's rank [5]-based correlation mea-
sure (ρ) to quantify the extent of similarity in 
the ranking of the vertices with respect to two 
centrality metrics. We calculate this correlation 
coefficient measure as follows with respect to 
any two centrality metrics (say X and Y). For 
each centrality metric: we first obtain a listing 
of the vertices in the decreasing order of the 
centrality values. If two or more vertices have 
the same centrality value, we break the tie in fa-
vor of the vertex with the smaller ID. The index 
at which a vertex appears in this list is the ten-
tative ranking for the vertex. The final ranking 
for a vertex with respect to a centrality metric 
is the same as the tentative ranking for the ver-
tex if it has no tie with any other vertex for the 
centrality metric. If two or more vertices have 
a tie with respect to a centrality metric, their fi-
nal ranking with respect to the centrality metric 
is the average of the tentative rankings for the 
vertices with respect to the metric. Let di be the 
difference in the final ranking for the vertices 
with respect to the two centrality metrics X and 
Y, where 1 ≤ i ≤ n and n is the number of ver-
tices in the graph. The Spearman's rank-based 
correlation coefficient is computed as follows:

                  ( )

2

1
2

6
( , ) 1 .

1

n

i
i

d
X Y

n n
ρ == −

−

∑

              

(3)

Figure 8 illustrates the computation of the 
Spearman's rank-based correlation coefficient 
in the example graph of Figures 1 – 5. For 
BWC, we observe vertices 4 and 7 to have tie 
(BWC = 6 for both) and we break the tie on the 
basis of the vertex ID: vertex 4 with a lower ID 
gets a tentative rank of 3 and vertex 7 gets a 
tentative rank of 4; the final ranking for the two 
vertices is the average of their tentative rank-
ings ((3 + 4) / 2 = 3.5). A similar tie between the 

two vertices exists with respect to LCC'DC. We 
also observe the tie between vertices 3, 6, 8 and 
9 with respect to both BWC and LCC'DC. We 
observe a non-zero difference in the ranking of 
the vertices for only three of the nine vertices 
and the magnitudes of these differences are not 
that high to significantly reduce the correlation 
coefficient value (0.95).
With respect to formulation (3): for larger val-
ues of n, the term in the denominator n (n 

2 – 1) 

dominates the summation term 2

1

n

i
i

d
=
∑  in the nu-

merator. Hence, even if the differences in the 
ranking of the vertices are larger, the Spear-
man's rank-based correlation coefficient is 
more likely to stay relatively high (compared to 
the Kendall's measure) for graphs with larger 
number of vertices.

3.3. Pearson's Product-Moment 
Correlation

The Pearson's product-moment correlation (r) 
when applied for centrality metrics is a measure 
of the linear dependence between any two met-
rics in consideration [5]. It is referred to as the 
product-moment based correlation as we calcu-
late the deviation of the data points from their 
mean value (''mean'' is also referred to as 'first 
moment' in statistics) and use them in the for-
mulation to calculate the correlation coefficient 
(see formulation (4)). If X and Y are the datasets 
for two centrality metrics: let Xi and Yi indicate 
centrality values for the individual vertices vi 

(1 ≤ i ≤ n, where n is the number of vertices) and  
and  are the average of the centrality values; 
r (X, Y) is calculated as follows.
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,
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i

n n

i i
i n i n

X X Y Y
r X Y

X X Y Y

=
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− −
=

− −

∑

∑ ∑
 

(4)

Figure 9 illustrates the computation of Pear-
son's product-moment correlation coefficient in 
the example graph of Figures 1 – 5. We observe 
the Pearson's correlation coefficient to be 0.91 
and is in between the values of 0.89 and 0.95 
observed respectively for the Kendall's and 
Spearman's correlation coefficients. As seen 
for several real-world networks analyzed in 
this paper, the Kendall's correlation coefficient 
measure is the lowest of the three correlation 
coefficient values.

4. Real-World Networks

In this section, we provide a brief description 
of the 50 real-world networks analyzed in this 
paper and tabulate the values for some of the 
fundamental metrics for complex network anal-
ysis observed for these networks as well as 
tabulate the computation time per node of the 
five centrality metrics (discussed in Section 2) 
for these networks. All the real-world networks 
are modeled as undirected graphs. Table 1 lists 
the number of nodes and edges in these graphs 

Figure 8. Example to compute the Spearman's rank-based correlation coefficient.

Figure 7. Relationship between Kendall's concordance-
based correlation coefficient and the fraction of 

concordant pairs.
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correlation coefficient has the tendency to re-
duce appreciably even in the presence of few 
discordant pairs. We more formally analyze the 
relationship between the number of concordant 
pairs and the number of discordant pairs on the 
Kendall's correlation coefficient as follows. Let 
fc (X, Y) be the fraction of the concordant pairs 
of vertices with respect to any two metrics X 
and Y; the formulation for Kendall's concor-
dance-based correlation coefficient could be 
written as follows.
Fraction of concordant pairs of vertices,

# . ( , )( , ) # . ( , ) # . ( , )c
conc pairs X Yf X Y conc pairs X Y disc pairs X Y=

+

# . ( , )1 ( , ) # . ( , ) # . ( , )c
conc pairs X Yf X Y conc pairs X Y disc pairs X Y− =

+

# . ( , )( , ) # . ( , ) # . ( , )
# . ( , )

# . ( , ) # . ( , )

conc pairs X YX Y conc pairs X Y disc pairs X Y
disc pairs X Y

conc pairs X Y disc pairs X Y

τ =
+

−
+

( ) ( )( )( , ) , 1 ,c cX Y f X Y f X Yτ = − −

                  ( )( , ) 2 , 1.cX Y f X Yτ = −              
(2)

Figure 7 illustrates how τ (X, Y) decreases with 
decrease in fc (X, Y). We can notice that for a 
0.01 decrease in fc (X, Y), τ (X, Y) decreases by 
0.02.

3.2. Spearman's Rank-Based Correlation

The rank of a vertex with respect to a centrality 
metric is a measure of where the vertex stands 
if the vertices in the network are to be ordered 
in the decreasing order of the values for the 
centrality metric (we assume decreasing order 
for all the centrality metrics). The earlier a ver-
tex appears in the listing with respect to a par-
ticular centrality metric, the higher the rank for 
the vertex with respect to the metric. We use 
the Spearman's rank [5]-based correlation mea-
sure (ρ) to quantify the extent of similarity in 
the ranking of the vertices with respect to two 
centrality metrics. We calculate this correlation 
coefficient measure as follows with respect to 
any two centrality metrics (say X and Y). For 
each centrality metric: we first obtain a listing 
of the vertices in the decreasing order of the 
centrality values. If two or more vertices have 
the same centrality value, we break the tie in fa-
vor of the vertex with the smaller ID. The index 
at which a vertex appears in this list is the ten-
tative ranking for the vertex. The final ranking 
for a vertex with respect to a centrality metric 
is the same as the tentative ranking for the ver-
tex if it has no tie with any other vertex for the 
centrality metric. If two or more vertices have 
a tie with respect to a centrality metric, their fi-
nal ranking with respect to the centrality metric 
is the average of the tentative rankings for the 
vertices with respect to the metric. Let di be the 
difference in the final ranking for the vertices 
with respect to the two centrality metrics X and 
Y, where 1 ≤ i ≤ n and n is the number of ver-
tices in the graph. The Spearman's rank-based 
correlation coefficient is computed as follows:
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Figure 8 illustrates the computation of the 
Spearman's rank-based correlation coefficient 
in the example graph of Figures 1 – 5. For 
BWC, we observe vertices 4 and 7 to have tie 
(BWC = 6 for both) and we break the tie on the 
basis of the vertex ID: vertex 4 with a lower ID 
gets a tentative rank of 3 and vertex 7 gets a 
tentative rank of 4; the final ranking for the two 
vertices is the average of their tentative rank-
ings ((3 + 4) / 2 = 3.5). A similar tie between the 

two vertices exists with respect to LCC'DC. We 
also observe the tie between vertices 3, 6, 8 and 
9 with respect to both BWC and LCC'DC. We 
observe a non-zero difference in the ranking of 
the vertices for only three of the nine vertices 
and the magnitudes of these differences are not 
that high to significantly reduce the correlation 
coefficient value (0.95).
With respect to formulation (3): for larger val-
ues of n, the term in the denominator n (n 
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merator. Hence, even if the differences in the 
ranking of the vertices are larger, the Spear-
man's rank-based correlation coefficient is 
more likely to stay relatively high (compared to 
the Kendall's measure) for graphs with larger 
number of vertices.

3.3. Pearson's Product-Moment 
Correlation

The Pearson's product-moment correlation (r) 
when applied for centrality metrics is a measure 
of the linear dependence between any two met-
rics in consideration [5]. It is referred to as the 
product-moment based correlation as we calcu-
late the deviation of the data points from their 
mean value (''mean'' is also referred to as 'first 
moment' in statistics) and use them in the for-
mulation to calculate the correlation coefficient 
(see formulation (4)). If X and Y are the datasets 
for two centrality metrics: let Xi and Yi indicate 
centrality values for the individual vertices vi 

(1 ≤ i ≤ n, where n is the number of vertices) and  
and  are the average of the centrality values; 
r (X, Y) is calculated as follows.
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Figure 9 illustrates the computation of Pear-
son's product-moment correlation coefficient in 
the example graph of Figures 1 – 5. We observe 
the Pearson's correlation coefficient to be 0.91 
and is in between the values of 0.89 and 0.95 
observed respectively for the Kendall's and 
Spearman's correlation coefficients. As seen 
for several real-world networks analyzed in 
this paper, the Kendall's correlation coefficient 
measure is the lowest of the three correlation 
coefficient values.

4. Real-World Networks

In this section, we provide a brief description 
of the 50 real-world networks analyzed in this 
paper and tabulate the values for some of the 
fundamental metrics for complex network anal-
ysis observed for these networks as well as 
tabulate the computation time per node of the 
five centrality metrics (discussed in Section 2) 
for these networks. All the real-world networks 
are modeled as undirected graphs. Table 1 lists 
the number of nodes and edges in these graphs 

Figure 8. Example to compute the Spearman's rank-based correlation coefficient.

Figure 7. Relationship between Kendall's concordance-
based correlation coefficient and the fraction of 

concordant pairs.
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as well as the values for fundamental metrics 
like average node degree (kavg), average path 
length (PLavg), diameter (D), spectral radius 
ratio for node degree (λsp) [12], graph density 
(Gd), graph modularity (Gm, measured in a scale 
of 0...1) [16] and the number of components 
(# comps). The spectral radius ratio for node de-
gree [12] is a measure of the variation in node 
degree and is calculated as the ratio of the prin-
cipal eigenvalue [2] of the adjacency matrix of 
the graph to that of the average node degree. 
The spectral radius ratio for node degree is in-
dependent of the number of vertices and the ac-
tual degree values for the vertices in the graph. 
The spectral radius ratio for node degree is al-
ways greater than or equal to 1; the farther the 
ratio from the value of 1, the larger the varia-
tion in node degree. The spectral radius ratio for 
node degree for the real-world network graphs 
analyzed in this paper ranges from 1.01 to 5.34 
(indicating that the real-world network graphs 
analyzed range from random networks with 
smaller variation in node degree to scale-free 
networks of larger variation in node degree).
The networks considered cover a broad range of 
categories (as listed below, along with the num-
ber of networks in each category): Acquain-
tance network (13), Friendship network (9), 
Co-appearance network (6), Employment net-
work (4), Citation network (3), Collaboration 
network (3), Biological network (3), Political 
network (2), Game network (2), Literature net-
work (2), Transportation network, Geographi-
cal network and Trade network (all 1 each). A 
brief description of each category of networks is 
as follows: An acquaintance network is a kind 
of social network in which the participant nodes 

slightly (not closely) know each other, as ob-
served typically during an observation period. 
A friendship network is a kind of social network 
in which the participant nodes closely know 
each other and the relationship is not captured 
over an observation period. A co-appearance 
network is a network typically extracted from 
novels / books in such a way that two characters 
or words (modeled as nodes) are connected if 
they appear alongside each other. An employ-
ment network is a network in which the interac-
tion / relationship between people is primarily 
due to their employment requirements and not 
due to any personal liking. A citation network 
is a network in which two papers (nodes) are 
connected if one paper cites the other paper as 
reference. A collaboration network is a network 
of researchers / authors who are listed as co-au-
thors in at least one publication. A biological 
network is a network that models the interac-
tions between genes, proteins, animals of a par-
ticular species, etc. A political network is a net-
work of entities (typically politicians) involved 
in politics. A game network is a network of 
teams or players playing for different teams and 
their associations. A literature network is a net-
work of papers / terminologies / authors (other 
than collaboration, citation or co-authorship) 
involved in a particular area of literature. A 
transportation network is a network of entities 
(like airports and their flight connections) in-
volved in public transportation. A geographical 
network is a network of states and their shared 
borders in a country. A trade network is a net-
work of countries / people involved in certain 
trade. More information about the individual 
real-world networks is given below:

Figure 9. Example to compute the Pearson's product-moment correlation coefficient.

Table 1.  Fundamental metrics for real-world network graphs used in correlation analysis.

# Net. Network Type λsp #nodes #edges kavg D Gd Gm #comps PLavg

1 ADJ Co-appearance Net. 1.73 112 425 7.589 5 0.068 0.283 1 2.536
2 AKN Co-appearance Net. 2.48 140 494 7.057 5 0.051 0.389 2 2.448
3 JBN Employment Net. 1.45 198 2742 27.697 6 0.141 0.44 1 2.235
4 CEN Biological Net. 1.68 297 2148 14.465 5 0.049 0.387 1 2.455
5 CLN Citation Net. 2.03 118 613 10.39 4 0.089 0.297 1 2.374
6 CGD Citation Net. 2.24 259 640 4.942 11 0.019 0.627 6 4.149
7 CFN Co-appearance Net. 1.83 89 407 9.146 3 0.104 0.375 2 1.945
8 DON Acquaintance Net. 1.40 62 159 5.129 8 0.084 0.521 1 3.357
9 DRN Acquaintance Net. 2.76 212 284 2.679 18 0.013 0.734 9 7.03
10 DLN Literature Net. 1.49 37 81 4.378 7 0.122 0.299 2 2.703
11 ERD Collaboration Net. 3.00 433 1314 6.069 11 0.014 0.533 3 4.021
12 FMH Friendship Net. 2.81 147 202 2.748 16 0.019 0.801 11 6.811
13 FHT Friendship Net. 1.57 33 91 5.515 5 0.172 0.308 1 2.36
14 FTC Employment Net. 1.21 48 170 7.083 5 0.151 0.462 1 2.402
15 FON Game Net. 1.01 115 613 10.661 4 0.094 0.604 1 2.508
16 CDF Acquaintance Net. 1.11 58 967 33.345 3 0.585 0.066 1 1.419
17 GD96 Citation Net. 2.38 180 228 2.533 8 0.014 0.65 1 4.417
18 MUN Co-appearance Net. 2.54 167 301 3.605 9 0.022 0.807 20 3.879
19 GLN Literature Net. 2.01 67 118 3.522 7 0.053 0.502 4 3.099
20 HTN Acquaintance Net. 1.21 115 2164 37.635 3 0.33 0.095 2 1.662
21 HCN Co-appearance Net. 1.66 76 302 7.947 4 0.106 0.546 4 2.142
22 ISP Acquaintance Net. 1.69 309 1924 12.453 10 0.04 0.565 1 3.775
23 KCN Acquaintance Net. 1.47 34 78 4.588 5 0.139 0.416 1 2.408
24 KFP Acquaintance Net. 1.70 37 85 4.595 10 0.128 0.444 2 3.23
25 LMN Co-appearance Net. 1.82 77 254 6.597 5 0.087 0.555 1 2.641
26 MDN Biological Net. 1.04 62 1167 37.645 2 0.617 0.086 1 1.383
27 MTB Acquaintance Net. 1.95 64 295 9.219 2 0.146 0.375 1 1.854
28 MCE Employment Net. 1.12 77 1549 40.23 2 0.529 0.217 1 1.471
29 MSJ Co-author Net. 3.48 475 625 2.632 17 0.006 0.945 104 6.49
30 AFB Friendship Net. 2.29 171 940 10.994 7 0.065 0.688 4 3.069
31 MPN Acquaintance Net. 1.23 35 117 6.686 4 0.197 0.357 1 2.106
32 MMN Friendship Net. 1.59 30 61 4.067 5 0.14 0.424 1 2.644
33 NSC Co-author Net. 5.51 1,589 2,743 3.45 17 0.002 0.959 269 5.823
34 PBN Political Net. 1.42 105 441 8.4 7 0.081 0.525 1 3.079
35 PSN Acquaintance Net. 1.22 238 5539 46.546 3 0.196 0.39 1 1.941
36 PFN Friendship Net. 1.32 67 142 4.239 7 0.064 0.581 1 3.355
37 SJN Acquaintance Net. 1.29 75 155 4.133 7 0.056 0.601 1 3.485
38 SDI Employment Net. 1.94 230 359 3.122 14 0.014 0.696 5 5.607
39 SPR Political Net. 1.57 92 477 10.37 5 0.114 0.25 1 2.32
40 SWC Game Net. 1.45 35 118 6.743 5 0.198 0.231 1 2.123
41 SSM Acquaintance Net. 1.22 24 38 3.167 6 0.138 0.562 1 2.993
42 TEN Acquaintance Net. 1.06 22 39 3.545 5 0.169 0.444 1 2.494
43 TWF Friendship Net. 1.49 47 77 3.277 8 0.071 0.741 4 2.652
44 UKF Friendship Net. 1.35 83 578 13.928 4 0.17 0.45 2 2.097
45 APN Transportation Net. 3.22 332 2126 12.807 6 0.039 0.358 1 2.738
46 USS Geographical Net. 1.25 49 107 4.367 10 0.091 0.571 1 3.935
47 RHF Friendship Net. 1.27 217 1839 16.949 4 0.078 0.426 1 2.395
48 WSB Friendship Net. 1.22 43 336 15.628 3 0.372 0.255 1 1.671
49 WTN Trade Net. 1.38 80 875 21.875 3 0.277 0.220 1 1.724
50 YPI Biological Net. 3.20 1,870 2,203 2.387 19 0.001 0.841 149 6.810
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as well as the values for fundamental metrics 
like average node degree (kavg), average path 
length (PLavg), diameter (D), spectral radius 
ratio for node degree (λsp) [12], graph density 
(Gd), graph modularity (Gm, measured in a scale 
of 0...1) [16] and the number of components 
(# comps). The spectral radius ratio for node de-
gree [12] is a measure of the variation in node 
degree and is calculated as the ratio of the prin-
cipal eigenvalue [2] of the adjacency matrix of 
the graph to that of the average node degree. 
The spectral radius ratio for node degree is in-
dependent of the number of vertices and the ac-
tual degree values for the vertices in the graph. 
The spectral radius ratio for node degree is al-
ways greater than or equal to 1; the farther the 
ratio from the value of 1, the larger the varia-
tion in node degree. The spectral radius ratio for 
node degree for the real-world network graphs 
analyzed in this paper ranges from 1.01 to 5.34 
(indicating that the real-world network graphs 
analyzed range from random networks with 
smaller variation in node degree to scale-free 
networks of larger variation in node degree).
The networks considered cover a broad range of 
categories (as listed below, along with the num-
ber of networks in each category): Acquain-
tance network (13), Friendship network (9), 
Co-appearance network (6), Employment net-
work (4), Citation network (3), Collaboration 
network (3), Biological network (3), Political 
network (2), Game network (2), Literature net-
work (2), Transportation network, Geographi-
cal network and Trade network (all 1 each). A 
brief description of each category of networks is 
as follows: An acquaintance network is a kind 
of social network in which the participant nodes 

slightly (not closely) know each other, as ob-
served typically during an observation period. 
A friendship network is a kind of social network 
in which the participant nodes closely know 
each other and the relationship is not captured 
over an observation period. A co-appearance 
network is a network typically extracted from 
novels / books in such a way that two characters 
or words (modeled as nodes) are connected if 
they appear alongside each other. An employ-
ment network is a network in which the interac-
tion / relationship between people is primarily 
due to their employment requirements and not 
due to any personal liking. A citation network 
is a network in which two papers (nodes) are 
connected if one paper cites the other paper as 
reference. A collaboration network is a network 
of researchers / authors who are listed as co-au-
thors in at least one publication. A biological 
network is a network that models the interac-
tions between genes, proteins, animals of a par-
ticular species, etc. A political network is a net-
work of entities (typically politicians) involved 
in politics. A game network is a network of 
teams or players playing for different teams and 
their associations. A literature network is a net-
work of papers / terminologies / authors (other 
than collaboration, citation or co-authorship) 
involved in a particular area of literature. A 
transportation network is a network of entities 
(like airports and their flight connections) in-
volved in public transportation. A geographical 
network is a network of states and their shared 
borders in a country. A trade network is a net-
work of countries / people involved in certain 
trade. More information about the individual 
real-world networks is given below:

Figure 9. Example to compute the Pearson's product-moment correlation coefficient.

Table 1.  Fundamental metrics for real-world network graphs used in correlation analysis.

# Net. Network Type λsp #nodes #edges kavg D Gd Gm #comps PLavg

1 ADJ Co-appearance Net. 1.73 112 425 7.589 5 0.068 0.283 1 2.536
2 AKN Co-appearance Net. 2.48 140 494 7.057 5 0.051 0.389 2 2.448
3 JBN Employment Net. 1.45 198 2742 27.697 6 0.141 0.44 1 2.235
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7 CFN Co-appearance Net. 1.83 89 407 9.146 3 0.104 0.375 2 1.945
8 DON Acquaintance Net. 1.40 62 159 5.129 8 0.084 0.521 1 3.357
9 DRN Acquaintance Net. 2.76 212 284 2.679 18 0.013 0.734 9 7.03
10 DLN Literature Net. 1.49 37 81 4.378 7 0.122 0.299 2 2.703
11 ERD Collaboration Net. 3.00 433 1314 6.069 11 0.014 0.533 3 4.021
12 FMH Friendship Net. 2.81 147 202 2.748 16 0.019 0.801 11 6.811
13 FHT Friendship Net. 1.57 33 91 5.515 5 0.172 0.308 1 2.36
14 FTC Employment Net. 1.21 48 170 7.083 5 0.151 0.462 1 2.402
15 FON Game Net. 1.01 115 613 10.661 4 0.094 0.604 1 2.508
16 CDF Acquaintance Net. 1.11 58 967 33.345 3 0.585 0.066 1 1.419
17 GD96 Citation Net. 2.38 180 228 2.533 8 0.014 0.65 1 4.417
18 MUN Co-appearance Net. 2.54 167 301 3.605 9 0.022 0.807 20 3.879
19 GLN Literature Net. 2.01 67 118 3.522 7 0.053 0.502 4 3.099
20 HTN Acquaintance Net. 1.21 115 2164 37.635 3 0.33 0.095 2 1.662
21 HCN Co-appearance Net. 1.66 76 302 7.947 4 0.106 0.546 4 2.142
22 ISP Acquaintance Net. 1.69 309 1924 12.453 10 0.04 0.565 1 3.775
23 KCN Acquaintance Net. 1.47 34 78 4.588 5 0.139 0.416 1 2.408
24 KFP Acquaintance Net. 1.70 37 85 4.595 10 0.128 0.444 2 3.23
25 LMN Co-appearance Net. 1.82 77 254 6.597 5 0.087 0.555 1 2.641
26 MDN Biological Net. 1.04 62 1167 37.645 2 0.617 0.086 1 1.383
27 MTB Acquaintance Net. 1.95 64 295 9.219 2 0.146 0.375 1 1.854
28 MCE Employment Net. 1.12 77 1549 40.23 2 0.529 0.217 1 1.471
29 MSJ Co-author Net. 3.48 475 625 2.632 17 0.006 0.945 104 6.49
30 AFB Friendship Net. 2.29 171 940 10.994 7 0.065 0.688 4 3.069
31 MPN Acquaintance Net. 1.23 35 117 6.686 4 0.197 0.357 1 2.106
32 MMN Friendship Net. 1.59 30 61 4.067 5 0.14 0.424 1 2.644
33 NSC Co-author Net. 5.51 1,589 2,743 3.45 17 0.002 0.959 269 5.823
34 PBN Political Net. 1.42 105 441 8.4 7 0.081 0.525 1 3.079
35 PSN Acquaintance Net. 1.22 238 5539 46.546 3 0.196 0.39 1 1.941
36 PFN Friendship Net. 1.32 67 142 4.239 7 0.064 0.581 1 3.355
37 SJN Acquaintance Net. 1.29 75 155 4.133 7 0.056 0.601 1 3.485
38 SDI Employment Net. 1.94 230 359 3.122 14 0.014 0.696 5 5.607
39 SPR Political Net. 1.57 92 477 10.37 5 0.114 0.25 1 2.32
40 SWC Game Net. 1.45 35 118 6.743 5 0.198 0.231 1 2.123
41 SSM Acquaintance Net. 1.22 24 38 3.167 6 0.138 0.562 1 2.993
42 TEN Acquaintance Net. 1.06 22 39 3.545 5 0.169 0.444 1 2.494
43 TWF Friendship Net. 1.49 47 77 3.277 8 0.071 0.741 4 2.652
44 UKF Friendship Net. 1.35 83 578 13.928 4 0.17 0.45 2 2.097
45 APN Transportation Net. 3.22 332 2126 12.807 6 0.039 0.358 1 2.738
46 USS Geographical Net. 1.25 49 107 4.367 10 0.091 0.571 1 3.935
47 RHF Friendship Net. 1.27 217 1839 16.949 4 0.078 0.426 1 2.395
48 WSB Friendship Net. 1.22 43 336 15.628 3 0.372 0.255 1 1.671
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1. Word Adjacency Network (ADJ; New-
man, 2006b) [17]: This is a network of 112 
words (adjectives and nouns, represented 
as vertices) in the novel David Copperfield 
by Charles Dickens; there exists an edge 
between two vertices if the corresponding 
words appeared adjacent to each other at 
least once in the novel.

2. Anna Karnenina Network (AKN; Knuth, 
1993) [18]: This is a network of 140 
characters (vertices) in the novel Anna 
Karnenina; there exists an edge between 
two vertices if the corresponding charac-
ters appeared together in at least one scene 
in the novel.

3. Jazz Band Network (JBN; Geiser & Danon, 
2003) [19]: This is a network of 198 Jazz 
bands (vertices) that recorded between the 
years 1912 and 1940; there exists an edge 
between two bands if they shared at least 
one musician in any of their recordings 
during this period.

4. C. Elegans Neural Network (CEN; White 
et al., 1986) [20]: This is a network of 297 
neurons (vertices) in the neural network 
of the hermaphrodite Caenorhabditis Ele-
gans; there is an edge between two vertices 
if the corresponding neurons interact with 
each other (in the form of chemical syn-
apses, gap junctions and neuromuscular 
junctions).

5. Centrality Literature Network (CLN; 
Hummon et al., 1990) [21]: This is a net-
work of 118 papers (vertices) published on 
the topic of centrality in complex networks 
from 1948 to 1979. There is an edge be-
tween two vertices vi and vj if one of the 
corresponding papers has cited the other 
paper as a reference.

6. Citation Graph Drawing Network (CGD; 
Biedl & Franz, 2001) [22]: This is a net-
work of 259 papers (vertices) that were 
published in the Proceedings of the Graph 
Drawing (GD) conferences from 1994 to 
2000 and cited in the papers published in 
the GD'2001 conference. There is an edge 
between two vertices vi and vj if one of the 
corresponding papers has cited the other 
paper as a reference.

7. Copperfield Network (CFN; Knuth, 1993) 
[18]: This is a network of 89 characters in 

the novel David Copperfield by Charles 
Dickens; there exists an edge between two 
vertices if the corresponding characters ap-
peared together in at least one scene in the 
novel.

8. Dolphin Network (DON; Lusseau et al., 
2003) [23]: This is a network of 62 dol-
phins (vertices) that lived in the Doubtful 
Sound fiord of New Zealand; there is an 
edge between two vertices if the corre-
sponding dolphins were seen moving with 
each other during the observation period.

9. Drug Network (DRN; Lee, 2004) [24]: 
This is a network of 212 drug agents (verti-
ces) of different ethnicities. There is a link 
between two vertices if the corresponding 
agents know each other.

10. Dutch Literature 1976 Network (DLN; 
Nooy, 1999) [25]: This is a network of 37 
Dutch literary authors and critics (vertices) 
in 1976; there exists an edge between two 
vertices vi and vj if the person correspond-
ing to one of them is a critic who made a 
judgment (through a review or interview) 
on the literary work of the author corre-
sponding to the other vertex.

11. Erdos Collaboration Network (ERD; Bata-
gelj & Mrvar, 2006) [26]: This is a network 
of 433 authors (nodes) who have either di-
rectly published an article with Paul Erdos 
or through a chain of collaborators leading 
to Paul Erdos. There is an edge between 
two nodes if the corresponding authors 
have co-authored at least one publication.

12. Faux Mesa High School Friendship Net-
work (FMH; Resnick et al., 1997) [27]: 
This is a network of 147 students (verti-
ces) at a high school community in the ru-
ral western part of US; there exists an edge 
between two vertices if the corresponding 
students are friends of each other.

13. Friendship Ties in a Hi-Tech Firm (FHT; 
Krackhardt, 1999) [28]: This is a network 
of 33 employees (vertices) of a small hi-
tech computer firm that sells, installs and 
maintains computer systems; there exists 
an edge between two vertices vi and vj if 
the employee corresponding to either one 
of them considers the employee corre-
sponding to the other vertex as a personal 
friend.

Table 2.  Computation time per node of the centrality metrics for the real-world networks.

# Net. #nodes #edges
Computation Time per Node (milliseconds)

Computationally-light Computationally-heavy
DegC LCC'DC CLC EVC BWC

1 ADJ 112 425 0.00043 0.00723 0.09777 0.30250 2.40223
2 AKN 140 494 0.00068 0.00965 0.05050 0.44021 3.94329
3 JBN 198 2742 0.00017 0.04402 0.12066 0.22212 8.98010
4 CEN 297 2148 0.00018 0.01157 0.07825 0.47899 19.16182
5 CLN 118 613 0.00023 0.00404 0.05186 0.14542 1.45644
6 CGD 259 640 0.00022 0.00083 0.11286 0.48031 19.13170
7 CFN 89 407 0.00017 0.00137 0.00674 0.02854 0.46247
8 DON 62 159 0.00018 0.00071 0.00419 0.02097 0.31935
9 DRN 212 284 0.00025 0.00058 0.10759 0.27104 17.85425
10 DLN 37 81 0.00027 0.00089 0.00216 0.01919 0.12676
11 ERD 433 1314 0.00019 0.00110 0.20591 1.16956 48.16531
12 FMH 147 202 0.00024 0.00050 0.04871 0.12871 5.54497
13 FHT 33 91 0.00024 0.00103 0.00182 0.01485 0.13364
14 FTC 48 170 0.00017 0.00079 0.00292 0.01646 0.18542
15 FON 115 613 0.00019 0.00121 0.01330 0.08209 1.36739
16 CDF 58 967 0.00028 0.00997 0.01810 0.03414 0.67879
17 GD96 180 228 0.00017 0.00052 0.02817 0.09189 4.26378
18 MUN 167 301 0.00018 0.00054 0.02305 0.06587 1.50102
19 GLN 67 118 0.00030 0.00046 0.00910 0.03149 0.32149
20 HTN 115 2164 0.00018 0.00724 0.01165 0.05365 1.79522
21 HCN 76 302 0.00026 0.00074 0.00855 0.02579 0.32276
22 ISP 309 1924 0.00017 0.00130 0.10476 0.55414 21.06320
23 KCN 34 78 0.00018 0.00047 0.00147 0.00529 0.06882
24 KFP 37 85 0.00030 0.00097 0.00324 0.01216 0.16216
25 LMN 77 254 0.00016 0.00083 0.00545 0.01792 0.37195
26 MDN 62 1167 0.00026 0.00560 0.00694 0.03210 0.67774
27 MTB 64 295 0.00017 0.00063 0.00500 0.01609 0.32844
28 MCE 77 1549 0.00017 0.00516 0.00558 0.02377 0.74909
29 MSJ 475 625 0.00020 0.00038 0.18269 0.63120 28.86568
30 AFB 171 940 0.00019 0.00137 0.03135 0.38982 3.36468
31 MPN 35 117 0.00017 0.00086 0.00171 0.00743 0.10314
32 MMN 30 61 0.00027 0.00047 0.00233 0.00700 0.08767
33 NSC 1,589 2,743 0.00016 0.00072 2.52165 31.21962 457.18801
34 PBN 105 441 0.00020 0.00092 0.01848 0.07352 1.05924
35 PSN 238 5539 0.00016 0.01128 0.04836 0.31601 13.87235
36 PFN 67 142 0.00016 0.00048 0.00567 0.01925 0.33701
37 SJN 75 155 0.00017 0.00055 0.00573 0.02573 0.42813
38 SDI 230 359 0.00018 0.00049 0.05117 0.22422 10.97583
39 SPR 92 477 0.00058 0.00133 0.03793 0.14533 0.79196
40 SWC 35 118 0.00017 0.00054 0.00143 0.00743 0.08714
41 SSM 24 38 0.00021 0.00033 0.00125 0.00417 0.03292
42 TEN 22 39 0.00018 0.00032 0.00091 0.00364 0.03045
43 TWF 47 77 0.00017 0.00032 0.00255 0.00979 0.07106
44 UKF 83 578 0.00016 0.00149 0.00675 0.02675 0.62578
45 APN 332 2126 0.00016 0.00323 0.09518 0.49545 18.50593
46 USS 49 107 0.00041 0.00045 0.00265 0.01224 0.17469
47 RHF 217 1839 0.00016 0.00212 0.04083 0.24429 9.31433
48 WSB 43 336 0.00019 0.00128 0.00209 0.00977 0.17558
49 WTN 80 875 0.00058 0.00283 0.02513 0.10938 0.67938
50 YPI 1,870 2,203 0.00018 0.00086 3.45965 77.53588 834.37062

Fraction of Networks for which Average 
Computation Time per Node ≥ 0.01 ms 0/50 = 0.0 3/50 = 0.06 26/50 = 0.52 42/50 = 0.84 50/50 = 1.00
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14. Flying Teams Cadet Network (FTC; 
Moreno, 1960) [29]: This is a network of 
48 cadet pilots (vertices) at an US Army 
Air Forces flying school in 1943 and the 
cadets were trained in a two-seated air-
craft; there exists an edge between two 
vertices vi and vj if the pilot corresponding 
to either one of them has indicated the pilot 
corresponding to the other vertex as a pre-
ferred partner with whom s / he likes to fly 
during the training schedules.

15. US Football Network (FON; Girvan & 
Newman, 2002) [30]: This is a network of 
115 football teams (nodes) of US univer-
sities that played in the Fall 2000 season; 
there is an edge between two nodes if the 
corresponding teams have played against 
each other in the league games.

16. College Dorm Fraternity Network (CDF; 
Bernard et al., 1980) [31]: This is a net-
work of 58 residents (vertices) in a fra-
ternity college at a West Virginia college; 
there exists an edge between two vertices 
if the corresponding residents were seen in 
a conversation at least once during a five 
day observation period.

17. GD'96 Network (GD96; Batagelj & Mrvar, 
2006) [26]: This is a network of 180 AT&T 
and other WWW websites (vertices) that 
were cited in the proceedings of the Graph 
Drawing (GD) conference in 1996; there 
exists an edge between two vertices if the 
website corresponding to one of them has 
a link to the website corresponding to the 
other vertex.

18. Marvel Universe Network (MUN; Gleiser, 
2007) [32]: This is a collaborative network 
of 167 characters (vertices) in the comic 
books published by the Marvel Universe 
publishing company; there exists an edge 
between two vertices if the corresponding 
characters had appeared together in at least 
one publication.

19. Graph and Digraph Glossary Network 
(GLN; Batagelj & Mrvar, 2006) [26]: This 
is a network of 67 terms (vertices) that 
appeared in the glossary prepared by Bill 
Cherowitzo on Graphs and Digraphs; there 
appeares an edge between two vertices if 
the term corresponding to one of them is 
used to describe the meaning of the term 
corresponding to the other vertex.

20. Hypertext 2009 Network (HTN; Isella et 
al., 2011) [33]: This is a network of the 
face-to-face contacts of 115 attendees (ver-
tices) of the ACM Hypertext 2009 confer-
ence held in Turin, Italy from June 29 to 
July 1, 2009. There exists an edge between 
two vertices if the corresponding confer-
ence visitors had face-to-face contact that 
was active for at least 20 seconds.

21. Huckleberry Coappearance Network 
(HCN; Knuth, 1993) [18]: This is a net-
work of 76 characters (vertices) that ap-
peared in the novel Huckleberry Finn by 
Mark Twain; there is an edge between two 
vertices if the corresponding characters 
had a common appearance in at least one 
scene.

22. Infectious Socio-patterns Network (ISP; 
Isella et al., 2011) [33]: This is a network 
of 309 visitors (vertices) who visited the 
Science Gallery in Dublin, Ireland during 
Spring 2009. There exists an edge between 
two vertices if the corresponding visitors 
had a continuous face-to-face contact for 
at least 20 seconds when they participated 
in the Infectious Socio-patterns event (an 
electronic simulation of the spreading of 
an epidemic through individuals in close 
proximity) as part of an art science exhi-
bition.

23. Karate Club Network (KCN; Zachary, 
1977) [34]: This is a network of 34 mem-
bers (nodes) of a Karate Club at a US 
university in the 1970s; there is an edge 
between two nodes if the corresponding 
members were seen interacting with each 
other during the observation period.

24. Korea Family Planning Network (KFP; 
Rogers & Kincaid, 1980) [35]: This is a 
network of 37 women (vertices) at a Moth-
ers' Club in Korea; there exists an edge 
between two vertices if the corresponding 
women were seen discussing family plan-
ning methods during an observation pe-
riod. 

25. Les Miserables Network (LMN; Knuth, 
1993) [18]: This is a network of 77 char-
acters (nodes) in the novel Les Miserables; 
there exists an edge between two nodes if 
the corresponding characters appeared to-
gether in at least one of the chapters in the 
novel.

26. Macaque Dominance Network (MDN; 
Takahata, 1991) [36]: This is a network 
of 62 adult female Japanese macaques 
(monkeys; vertices) in a colony, known as 
the "Arashiyama B Group", recorded dur-
ing the non-mating season from April to 
early October, 1976. There exists an edge 
between two vertices if a macaque corre-
sponding to one of them was recorded to 
have exhibited dominance over the ma-
caque corresponding to the other vertex.

27. Madrid Train Bombing Network (MTB; 
Hayes, 2006) [37]: This is a network of 64 
suspected individuals and their relatives 
(vertices) reconstructed by Rodriguez us-
ing press accounts in the two major Spanish 
daily newspapers (El Pais and El Mundo) 
regarding the bombing of commuter trains 
in Madrid on March 11, 2004. There exists 
an edge between two vertices if the cor-
responding individuals were observed to 
have a link in the form of friendship, ties to 
any terrorist organization, co-participation 
in training camps and/or wars, or co-par-
ticipation in any previous terrorist attacks.

28. Manufacturing Company Employee Net-
work (MCE; Cross et al., 2004) [38]: This 
is a network of 77 employees (nodes) from 
a research team in a manufacturing com-
pany; there exists an edge between two 
nodes if the two employees are aware of 
each other's knowledge and skills.

29. Social Networks Journal Co-authors (MSJ; 
McCarty & Freeman, 2008) [39]: This is a 
network of 475 authors (vertices) involved 
in the production of 295 articles for the 
Social Networks Journal since its incep-
tion until 2008; there is an edge between 
two vertices if the corresponding authors 
co-authored at least one paper published in 
the journal.

30. Author Facebook Network (AFB): This is a 
network of the 171 friends (vertices) of the 
author in Facebook. There exists an edge 
between two vertices if the corresponding 
people are also friends of each other.

31. Mexican Political Elite Network (MPN; 
Gil-Mendieta & Schmidt, 1996) [40]: This 
is a network of 35 Mexican presidents and 
their close collaborators (vertices); there 
exists an edge between two vertices if the 

corresponding two people have ties that 
could be either political, kinship, friend-
ship or business ties.

32. ModMath Network (MMN; Batagelj & 
Mrvar, 2006) [26]: This is a network of 30 
school superintendents (vertices) in Alle-
gheny County, Pennsylvania, USA during 
the 1950s and early 1960s. There exists an 
edge between two vertices if at least one 
of the two corresponding superintendents 
has indicated the other person as a friend in 
a research survey conducted to see which 
superintendents (who have been in office 
for at least a year) are more influential to 
effectively spread around some modern 
Math methods among the school systems 
in the county.

33. Network Science Co-authorship (NSC; 
Newman, 2006) [17]: This is a co-author-
ship network of 1589 scientists (vertices) 
working on network theory and experi-
ments. There exists an edge between two 
vertices if the corresponding scientists 
have co-authored at least one publication 
in this area.

34. US Politics Books Network (PBN; Krebs, 
2003) [41]: This is a network of 105 books 
(vertices) about US politics sold by Ama-
zon.com around the time of the 2004 US 
presidential election. There exists an edge 
between two vertices if the corresponding 
two books were co-purchased by the same 
buyer (at least one buyer).

35. Primary School Contact Network (PSN; 
Gemmetto et al., 2014) [42]: This is a net-
work of children and teachers (238 ver-
tices) used in the study published by an 
article in BMC Infectious Diseases, 2014 
[40]. There exists an edge between two 
vertices if the corresponding persons were 
in contact for at least 20 seconds during the 
observation period.

36. Prison Friendship Network (PFN; MacRae, 
1960) [43]: This is a network of 67 prison 
inmates (vertices) surveyed by John Gag-
non in the 1950s regarding their sociomet-
ric choice. There exists an edge between 
two vertices if an inmate corresponding to 
at least one of them has listed the inmate 
corresponding to the other vertex as one of 
his / her closest friends.
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14. Flying Teams Cadet Network (FTC; 
Moreno, 1960) [29]: This is a network of 
48 cadet pilots (vertices) at an US Army 
Air Forces flying school in 1943 and the 
cadets were trained in a two-seated air-
craft; there exists an edge between two 
vertices vi and vj if the pilot corresponding 
to either one of them has indicated the pilot 
corresponding to the other vertex as a pre-
ferred partner with whom s / he likes to fly 
during the training schedules.

15. US Football Network (FON; Girvan & 
Newman, 2002) [30]: This is a network of 
115 football teams (nodes) of US univer-
sities that played in the Fall 2000 season; 
there is an edge between two nodes if the 
corresponding teams have played against 
each other in the league games.

16. College Dorm Fraternity Network (CDF; 
Bernard et al., 1980) [31]: This is a net-
work of 58 residents (vertices) in a fra-
ternity college at a West Virginia college; 
there exists an edge between two vertices 
if the corresponding residents were seen in 
a conversation at least once during a five 
day observation period.

17. GD'96 Network (GD96; Batagelj & Mrvar, 
2006) [26]: This is a network of 180 AT&T 
and other WWW websites (vertices) that 
were cited in the proceedings of the Graph 
Drawing (GD) conference in 1996; there 
exists an edge between two vertices if the 
website corresponding to one of them has 
a link to the website corresponding to the 
other vertex.

18. Marvel Universe Network (MUN; Gleiser, 
2007) [32]: This is a collaborative network 
of 167 characters (vertices) in the comic 
books published by the Marvel Universe 
publishing company; there exists an edge 
between two vertices if the corresponding 
characters had appeared together in at least 
one publication.

19. Graph and Digraph Glossary Network 
(GLN; Batagelj & Mrvar, 2006) [26]: This 
is a network of 67 terms (vertices) that 
appeared in the glossary prepared by Bill 
Cherowitzo on Graphs and Digraphs; there 
appeares an edge between two vertices if 
the term corresponding to one of them is 
used to describe the meaning of the term 
corresponding to the other vertex.

20. Hypertext 2009 Network (HTN; Isella et 
al., 2011) [33]: This is a network of the 
face-to-face contacts of 115 attendees (ver-
tices) of the ACM Hypertext 2009 confer-
ence held in Turin, Italy from June 29 to 
July 1, 2009. There exists an edge between 
two vertices if the corresponding confer-
ence visitors had face-to-face contact that 
was active for at least 20 seconds.

21. Huckleberry Coappearance Network 
(HCN; Knuth, 1993) [18]: This is a net-
work of 76 characters (vertices) that ap-
peared in the novel Huckleberry Finn by 
Mark Twain; there is an edge between two 
vertices if the corresponding characters 
had a common appearance in at least one 
scene.

22. Infectious Socio-patterns Network (ISP; 
Isella et al., 2011) [33]: This is a network 
of 309 visitors (vertices) who visited the 
Science Gallery in Dublin, Ireland during 
Spring 2009. There exists an edge between 
two vertices if the corresponding visitors 
had a continuous face-to-face contact for 
at least 20 seconds when they participated 
in the Infectious Socio-patterns event (an 
electronic simulation of the spreading of 
an epidemic through individuals in close 
proximity) as part of an art science exhi-
bition.

23. Karate Club Network (KCN; Zachary, 
1977) [34]: This is a network of 34 mem-
bers (nodes) of a Karate Club at a US 
university in the 1970s; there is an edge 
between two nodes if the corresponding 
members were seen interacting with each 
other during the observation period.

24. Korea Family Planning Network (KFP; 
Rogers & Kincaid, 1980) [35]: This is a 
network of 37 women (vertices) at a Moth-
ers' Club in Korea; there exists an edge 
between two vertices if the corresponding 
women were seen discussing family plan-
ning methods during an observation pe-
riod. 

25. Les Miserables Network (LMN; Knuth, 
1993) [18]: This is a network of 77 char-
acters (nodes) in the novel Les Miserables; 
there exists an edge between two nodes if 
the corresponding characters appeared to-
gether in at least one of the chapters in the 
novel.

26. Macaque Dominance Network (MDN; 
Takahata, 1991) [36]: This is a network 
of 62 adult female Japanese macaques 
(monkeys; vertices) in a colony, known as 
the "Arashiyama B Group", recorded dur-
ing the non-mating season from April to 
early October, 1976. There exists an edge 
between two vertices if a macaque corre-
sponding to one of them was recorded to 
have exhibited dominance over the ma-
caque corresponding to the other vertex.

27. Madrid Train Bombing Network (MTB; 
Hayes, 2006) [37]: This is a network of 64 
suspected individuals and their relatives 
(vertices) reconstructed by Rodriguez us-
ing press accounts in the two major Spanish 
daily newspapers (El Pais and El Mundo) 
regarding the bombing of commuter trains 
in Madrid on March 11, 2004. There exists 
an edge between two vertices if the cor-
responding individuals were observed to 
have a link in the form of friendship, ties to 
any terrorist organization, co-participation 
in training camps and/or wars, or co-par-
ticipation in any previous terrorist attacks.

28. Manufacturing Company Employee Net-
work (MCE; Cross et al., 2004) [38]: This 
is a network of 77 employees (nodes) from 
a research team in a manufacturing com-
pany; there exists an edge between two 
nodes if the two employees are aware of 
each other's knowledge and skills.

29. Social Networks Journal Co-authors (MSJ; 
McCarty & Freeman, 2008) [39]: This is a 
network of 475 authors (vertices) involved 
in the production of 295 articles for the 
Social Networks Journal since its incep-
tion until 2008; there is an edge between 
two vertices if the corresponding authors 
co-authored at least one paper published in 
the journal.

30. Author Facebook Network (AFB): This is a 
network of the 171 friends (vertices) of the 
author in Facebook. There exists an edge 
between two vertices if the corresponding 
people are also friends of each other.

31. Mexican Political Elite Network (MPN; 
Gil-Mendieta & Schmidt, 1996) [40]: This 
is a network of 35 Mexican presidents and 
their close collaborators (vertices); there 
exists an edge between two vertices if the 

corresponding two people have ties that 
could be either political, kinship, friend-
ship or business ties.

32. ModMath Network (MMN; Batagelj & 
Mrvar, 2006) [26]: This is a network of 30 
school superintendents (vertices) in Alle-
gheny County, Pennsylvania, USA during 
the 1950s and early 1960s. There exists an 
edge between two vertices if at least one 
of the two corresponding superintendents 
has indicated the other person as a friend in 
a research survey conducted to see which 
superintendents (who have been in office 
for at least a year) are more influential to 
effectively spread around some modern 
Math methods among the school systems 
in the county.

33. Network Science Co-authorship (NSC; 
Newman, 2006) [17]: This is a co-author-
ship network of 1589 scientists (vertices) 
working on network theory and experi-
ments. There exists an edge between two 
vertices if the corresponding scientists 
have co-authored at least one publication 
in this area.

34. US Politics Books Network (PBN; Krebs, 
2003) [41]: This is a network of 105 books 
(vertices) about US politics sold by Ama-
zon.com around the time of the 2004 US 
presidential election. There exists an edge 
between two vertices if the corresponding 
two books were co-purchased by the same 
buyer (at least one buyer).

35. Primary School Contact Network (PSN; 
Gemmetto et al., 2014) [42]: This is a net-
work of children and teachers (238 ver-
tices) used in the study published by an 
article in BMC Infectious Diseases, 2014 
[40]. There exists an edge between two 
vertices if the corresponding persons were 
in contact for at least 20 seconds during the 
observation period.

36. Prison Friendship Network (PFN; MacRae, 
1960) [43]: This is a network of 67 prison 
inmates (vertices) surveyed by John Gag-
non in the 1950s regarding their sociomet-
ric choice. There exists an edge between 
two vertices if an inmate corresponding to 
at least one of them has listed the inmate 
corresponding to the other vertex as one of 
his / her closest friends.
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37. San Juan Sur Family Network (SJN; 
Loomis et al., 1953) [44]: This is a net-
work of 75 families (vertices) in San Juan 
Sur, Costa Rica, 1948. There exists an edge 
between two vertices if at least one of the 
two families has visited the household of 
the family corresponding to the other ver-
tex once or more.

38. Scotland Corporate Interlocks Network 
(SDI; Scott, 1980) [45]: This is a network 
of multiple directors (a director who serves 
on multiple boards) and companies (a total 
of 230 vertices) during 1904 – 05 in Scot-
land. There exists an edge between two 
vertices vi and vj if any of the following 
is true: (i) both vi and vj correspond to two 
different multiple directors who are in the 
board of at least one company; (ii) one of 
the two vertices corresponds to a multiple 
director and the other vertex corresponds 
to one of the companies in whose board the 
person serves.

39. Senator Press Release Network (SPR; 
Grimmer, 2010) [46]: This is a network of 
92 US senators (vertices) during the period 
from 2007 to 2010. There exists an edge 
between two senators if they issued at least 
one joint press release.

40. Soccer World Cup 1998 Network (SWC; 
Batagelj & Mrvar, 2006) [26]: This is a 
network of 35 teams (vertices) that par-
ticipated in the 1998 edition of the Soccer 
World Cup. A player for a national team 
could sometimes have contract with one 
or more other countries. In this network, 
there is an edge between two vertices if the 
national team corresponding to at least one 
of them has contracted players from the 
country represented by the national team 
corresponding to the other vertex.

41. Sawmill Strike Communication Network 
(SSM; Michael, 1997) [47]: This is a net-
work of 24 employees (vertices) in a saw-
mill who planned a strike against the new 
compensation package proposed by their 
management. There exists an edge be-
tween any two vertices if the correspond-
ing employees mutually admitted discuss-
ing about the strike with a frequency of 
three or more times during an observation 
period (on a 5-point scale).

42. Taro Exchange Network (TEN; Schwim-
mer, 1973) [48]: This is a network of 22 
families (vertices) in a Papuan village. 
There exists an edge between two vertices 
if the corresponding families were seen 
exchanging gifts during an observation pe-
riod.

43. Teenage Female Friendship Network 
(TWF; Pearson & Michell, 2000) [49]: 
This is a network of 47 female teenage stu-
dents (vertices) who studied as a cohort in 
a school in the West of Scotland from 1995 
to 1997. There exists an edge between two 
vertices if the corresponding students re-
ported (in a survey) that they were best 
friends of each other.

44. UK Faculty Friendship Network (UKF; 
Nepusz et al., 2008) [50]: This is a net-
work of 83 faculties (vertices) at a UK uni-
versity. There exists an edge between two 
vertices if the corresponding faculties are 
friends of each other.

45. US Airports 1997 Network (APN; Batagelj 
& Mrvar, 2006) [26]: This is a network of 
332 airports (vertices) in the US in the 
year 1997. There is an edge between two 
nodes if there is a direct flight connection 
between the corresponding airports.

46. US States Network (USS) [54]: This is a 
network of the 48 contiguous states in the 
US and the District of Columbia (DC). 
Each of the 48 states and DC is a node and 
there is an edge involving two nodes if the 
corresponding states (or DC) have a com-
mon border between them. 

47. Residence Hall Friendship Network (RHF; 
Freeman et al., 1998) [51]: This is a net-
work of 217 residents (vertices) living at 
a residence hall located on the Australian 
National University campus. There exists 
an edge between two vertices if the cor-
responding residents are friends of each 
other.

48. Windsurfers Beach Network (WSB; Free-
man et al., 1989) [52]: This is a network 
of 43 windsurfers (vertices) on a beach 
in southern California during Fall 1986. 
There exists an edge between two verti-
ces if the corresponding windsurfers were 
perceived to be close to each other (deter-
mined via a survey).

49. World Trade Metal Network (WTN; Smith 
& White, 1992) [53]: This is a network of 
80 countries (vertices) that were involved 
in trading miscellaneous metals during 
the period from 1965 to 1980. There ex-
ists an edge between two vertices if one of 
the two corresponding countries imported 
miscellaneous metals from the country 
corresponding to the other vertex. 

50. Yeast Protein-Protein Interaction Net-
work (YPI; Jeong et al., 2001) [55]: This 
is a network of 1870 proteins (vertices) in 
Yeast and their mutual interactions mod-
eled as undirected edges to study the cor-
relation between lethality and centrality in 
protein-protein interaction (PPI) networks. 

We measure the computation time per node (to-
tal computation time divided by the number of 
nodes) incurred for each of the five centrality 
metrics for the 50 real-world network graphs. 
The executions were conducted on a computer 
with Intel Core i7-2620M CPU @ 2.70 GHz 
and an installed main memory (RAM) of 8 
GB. We ran the procedures for each of the five 
centrality metrics on each of the 50 real-world 
networks for 25 iterations and averaged the 
results. Table 2 lists the average computation 
time per node for the centrality metrics. For the 
computer architecture mentioned above and for 
the purpose of classification (as computation-
ally-light vs. computationally-heavy central-
ity metrics), we consider a centrality metric as 
computationally-heavy if its average computa-
tion time per node is 0.01 millisecond or above 
(bold in Table 2) for at least 50% of the re-
al-world networks analyzed, provided the suite 
of real-world networks analyzed is as diverse as 
it is in this paper (with respect to the number of 
nodes and edges and the fundamental metrics 
listed in Table 1). We observe the degree cen-
trality metric to be computationally-light for all 
the real-world networks and the LCC'DC met-
ric to be computationally-heavy for only 6% of 
the real-world networks. Hence, we refer to the 
DegC and LCC'DC metrics as computational-
ly-light centrality metrics. On the other hand, 
we observe the CLC, EVC and BWC metrics 
to be computationally-heavy for 52%, 84% and 
100% of the 50 real-world networks studied. 
Hence, we consider these three centrality met-
rics as computationally-heavy.

5. Correlation Analysis

In this section, we present in detail the results 
of the correlation analysis conducted for the 
computationally-light (DegC, LCC'DC) vs. 
computationally-heavy (CLC, EVC and BWC) 
centrality metrics (6 combinations of metrics) 
for the 50 real-world network graphs listed in 
Section 4. In order to validate our hypothesis, 
we measure the following:
(i) the difference in the correlation coefficient 

values between any two correlation mea-
sures;

(ii) the fraction (a total of 50 · 6 = 300 com-
binations) of the 50 real-world networks 
and the 6 combinations of computation-
ally-light vs. computationally-heavy cen-
trality metrics for which each of the three 
correlation measures incur the lowest cor-
relation coefficient values;

(iii) the median of the correlation coefficient 
values observed for each correlation level 
between a computationally-light metric 
and a computationally-heavy metric.

Table 3 lists the values for the correlation coef-
ficient incurred with the three correlation mea-
sures (Kendall – τ; Spearman – ρ; Pearson – r) 
for DegC vs. {CLC, EVC and BWC} and Table 
4 lists the values for LCC'DC vs. {CLC, EVC 
and BWC}. The correlation coefficient values 
reported in Tables 3 and 4 correspond to each of 
the 300 combinations of computationally-light 
vs. computationally-heavy centrality metrics 
and the real-world networks. In both these ta-
bles, we represent the cells (combinations) for 
which a correlation measure incurs the lowest 
value (in bold) and the largest value (in italics) 
for the correlation coefficient. We also plot the 
coefficient values (Kendall's vs. Spearman's and 
Pearson's correlation measures) in Figures 10 – 
12 as well as the difference in the correlation 
coefficient values between any two correlation 
measures (in Figures 13 – 14) to facilitate vi-
sual analytics of the results.

5.1. On the Sufficiency of a Single 
Correlation Measure

The results presented in Tables 3 – 4 and Fig-
ures 10 – 12 confirm our claim that a single cor-
relation measure (like the most commonly used 
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37. San Juan Sur Family Network (SJN; 
Loomis et al., 1953) [44]: This is a net-
work of 75 families (vertices) in San Juan 
Sur, Costa Rica, 1948. There exists an edge 
between two vertices if at least one of the 
two families has visited the household of 
the family corresponding to the other ver-
tex once or more.

38. Scotland Corporate Interlocks Network 
(SDI; Scott, 1980) [45]: This is a network 
of multiple directors (a director who serves 
on multiple boards) and companies (a total 
of 230 vertices) during 1904 – 05 in Scot-
land. There exists an edge between two 
vertices vi and vj if any of the following 
is true: (i) both vi and vj correspond to two 
different multiple directors who are in the 
board of at least one company; (ii) one of 
the two vertices corresponds to a multiple 
director and the other vertex corresponds 
to one of the companies in whose board the 
person serves.

39. Senator Press Release Network (SPR; 
Grimmer, 2010) [46]: This is a network of 
92 US senators (vertices) during the period 
from 2007 to 2010. There exists an edge 
between two senators if they issued at least 
one joint press release.

40. Soccer World Cup 1998 Network (SWC; 
Batagelj & Mrvar, 2006) [26]: This is a 
network of 35 teams (vertices) that par-
ticipated in the 1998 edition of the Soccer 
World Cup. A player for a national team 
could sometimes have contract with one 
or more other countries. In this network, 
there is an edge between two vertices if the 
national team corresponding to at least one 
of them has contracted players from the 
country represented by the national team 
corresponding to the other vertex.

41. Sawmill Strike Communication Network 
(SSM; Michael, 1997) [47]: This is a net-
work of 24 employees (vertices) in a saw-
mill who planned a strike against the new 
compensation package proposed by their 
management. There exists an edge be-
tween any two vertices if the correspond-
ing employees mutually admitted discuss-
ing about the strike with a frequency of 
three or more times during an observation 
period (on a 5-point scale).

42. Taro Exchange Network (TEN; Schwim-
mer, 1973) [48]: This is a network of 22 
families (vertices) in a Papuan village. 
There exists an edge between two vertices 
if the corresponding families were seen 
exchanging gifts during an observation pe-
riod.

43. Teenage Female Friendship Network 
(TWF; Pearson & Michell, 2000) [49]: 
This is a network of 47 female teenage stu-
dents (vertices) who studied as a cohort in 
a school in the West of Scotland from 1995 
to 1997. There exists an edge between two 
vertices if the corresponding students re-
ported (in a survey) that they were best 
friends of each other.

44. UK Faculty Friendship Network (UKF; 
Nepusz et al., 2008) [50]: This is a net-
work of 83 faculties (vertices) at a UK uni-
versity. There exists an edge between two 
vertices if the corresponding faculties are 
friends of each other.

45. US Airports 1997 Network (APN; Batagelj 
& Mrvar, 2006) [26]: This is a network of 
332 airports (vertices) in the US in the 
year 1997. There is an edge between two 
nodes if there is a direct flight connection 
between the corresponding airports.

46. US States Network (USS) [54]: This is a 
network of the 48 contiguous states in the 
US and the District of Columbia (DC). 
Each of the 48 states and DC is a node and 
there is an edge involving two nodes if the 
corresponding states (or DC) have a com-
mon border between them. 

47. Residence Hall Friendship Network (RHF; 
Freeman et al., 1998) [51]: This is a net-
work of 217 residents (vertices) living at 
a residence hall located on the Australian 
National University campus. There exists 
an edge between two vertices if the cor-
responding residents are friends of each 
other.

48. Windsurfers Beach Network (WSB; Free-
man et al., 1989) [52]: This is a network 
of 43 windsurfers (vertices) on a beach 
in southern California during Fall 1986. 
There exists an edge between two verti-
ces if the corresponding windsurfers were 
perceived to be close to each other (deter-
mined via a survey).

49. World Trade Metal Network (WTN; Smith 
& White, 1992) [53]: This is a network of 
80 countries (vertices) that were involved 
in trading miscellaneous metals during 
the period from 1965 to 1980. There ex-
ists an edge between two vertices if one of 
the two corresponding countries imported 
miscellaneous metals from the country 
corresponding to the other vertex. 

50. Yeast Protein-Protein Interaction Net-
work (YPI; Jeong et al., 2001) [55]: This 
is a network of 1870 proteins (vertices) in 
Yeast and their mutual interactions mod-
eled as undirected edges to study the cor-
relation between lethality and centrality in 
protein-protein interaction (PPI) networks. 

We measure the computation time per node (to-
tal computation time divided by the number of 
nodes) incurred for each of the five centrality 
metrics for the 50 real-world network graphs. 
The executions were conducted on a computer 
with Intel Core i7-2620M CPU @ 2.70 GHz 
and an installed main memory (RAM) of 8 
GB. We ran the procedures for each of the five 
centrality metrics on each of the 50 real-world 
networks for 25 iterations and averaged the 
results. Table 2 lists the average computation 
time per node for the centrality metrics. For the 
computer architecture mentioned above and for 
the purpose of classification (as computation-
ally-light vs. computationally-heavy central-
ity metrics), we consider a centrality metric as 
computationally-heavy if its average computa-
tion time per node is 0.01 millisecond or above 
(bold in Table 2) for at least 50% of the re-
al-world networks analyzed, provided the suite 
of real-world networks analyzed is as diverse as 
it is in this paper (with respect to the number of 
nodes and edges and the fundamental metrics 
listed in Table 1). We observe the degree cen-
trality metric to be computationally-light for all 
the real-world networks and the LCC'DC met-
ric to be computationally-heavy for only 6% of 
the real-world networks. Hence, we refer to the 
DegC and LCC'DC metrics as computational-
ly-light centrality metrics. On the other hand, 
we observe the CLC, EVC and BWC metrics 
to be computationally-heavy for 52%, 84% and 
100% of the 50 real-world networks studied. 
Hence, we consider these three centrality met-
rics as computationally-heavy.

5. Correlation Analysis

In this section, we present in detail the results 
of the correlation analysis conducted for the 
computationally-light (DegC, LCC'DC) vs. 
computationally-heavy (CLC, EVC and BWC) 
centrality metrics (6 combinations of metrics) 
for the 50 real-world network graphs listed in 
Section 4. In order to validate our hypothesis, 
we measure the following:
(i) the difference in the correlation coefficient 

values between any two correlation mea-
sures;

(ii) the fraction (a total of 50 · 6 = 300 com-
binations) of the 50 real-world networks 
and the 6 combinations of computation-
ally-light vs. computationally-heavy cen-
trality metrics for which each of the three 
correlation measures incur the lowest cor-
relation coefficient values;

(iii) the median of the correlation coefficient 
values observed for each correlation level 
between a computationally-light metric 
and a computationally-heavy metric.

Table 3 lists the values for the correlation coef-
ficient incurred with the three correlation mea-
sures (Kendall – τ; Spearman – ρ; Pearson – r) 
for DegC vs. {CLC, EVC and BWC} and Table 
4 lists the values for LCC'DC vs. {CLC, EVC 
and BWC}. The correlation coefficient values 
reported in Tables 3 and 4 correspond to each of 
the 300 combinations of computationally-light 
vs. computationally-heavy centrality metrics 
and the real-world networks. In both these ta-
bles, we represent the cells (combinations) for 
which a correlation measure incurs the lowest 
value (in bold) and the largest value (in italics) 
for the correlation coefficient. We also plot the 
coefficient values (Kendall's vs. Spearman's and 
Pearson's correlation measures) in Figures 10 – 
12 as well as the difference in the correlation 
coefficient values between any two correlation 
measures (in Figures 13 – 14) to facilitate vi-
sual analytics of the results.

5.1. On the Sufficiency of a Single 
Correlation Measure

The results presented in Tables 3 – 4 and Fig-
ures 10 – 12 confirm our claim that a single cor-
relation measure (like the most commonly used 
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Pearson's correlation measure) is not sufficient 
to assess all three levels of correlation. There is 
a total of 600 data points in Figures 10 – 12: if a 
single correlation measure is sufficient to assess 
all three levels of correlation, we would need a 
majority of these data points to fall on the diag-
onal line, implying that the correlation coeffi-
cient values determined using the three correla-
tion measures should be equal or close enough 
to each other. However, we do not observe such 
a trend in Figures 10 – 12 as well as in Tables 
3 – 4. There are several instances in Figures 10 
– 12 for which the values for the Kendall's con-
cordance-based correlation coefficient is sig-
nificantly different from that of the Spearman's 
and Pearson's correlation coefficients. Since 
the Kendall's correlation coefficient is the most 
appropriate measure for the pair-wise concor-
dance between two centrality metrics and the 
correlation coefficient values obtained with the 
Spearman's and Pearson's measures are appre-
ciably different from the Kendall's correlation 
coefficient values, we conclude that the Spear-
man's and Pearson's measures cannot be used 
to assess the pair-wise concordance between a 
computationally-light metric in lieu of a com-
putationally-heavy metric.
For each combination of computationally-light 
vs. computationally-heavy centrality metrics, 
we also determine the absolute value of the 
difference in the correlation coefficient val-
ues between any two correlation measures 
(i.e., Kendall's-Spearman's, Kendall's-Pear-
son's, and Spearman's-Pearson's) for the 50 re-
al-world networks (resulting in a total of 150 
data points for each of the six combinations of 
the centrality metrics) and plot a sorted list of 
the absolute difference in the correlation coeffi-
cient values, as shown in Figure 13. If all three 
correlation measures were to yield the same or 
close enough values for the correlation coeffi-
cient, we should have only obtained a flat line 
for each of the plots in Figure 13. However, we 
see that the difference in the correlation coeffi-
cient values could be as large as 0.3 – 0.7. We 
used threshold values of 0.05 and 0.10 for the 
difference in the correlation coefficient values 
and determined the fraction of the 150 data 
points (for each of the six combinations) for 
which the difference exceeds the threshold (see 
Figure 14). We observe that at least 40% of the 
data points had a difference in the correlation 
coefficient values of 0.10 or above for each of 
the six combinations of the centrality metrics 

evaluated using any two of the three correlation 
measures. All of the above confirm that a single 
correlation measure would not be sufficient to 
assess all three levels of correlation.

5.2. Kendall's Correlation Measure for 
Lower Bound of the Correlation 
Coefficient

We observe the Kendall's correlation coeffi-
cient measure to incur the lowest of the cor-
relation coefficient values for 114 of the 150 
combinations in the case of DegC vs. the com-
putationally-heavy centrality metrics {CLC, 
EVC and BWC} and for 111 of the 150 combi-
nations in the case of BWC vs. the three com-
putationally-heavy centrality metrics. Hence, 
we observe the Kendall's concordance-based 
correlation measure to be the lowest of the 
three correlation coefficient values for a total of 
(114 + 111) = 225 of the 300 combinations. As 

Figure 10. Kendall's vs. Spearman's and Pearson's 
correlation coefficients: {DegC, LCC'DC} vs. CLC.

(a) DegC – CLC correlation analysis

(b) LCC'DC – CLC correlation analysis

Figure 11. Kendall's vs. Spearman's and Pearson's 
correlation coefficients: {DegC, LCC'DC} vs. EVC.

(a) DegC – EVC correlation analysis

(b) LCC'DC – EVC correlation analysis

Figure 12. Kendall's vs. Spearman's and Pearson's 
correlation coefficients: {DegC, LCC'DC} vs. BWC.

(a) DegC – BWC correlation analysis

(b) LCC'DC – BWC correlation analysis

Figure 13. Distribution of the difference in the correlation coefficient values (sorted order) between any two 
correlation measures computed for {DegC, LCC'DC} vs. {CLC, EVC, BWC} metrics.
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Pearson's correlation measure) is not sufficient 
to assess all three levels of correlation. There is 
a total of 600 data points in Figures 10 – 12: if a 
single correlation measure is sufficient to assess 
all three levels of correlation, we would need a 
majority of these data points to fall on the diag-
onal line, implying that the correlation coeffi-
cient values determined using the three correla-
tion measures should be equal or close enough 
to each other. However, we do not observe such 
a trend in Figures 10 – 12 as well as in Tables 
3 – 4. There are several instances in Figures 10 
– 12 for which the values for the Kendall's con-
cordance-based correlation coefficient is sig-
nificantly different from that of the Spearman's 
and Pearson's correlation coefficients. Since 
the Kendall's correlation coefficient is the most 
appropriate measure for the pair-wise concor-
dance between two centrality metrics and the 
correlation coefficient values obtained with the 
Spearman's and Pearson's measures are appre-
ciably different from the Kendall's correlation 
coefficient values, we conclude that the Spear-
man's and Pearson's measures cannot be used 
to assess the pair-wise concordance between a 
computationally-light metric in lieu of a com-
putationally-heavy metric.
For each combination of computationally-light 
vs. computationally-heavy centrality metrics, 
we also determine the absolute value of the 
difference in the correlation coefficient val-
ues between any two correlation measures 
(i.e., Kendall's-Spearman's, Kendall's-Pear-
son's, and Spearman's-Pearson's) for the 50 re-
al-world networks (resulting in a total of 150 
data points for each of the six combinations of 
the centrality metrics) and plot a sorted list of 
the absolute difference in the correlation coeffi-
cient values, as shown in Figure 13. If all three 
correlation measures were to yield the same or 
close enough values for the correlation coeffi-
cient, we should have only obtained a flat line 
for each of the plots in Figure 13. However, we 
see that the difference in the correlation coeffi-
cient values could be as large as 0.3 – 0.7. We 
used threshold values of 0.05 and 0.10 for the 
difference in the correlation coefficient values 
and determined the fraction of the 150 data 
points (for each of the six combinations) for 
which the difference exceeds the threshold (see 
Figure 14). We observe that at least 40% of the 
data points had a difference in the correlation 
coefficient values of 0.10 or above for each of 
the six combinations of the centrality metrics 

evaluated using any two of the three correlation 
measures. All of the above confirm that a single 
correlation measure would not be sufficient to 
assess all three levels of correlation.

5.2. Kendall's Correlation Measure for 
Lower Bound of the Correlation 
Coefficient

We observe the Kendall's correlation coeffi-
cient measure to incur the lowest of the cor-
relation coefficient values for 114 of the 150 
combinations in the case of DegC vs. the com-
putationally-heavy centrality metrics {CLC, 
EVC and BWC} and for 111 of the 150 combi-
nations in the case of BWC vs. the three com-
putationally-heavy centrality metrics. Hence, 
we observe the Kendall's concordance-based 
correlation measure to be the lowest of the 
three correlation coefficient values for a total of 
(114 + 111) = 225 of the 300 combinations. As 

Figure 10. Kendall's vs. Spearman's and Pearson's 
correlation coefficients: {DegC, LCC'DC} vs. CLC.

(a) DegC – CLC correlation analysis

(b) LCC'DC – CLC correlation analysis

Figure 11. Kendall's vs. Spearman's and Pearson's 
correlation coefficients: {DegC, LCC'DC} vs. EVC.

(a) DegC – EVC correlation analysis

(b) LCC'DC – EVC correlation analysis

Figure 12. Kendall's vs. Spearman's and Pearson's 
correlation coefficients: {DegC, LCC'DC} vs. BWC.

(a) DegC – BWC correlation analysis

(b) LCC'DC – BWC correlation analysis

Figure 13. Distribution of the difference in the correlation coefficient values (sorted order) between any two 
correlation measures computed for {DegC, LCC'DC} vs. {CLC, EVC, BWC} metrics.
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we analyze real-world networks whose degree 
distribution ranges from Poisson to Power-law 
(with spectral radius ratio for node degree [12] 
ranging from 1.01 to 5.5) and covering differ-
ent domains (like social networks, citation net-
works, geographical networks, co-appearance 
networks, biological networks, etc), we claim 
that the 75% (or the equivalent decimal value 
of 225 / 300 = 0.75) could be considered as the 
probability with which the Kendall's concor-
dance-based correlation coefficient observed 
for a computationally-light metric vs. a compu-
tationally-heavy metric would serve as a lower 
bound for the correlation coefficient expected 
between the same two centrality metrics un-
der the Spearman's and Pearson's measures for 
any real-world network. The Spearman's rank-
based correlation measure did not incur the 
lowest among the three correlation coefficient 
values for even one of the 300 combinations. 
The Pearson's correlation measure incurred 
the lowest correlation coefficient values for 
the remaining 25% of the 300 combinations of 
the computationally-light vs. computational-
ly-heavy centrality metrics and the real-world 
network graphs.
Figures 10 – 12 present a visual analysis of 
the Kendall's correlation coefficient values vs. 
the Spearman's and Pearson's correlation coef-
ficient values obtained for the computational-
ly-light {DegC, LCC'DC} vs. the computation-
ally-heavy {CLC, EVC and BWC} centrality 
metrics. If a data point lies above the diagonal 
line, then the Kendall's correlation coefficient 
for that combination is lower compared to the 
other correlation measure (either Spearman's or 
Pearson's, depending on the case). Hence, the 
larger the number of data points that are above 
the diagonal line, the larger the number of com-
binations of centrality metrics and real-world 
network graphs for which the Kendall's correla-
tion coefficient is the lowest. We observe more 
than 95% of the blue data points (corresponding 
to the Spearman's correlation measure) to be 
above the diagonal line in both the sub-figures 
(a) and (b) of Figures 10 – 12. It is only the 
25% of the red data points (corresponding to 
the Pearson's correlation measure) that are be-
low the diagonal line, especially in the case of 
the computationally-light metrics vs. the CLC 
centrality metric. The Kendall's correlation co-
efficient is the lowest of the three correlation 
measures for more than 90% of the data points 
corresponding to the case of the computational-

ly-light metrics vs. the EVC centrality metric.
The results thus convince us that the Kendall's 
concordance-based correlation measure should 
ideally be the first correlation measure one 
should compute between two centrality met-
rics (especially for correlation studies involv-
ing computationally-light vs. computation-
ally-heavy centrality metrics) for a chosen 
real-world network and one should decide to 
proceed further based on the correlation coef-
ficient value obtained. If we observe a strong 
correlation between a computationally-light 
centrality metric and a computationally-heavy 
centrality metric for a real-world network with 
respect to the Kendall's measure, there would 
not be even a need to compute the correlation 
coefficient with respect to the other two cor-
relation measures (Spearman's and Pearson's) 
as there is a 0.75 chance that these correlation 
coefficient values will be at least the value ob-
served for the Kendall's concordance-based 
correlation coefficient. From Tables 3 – 4, we 
also observe that the Kendall's correlation mea-
sure incurs the largest correlation coefficient 
value for only 8 of the 300 combinations (i.e., 
less than 3% of the 300 combinations). Hence, 
we have a strong implication that the probabil-
ity that the Kendall's correlation coefficient is 
the largest of the three correlation values is as 
small as 3%.

5.3. Analysis of the Median Values for the 
Correlation Coefficient

Figures 15 (a) – (c) display the median values 
for the correlation coefficient observed for each 
of the three levels of correlation between a 
computationally-light metric {DegC, LCC'DC} 
with each of the computationally-heavy metrics 
{CLC, EVC, BWC} for the 50 real-world net-
work graphs. Figure 15 (d) displays the median 
value when the correlation coefficient values 
for all three levels of correlation are considered 
together (hereafter referred to simply as over-
all) for a particular combination of the com-
putationally-light and computationally-heavy 
metrics. Similar to the trend observed in Fig-
ures 10 – 12 and Tables 3 – 4, we also notice 
that irrespective of the computationally-light 
vs. computationally-heavy centrality metric 
combination, the median value of the correla-
tion coefficient observed for pair-wise relative 
ordering of the vertices is the lowest among the 

correlation coefficient values for all three levels 
of correlation.
With respect to the individual combination of 
centrality metrics: we consistently observe 
DegC to exhibit higher levels of correlation 
with the closeness and eigenvector centrality 
metrics for each of the three levels of correlation 
as well as for overall; whereas, we observe the 
local clustering coefficient complement-based 
degree centrality (LCC'DC) metric to exhibit 
relatively stronger correlation with the betwee-
ness centrality (BWC) metric for each of the 
three levels of correlation as well as for overall. 
We thus conclude that for each of the three lev-
els of correlation: the DegC metric could serve 
as the computationally-light alternative for 
the CLC and EVC metrics; whereas, LCC'DC 
could serve as the computationally-light altera-
tive for BWC.

Figure 14. Fraction of the data points with the difference 
in the correlation coefficient values between any two 
correlation measures greater than threshold values of 

0.05 and 0.10.

(a) Paire-wise relative ordering (Kendall's measure).

(b) Network-wide ranking (Spearman's measure).

(c) Predicting thr actual values (Pearson's measure).

(d) NAll three levels (Kendall's, Spearman's, Pearson's 
measure).

Figure 15. Median values for the correlation coefficient for each level of correlation and all three levels: {DegC, 
LCC'DC} vs. {CLC, EVC, BWC}.
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we analyze real-world networks whose degree 
distribution ranges from Poisson to Power-law 
(with spectral radius ratio for node degree [12] 
ranging from 1.01 to 5.5) and covering differ-
ent domains (like social networks, citation net-
works, geographical networks, co-appearance 
networks, biological networks, etc), we claim 
that the 75% (or the equivalent decimal value 
of 225 / 300 = 0.75) could be considered as the 
probability with which the Kendall's concor-
dance-based correlation coefficient observed 
for a computationally-light metric vs. a compu-
tationally-heavy metric would serve as a lower 
bound for the correlation coefficient expected 
between the same two centrality metrics un-
der the Spearman's and Pearson's measures for 
any real-world network. The Spearman's rank-
based correlation measure did not incur the 
lowest among the three correlation coefficient 
values for even one of the 300 combinations. 
The Pearson's correlation measure incurred 
the lowest correlation coefficient values for 
the remaining 25% of the 300 combinations of 
the computationally-light vs. computational-
ly-heavy centrality metrics and the real-world 
network graphs.
Figures 10 – 12 present a visual analysis of 
the Kendall's correlation coefficient values vs. 
the Spearman's and Pearson's correlation coef-
ficient values obtained for the computational-
ly-light {DegC, LCC'DC} vs. the computation-
ally-heavy {CLC, EVC and BWC} centrality 
metrics. If a data point lies above the diagonal 
line, then the Kendall's correlation coefficient 
for that combination is lower compared to the 
other correlation measure (either Spearman's or 
Pearson's, depending on the case). Hence, the 
larger the number of data points that are above 
the diagonal line, the larger the number of com-
binations of centrality metrics and real-world 
network graphs for which the Kendall's correla-
tion coefficient is the lowest. We observe more 
than 95% of the blue data points (corresponding 
to the Spearman's correlation measure) to be 
above the diagonal line in both the sub-figures 
(a) and (b) of Figures 10 – 12. It is only the 
25% of the red data points (corresponding to 
the Pearson's correlation measure) that are be-
low the diagonal line, especially in the case of 
the computationally-light metrics vs. the CLC 
centrality metric. The Kendall's correlation co-
efficient is the lowest of the three correlation 
measures for more than 90% of the data points 
corresponding to the case of the computational-

ly-light metrics vs. the EVC centrality metric.
The results thus convince us that the Kendall's 
concordance-based correlation measure should 
ideally be the first correlation measure one 
should compute between two centrality met-
rics (especially for correlation studies involv-
ing computationally-light vs. computation-
ally-heavy centrality metrics) for a chosen 
real-world network and one should decide to 
proceed further based on the correlation coef-
ficient value obtained. If we observe a strong 
correlation between a computationally-light 
centrality metric and a computationally-heavy 
centrality metric for a real-world network with 
respect to the Kendall's measure, there would 
not be even a need to compute the correlation 
coefficient with respect to the other two cor-
relation measures (Spearman's and Pearson's) 
as there is a 0.75 chance that these correlation 
coefficient values will be at least the value ob-
served for the Kendall's concordance-based 
correlation coefficient. From Tables 3 – 4, we 
also observe that the Kendall's correlation mea-
sure incurs the largest correlation coefficient 
value for only 8 of the 300 combinations (i.e., 
less than 3% of the 300 combinations). Hence, 
we have a strong implication that the probabil-
ity that the Kendall's correlation coefficient is 
the largest of the three correlation values is as 
small as 3%.

5.3. Analysis of the Median Values for the 
Correlation Coefficient

Figures 15 (a) – (c) display the median values 
for the correlation coefficient observed for each 
of the three levels of correlation between a 
computationally-light metric {DegC, LCC'DC} 
with each of the computationally-heavy metrics 
{CLC, EVC, BWC} for the 50 real-world net-
work graphs. Figure 15 (d) displays the median 
value when the correlation coefficient values 
for all three levels of correlation are considered 
together (hereafter referred to simply as over-
all) for a particular combination of the com-
putationally-light and computationally-heavy 
metrics. Similar to the trend observed in Fig-
ures 10 – 12 and Tables 3 – 4, we also notice 
that irrespective of the computationally-light 
vs. computationally-heavy centrality metric 
combination, the median value of the correla-
tion coefficient observed for pair-wise relative 
ordering of the vertices is the lowest among the 

correlation coefficient values for all three levels 
of correlation.
With respect to the individual combination of 
centrality metrics: we consistently observe 
DegC to exhibit higher levels of correlation 
with the closeness and eigenvector centrality 
metrics for each of the three levels of correlation 
as well as for overall; whereas, we observe the 
local clustering coefficient complement-based 
degree centrality (LCC'DC) metric to exhibit 
relatively stronger correlation with the betwee-
ness centrality (BWC) metric for each of the 
three levels of correlation as well as for overall. 
We thus conclude that for each of the three lev-
els of correlation: the DegC metric could serve 
as the computationally-light alternative for 
the CLC and EVC metrics; whereas, LCC'DC 
could serve as the computationally-light altera-
tive for BWC.

Figure 14. Fraction of the data points with the difference 
in the correlation coefficient values between any two 
correlation measures greater than threshold values of 

0.05 and 0.10.

(a) Paire-wise relative ordering (Kendall's measure).

(b) Network-wide ranking (Spearman's measure).

(c) Predicting thr actual values (Pearson's measure).

(d) NAll three levels (Kendall's, Spearman's, Pearson's 
measure).

Figure 15. Median values for the correlation coefficient for each level of correlation and all three levels: {DegC, 
LCC'DC} vs. {CLC, EVC, BWC}.
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Table 3.  Degree centrality vs. computationally-heavy metrics: results of correlation analysis.

Degree Centrality (DegC) vs. 
Closeness Centrality (CLC)

Degree Centrality (DegC) vs. 
Eigenvector Centrality (EVC)

Degree Centrality (DegC) vs. 
Betweenness Centrality (BWC)

# Net. Kendall Spearman Pearson Kendall Spearman Pearson Kendall Spearman Pearson
1 ADJ 0.764 0.901 0.841 0.801 0.929 0.957 0.773 0.901 0.915
2 AKN 0.626 0.767 0.846 0.763 0.897 0.936 0.657 0.759 0.892
3 JBN 0.736 0.890 0.859 0.750 0.890 0.901 0.579 0.744 0.610
4 CEN 0.553 0.738 0.700 0.629 0.811 0.871 0.736 0.889 0.780
5 CLN 0.847 0.956 0.282 0.892 0.976 0.961 0.750 0.903 0.825
6 CGD 0.754 0.893 0.497 0.722 0.876 0.810 0.745 0.890 0.797
7 CFN 0.882 0.945 0.908 0.870 0.965 0.935 0.697 0.818 0.808
8 DON 0.548 0.718 0.713 0.512 0.627 0.720 0.667 0.814 0.598
9 DRN 0.718 0.856 0.608 0.603 0.758 0.650 0.758 0.875 0.649
10 DLN 0.856 0.953 0.908 0.768 0.904 0.947 0.672 0.804 0.791
11 ERD 0.709 0.858 0.261 0.675 0.827 0.916 0.708 0.860 0.782
12 FMH 0.739 0.871 0.624 0.541 0.704 0.558 0.711 0.832 0.630
13 FHT 0.866 0.956 0.409 0.812 0.920 0.937 0.755 0.902 0.816
14 FTC 0.650 0.802 0.837 0.596 0.730 0.822 0.582 0.723 0.783
15 FON 0.272 0.344 0.291 0.606 0.722 0.750 0.260 0.336 0.282
16 CDF 0.998 1.000 0.990 0.972 0.991 0.997 0.809 0.940 0.857
17 GD96 0.552 0.659 0.513 0.568 0.684 0.844 0.759 0.859 0.951
18 MUN 0.395 0.486 0.303 -0.356 -0.479 -0.712 0.603 0.699 0.704
19 GLN 0.664 0.806 0.366 0.578 0.718 0.853 0.773 0.888 0.932
20 HTN 0.990 0.999 0.993 0.954 0.995 0.994 0.899 0.983 0.829
21 HCN 0.743 0.874 0.241 0.791 0.922 0.936 0.552 0.656 0.829
22 ISP 0.602 0.786 0.722 0.644 0.813 0.893 0.566 0.737 0.469
23 KCN 0.786 0.895 0.772 0.647 0.775 0.917 0.811 0.905 0.918
24 KFP 0.766 0.877 0.470 0.843 0.945 0.931 0.370 0.500 0.467
25 LMN 0.551 0.675 0.800 0.738 0.868 0.847 0.612 0.745 0.747
26 MDN 0.997 1.000 0.992 0.940 0.990 0.994 0.807 0.936 0.935
27 MTB 0.737 0.872 0.341 0.682 0.835 0.924 0.622 0.746 0.729
28 MCE 0.990 1.000 0.982 0.874 0.957 0.977 0.701 0.834 0.885
29 MSJ 0.488 0.580 0.217 0.090 0.120 0.508 0.453 0.520 0.392
30 AFB 0.272 0.303 -0.183 -0.267 -0.361 -0.720 0.424 0.576 0.259
31 MPN 0.643 0.780 0.881 0.692 0.838 0.907 0.780 0.905 0.892
32 MMN 0.865 0.943 0.733 0.734 0.851 0.877 0.781 0.903 0.842
33 NSC 0.595 0.711 0.240 -0.092 -0.107 -0.511 0.416 0.485 0.431
34 PBN 0.418 0.585 0.582 0.515 0.663 0.670 0.515 0.677 0.712
35 PSN 0.869 0.974 0.952 0.895 0.983 0.982 0.749 0.913 0.838
36 PFN 0.761 0.884 0.875 0.733 0.863 0.843 0.659 0.804 0.849
37 SJN 0.486 0.618 0.672 0.413 0.536 0.664 0.577 0.722 0.812
38 SDI 0.416 0.520 0.379 0.398 0.512 0.324 0.660 0.792 0.737
39 SPR 0.870 0.968 0.930 0.866 0.968 0.976 0.723 0.872 0.835
40 SWC 0.864 0.954 0.941 0.874 0.964 0.968 0.742 0.863 0.905
41 SSM 0.610 0.696 0.782 0.585 0.714 0.780 0.584 0.708 0.851
42 TEN 0.524 0.629 0.612 0.650 0.774 0.776 0.624 0.750 0.859
43 TWF 0.279 0.344 0.326 0.235 0.294 0.523 0.338 0.433 0.218
44 UKF 0.759 0.904 0.918 0.799 0.928 0.944 0.624 0.794 0.782
45 APN 0.670 0.823 0.803 0.725 0.864 0.956 0.719 0.863 0.705
46 USS 0.582 0.746 0.755 0.667 0.799 0.832 0.730 0.864 0.744
47 RHF 0.724 0.881 0.891 0.715 0.876 0.892 0.669 0.843 0.841
48 WSB 0.904 0.971 0.975 0.909 0.983 0.982 0.866 0.964 0.895
49 WTN 0.993 0.999 0.987 0.851 0.954 0.983 0.845 0.949 0.908
50 YPI 0.398 0.506 0.191 0.330 0.422 0.349 0.834 0.917 0.847
# Lowest 27/50 23/50 23/50 46/50 0/50 4/50 41/50 0 9/50
# Largest 0/50 40/50 10/50 3/50 13/50 34/50 4/50 31/50 15/50

Table 4.  LCC'DC vs. computationally-heavy metrics: results of correlation analysis.

LCC'DC vs. LCC'DC vs. LCC'DC vs.
Closeness Centrality (CLC) Eigenvector Centrality (EVC) Betweenness Centrality (BWC)

# Net. Kendall Spearman Pearson Kendall Spearman Pearson Kendall Spearman Pearson
1 ADJ 0.655 0.824 0.799 0.676 0.850 0.920 0.789 0.916 0.930
2 AKN 0.507 0.621 0.769 0.540 0.664 0.855 0.951 0.994 0.948
3 JBN 0.726 0.891 0.782 0.608 0.788 0.793 0.717 0.860 0.757
4 CEN 0.499 0.685 0.661 0.535 0.719 0.825 0.774 0.923 0.816
5 CLN 0.720 0.874 0.221 0.759 0.908 0.907 0.837 0.954 0.887
6 CGD 0.697 0.852 0.432 0.633 0.797 0.744 0.846 0.956 0.860
7 CFN 0.649 0.767 0.903 0.622 0.766 0.823 0.954 0.993 0.897
8 DON 0.604 0.780 0.765 0.513 0.663 0.703 0.711 0.861 0.709
9 DRN 0.573 0.700 0.490 0.495 0.610 0.613 0.894 0.975 0.696
10 DLN 0.768 0.903 0.882 0.654 0.817 0.845 0.755 0.872 0.846
11 ERD 0.639 0.798 0.221 0.581 0.741 0.870 0.810 0.936 0.831
12 FMH 0.560 0.684 0.464 0.463 0.586 0.511 0.888 0.973 0.718
13 FHT 0.787 0.923 0.303 0.646 0.827 0.829 0.863 0.959 0.900
14 FTC 0.652 0.821 0.845 0.432 0.579 0.700 0.784 0.918 0.913
15 FON 0.366 0.506 0.552 -0.009 -0.007 0.011 0.447 0.608 0.673
16 CDF 0.895 0.981 0.982 0.850 0.967 0.946 0.869 0.968 0.935
17 GD96 0.552 0.659 0.562 0.568 0.684 0.860 0.759 0.859 0.942
18 MUN 0.379 0.472 0.222 -0.344 -0.440 -0.548 0.955 0.995 0.861
19 GLN 0.498 0.642 0.307 0.411 0.530 0.753 0.856 0.952 0.944
20 HTN 0.914 0.987 0.990 0.864 0.972 0.963 0.939 0.994 0.884
21 HCN 0.539 0.645 0.100 0.486 0.603 0.784 0.948 0.993 0.938
22 ISP 0.559 0.756 0.692 0.583 0.771 0.848 0.611 0.787 0.509
23 KCN 0.759 0.874 0.766 0.549 0.680 0.867 0.886 0.960 0.930
24 KFP 0.600 0.749 0.408 0.521 0.674 0.736 0.663 0.807 0.705
25 LMN 0.516 0.639 0.757 0.525 0.683 0.585 0.923 0.987 0.931
26 MDN 0.792 0.925 0.950 0.711 0.871 0.913 0.950 0.995 0.982
27 MTB 0.528 0.662 0.186 0.431 0.548 0.701 0.896 0.981 0.874
28 MCE 0.679 0.802 0.946 0.546 0.638 0.790 0.955 0.996 0.942
29 MSJ 0.331 0.401 0.277 0.061 0.076 0.082 0.955 0.996 0.610
30 AFB 0.429 0.549 0.123 -0.044 -0.045 -0.224 0.726 0.871 0.543
31 MPN 0.618 0.780 0.862 0.597 0.778 0.838 0.830 0.938 0.941
32 MMN 0.732 0.856 0.705 0.573 0.701 0.761 0.868 0.962 0.888
33 NSC 0.312 0.383 0.281 0.003 0.005 0.020 0.963 0.997 0.703
34 PBN 0.479 0.674 0.627 0.381 0.516 0.591 0.691 0.864 0.779
35 PSN 0.881 0.981 0.954 0.786 0.941 0.943 0.824 0.955 0.883
36 PFN 0.628 0.788 0.777 0.485 0.632 0.677 0.811 0.929 0.882
37 SJN 0.462 0.615 0.670 0.333 0.432 0.579 0.708 0.851 0.861
38 SDI 0.407 0.514 0.363 0.391 0.502 0.318 0.665 0.793 0.730
39 SPR 0.747 0.904 0.882 0.713 0.886 0.914 0.763 0.905 0.880
40 SWC 0.621 0.768 0.841 0.597 0.767 0.848 0.771 0.883 0.927
41 SSM 0.570 0.686 0.804 0.390 0.494 0.613 0.795 0.906 0.847
42 TEN 0.562 0.703 0.717 0.401 0.520 0.636 0.850 0.939 0.942
43 TWF 0.382 0.478 0.344 0.177 0.241 0.388 0.795 0.904 0.696
44 UKF 0.637 0.806 0.848 0.554 0.719 0.801 0.818 0.949 0.908
45 APN 0.583 0.733 0.687 0.579 0.735 0.827 0.882 0.973 0.825
46 USS 0.528 0.701 0.693 0.579 0.733 0.766 0.751 0.889 0.770
47 RHF 0.748 0.907 0.902 0.596 0.777 0.808 0.787 0.934 0.903
48 WSB 0.850 0.962 0.967 0.810 0.947 0.940 0.912 0.986 0.948
49 WTN 0.820 0.929 0.992 0.672 0.827 0.948 0.956 0.995 0.944
50 YPI 0.390 0.496 0.199 0.324 0.414 0.333 0.910 0.980 0.849
# Lowest 32/50 0/50 18/50 47/50 0/50 3/50 32/50 0/50 18/50
# Largest 0/50 33/50 17/50 1/50 8/50 41/50 0/50 43/50 7/50
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Table 3.  Degree centrality vs. computationally-heavy metrics: results of correlation analysis.

Degree Centrality (DegC) vs. 
Closeness Centrality (CLC)

Degree Centrality (DegC) vs. 
Eigenvector Centrality (EVC)

Degree Centrality (DegC) vs. 
Betweenness Centrality (BWC)

# Net. Kendall Spearman Pearson Kendall Spearman Pearson Kendall Spearman Pearson
1 ADJ 0.764 0.901 0.841 0.801 0.929 0.957 0.773 0.901 0.915
2 AKN 0.626 0.767 0.846 0.763 0.897 0.936 0.657 0.759 0.892
3 JBN 0.736 0.890 0.859 0.750 0.890 0.901 0.579 0.744 0.610
4 CEN 0.553 0.738 0.700 0.629 0.811 0.871 0.736 0.889 0.780
5 CLN 0.847 0.956 0.282 0.892 0.976 0.961 0.750 0.903 0.825
6 CGD 0.754 0.893 0.497 0.722 0.876 0.810 0.745 0.890 0.797
7 CFN 0.882 0.945 0.908 0.870 0.965 0.935 0.697 0.818 0.808
8 DON 0.548 0.718 0.713 0.512 0.627 0.720 0.667 0.814 0.598
9 DRN 0.718 0.856 0.608 0.603 0.758 0.650 0.758 0.875 0.649
10 DLN 0.856 0.953 0.908 0.768 0.904 0.947 0.672 0.804 0.791
11 ERD 0.709 0.858 0.261 0.675 0.827 0.916 0.708 0.860 0.782
12 FMH 0.739 0.871 0.624 0.541 0.704 0.558 0.711 0.832 0.630
13 FHT 0.866 0.956 0.409 0.812 0.920 0.937 0.755 0.902 0.816
14 FTC 0.650 0.802 0.837 0.596 0.730 0.822 0.582 0.723 0.783
15 FON 0.272 0.344 0.291 0.606 0.722 0.750 0.260 0.336 0.282
16 CDF 0.998 1.000 0.990 0.972 0.991 0.997 0.809 0.940 0.857
17 GD96 0.552 0.659 0.513 0.568 0.684 0.844 0.759 0.859 0.951
18 MUN 0.395 0.486 0.303 -0.356 -0.479 -0.712 0.603 0.699 0.704
19 GLN 0.664 0.806 0.366 0.578 0.718 0.853 0.773 0.888 0.932
20 HTN 0.990 0.999 0.993 0.954 0.995 0.994 0.899 0.983 0.829
21 HCN 0.743 0.874 0.241 0.791 0.922 0.936 0.552 0.656 0.829
22 ISP 0.602 0.786 0.722 0.644 0.813 0.893 0.566 0.737 0.469
23 KCN 0.786 0.895 0.772 0.647 0.775 0.917 0.811 0.905 0.918
24 KFP 0.766 0.877 0.470 0.843 0.945 0.931 0.370 0.500 0.467
25 LMN 0.551 0.675 0.800 0.738 0.868 0.847 0.612 0.745 0.747
26 MDN 0.997 1.000 0.992 0.940 0.990 0.994 0.807 0.936 0.935
27 MTB 0.737 0.872 0.341 0.682 0.835 0.924 0.622 0.746 0.729
28 MCE 0.990 1.000 0.982 0.874 0.957 0.977 0.701 0.834 0.885
29 MSJ 0.488 0.580 0.217 0.090 0.120 0.508 0.453 0.520 0.392
30 AFB 0.272 0.303 -0.183 -0.267 -0.361 -0.720 0.424 0.576 0.259
31 MPN 0.643 0.780 0.881 0.692 0.838 0.907 0.780 0.905 0.892
32 MMN 0.865 0.943 0.733 0.734 0.851 0.877 0.781 0.903 0.842
33 NSC 0.595 0.711 0.240 -0.092 -0.107 -0.511 0.416 0.485 0.431
34 PBN 0.418 0.585 0.582 0.515 0.663 0.670 0.515 0.677 0.712
35 PSN 0.869 0.974 0.952 0.895 0.983 0.982 0.749 0.913 0.838
36 PFN 0.761 0.884 0.875 0.733 0.863 0.843 0.659 0.804 0.849
37 SJN 0.486 0.618 0.672 0.413 0.536 0.664 0.577 0.722 0.812
38 SDI 0.416 0.520 0.379 0.398 0.512 0.324 0.660 0.792 0.737
39 SPR 0.870 0.968 0.930 0.866 0.968 0.976 0.723 0.872 0.835
40 SWC 0.864 0.954 0.941 0.874 0.964 0.968 0.742 0.863 0.905
41 SSM 0.610 0.696 0.782 0.585 0.714 0.780 0.584 0.708 0.851
42 TEN 0.524 0.629 0.612 0.650 0.774 0.776 0.624 0.750 0.859
43 TWF 0.279 0.344 0.326 0.235 0.294 0.523 0.338 0.433 0.218
44 UKF 0.759 0.904 0.918 0.799 0.928 0.944 0.624 0.794 0.782
45 APN 0.670 0.823 0.803 0.725 0.864 0.956 0.719 0.863 0.705
46 USS 0.582 0.746 0.755 0.667 0.799 0.832 0.730 0.864 0.744
47 RHF 0.724 0.881 0.891 0.715 0.876 0.892 0.669 0.843 0.841
48 WSB 0.904 0.971 0.975 0.909 0.983 0.982 0.866 0.964 0.895
49 WTN 0.993 0.999 0.987 0.851 0.954 0.983 0.845 0.949 0.908
50 YPI 0.398 0.506 0.191 0.330 0.422 0.349 0.834 0.917 0.847
# Lowest 27/50 23/50 23/50 46/50 0/50 4/50 41/50 0 9/50
# Largest 0/50 40/50 10/50 3/50 13/50 34/50 4/50 31/50 15/50

Table 4.  LCC'DC vs. computationally-heavy metrics: results of correlation analysis.

LCC'DC vs. LCC'DC vs. LCC'DC vs.
Closeness Centrality (CLC) Eigenvector Centrality (EVC) Betweenness Centrality (BWC)

# Net. Kendall Spearman Pearson Kendall Spearman Pearson Kendall Spearman Pearson
1 ADJ 0.655 0.824 0.799 0.676 0.850 0.920 0.789 0.916 0.930
2 AKN 0.507 0.621 0.769 0.540 0.664 0.855 0.951 0.994 0.948
3 JBN 0.726 0.891 0.782 0.608 0.788 0.793 0.717 0.860 0.757
4 CEN 0.499 0.685 0.661 0.535 0.719 0.825 0.774 0.923 0.816
5 CLN 0.720 0.874 0.221 0.759 0.908 0.907 0.837 0.954 0.887
6 CGD 0.697 0.852 0.432 0.633 0.797 0.744 0.846 0.956 0.860
7 CFN 0.649 0.767 0.903 0.622 0.766 0.823 0.954 0.993 0.897
8 DON 0.604 0.780 0.765 0.513 0.663 0.703 0.711 0.861 0.709
9 DRN 0.573 0.700 0.490 0.495 0.610 0.613 0.894 0.975 0.696
10 DLN 0.768 0.903 0.882 0.654 0.817 0.845 0.755 0.872 0.846
11 ERD 0.639 0.798 0.221 0.581 0.741 0.870 0.810 0.936 0.831
12 FMH 0.560 0.684 0.464 0.463 0.586 0.511 0.888 0.973 0.718
13 FHT 0.787 0.923 0.303 0.646 0.827 0.829 0.863 0.959 0.900
14 FTC 0.652 0.821 0.845 0.432 0.579 0.700 0.784 0.918 0.913
15 FON 0.366 0.506 0.552 -0.009 -0.007 0.011 0.447 0.608 0.673
16 CDF 0.895 0.981 0.982 0.850 0.967 0.946 0.869 0.968 0.935
17 GD96 0.552 0.659 0.562 0.568 0.684 0.860 0.759 0.859 0.942
18 MUN 0.379 0.472 0.222 -0.344 -0.440 -0.548 0.955 0.995 0.861
19 GLN 0.498 0.642 0.307 0.411 0.530 0.753 0.856 0.952 0.944
20 HTN 0.914 0.987 0.990 0.864 0.972 0.963 0.939 0.994 0.884
21 HCN 0.539 0.645 0.100 0.486 0.603 0.784 0.948 0.993 0.938
22 ISP 0.559 0.756 0.692 0.583 0.771 0.848 0.611 0.787 0.509
23 KCN 0.759 0.874 0.766 0.549 0.680 0.867 0.886 0.960 0.930
24 KFP 0.600 0.749 0.408 0.521 0.674 0.736 0.663 0.807 0.705
25 LMN 0.516 0.639 0.757 0.525 0.683 0.585 0.923 0.987 0.931
26 MDN 0.792 0.925 0.950 0.711 0.871 0.913 0.950 0.995 0.982
27 MTB 0.528 0.662 0.186 0.431 0.548 0.701 0.896 0.981 0.874
28 MCE 0.679 0.802 0.946 0.546 0.638 0.790 0.955 0.996 0.942
29 MSJ 0.331 0.401 0.277 0.061 0.076 0.082 0.955 0.996 0.610
30 AFB 0.429 0.549 0.123 -0.044 -0.045 -0.224 0.726 0.871 0.543
31 MPN 0.618 0.780 0.862 0.597 0.778 0.838 0.830 0.938 0.941
32 MMN 0.732 0.856 0.705 0.573 0.701 0.761 0.868 0.962 0.888
33 NSC 0.312 0.383 0.281 0.003 0.005 0.020 0.963 0.997 0.703
34 PBN 0.479 0.674 0.627 0.381 0.516 0.591 0.691 0.864 0.779
35 PSN 0.881 0.981 0.954 0.786 0.941 0.943 0.824 0.955 0.883
36 PFN 0.628 0.788 0.777 0.485 0.632 0.677 0.811 0.929 0.882
37 SJN 0.462 0.615 0.670 0.333 0.432 0.579 0.708 0.851 0.861
38 SDI 0.407 0.514 0.363 0.391 0.502 0.318 0.665 0.793 0.730
39 SPR 0.747 0.904 0.882 0.713 0.886 0.914 0.763 0.905 0.880
40 SWC 0.621 0.768 0.841 0.597 0.767 0.848 0.771 0.883 0.927
41 SSM 0.570 0.686 0.804 0.390 0.494 0.613 0.795 0.906 0.847
42 TEN 0.562 0.703 0.717 0.401 0.520 0.636 0.850 0.939 0.942
43 TWF 0.382 0.478 0.344 0.177 0.241 0.388 0.795 0.904 0.696
44 UKF 0.637 0.806 0.848 0.554 0.719 0.801 0.818 0.949 0.908
45 APN 0.583 0.733 0.687 0.579 0.735 0.827 0.882 0.973 0.825
46 USS 0.528 0.701 0.693 0.579 0.733 0.766 0.751 0.889 0.770
47 RHF 0.748 0.907 0.902 0.596 0.777 0.808 0.787 0.934 0.903
48 WSB 0.850 0.962 0.967 0.810 0.947 0.940 0.912 0.986 0.948
49 WTN 0.820 0.929 0.992 0.672 0.827 0.948 0.956 0.995 0.944
50 YPI 0.390 0.496 0.199 0.324 0.414 0.333 0.910 0.980 0.849
# Lowest 32/50 0/50 18/50 47/50 0/50 3/50 32/50 0/50 18/50
# Largest 0/50 33/50 17/50 1/50 8/50 41/50 0/50 43/50 7/50
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5.4. LCC'DC-BWC Correlation vs. 
DegC-BWC Correlation

We observe the LCC'DC metric to exhibit a 
very strong correlation with the BWC metric 
(the most time-consuming metric of the three 
computationally-heavy centrality metrics) and 
the data points (in Figure 12 (b), with respect to 
the three correlation measures, are located rel-
atively closer to the largest possible value of 1 
and also closer to each other for a majority of 
the real-world network graphs. Considering a 
total of 150 LCC'DC-BWC correlation coeffi-
cient values obtained with respect to the three 
correlation measures for the 50 real-world net-
work graphs, we observe (see Figure 15 (d)) the 
median value to be 0.887 (the largest median 
value for each of the six combinations of com-
putationally-light vs. computationally-heavy 
centrality metrics: see Figures 15 (a), (b) and 
(c) and only 12 of the 150 correlation coeffi-
cient values (i.e., less than 10%) are below 0.7. 
On the other hand, the median value of the 150 
DegC-BWC correlation coefficient values for 
the three correlation measures analyzed for the 
50 real-world network graphs is 0.766 (see Fig-
ure 15 (d)), appreciably lower than the median 
value of 0.887 for the LCC'DC-BWC correla-
tion.

6. Related Work and Our 
Contributions

The idea of studying correlation between com-
putationally-light centrality metrics and the 
computationally-heavy centrality metrics was 
recently mooted by Li et al. [5] in which the 
Pearson's correlation coefficient was used as 
the correlation measure to evaluate the extent 
to which one could rank the vertices using a 
computationally-light centrality metric in lieu 
of a computationally-heavy centrality metric. 
However, as seen in this paper, the Pearson's 
correlation coefficient values are different from 
those of the Spearman's and Kendall's rank-
based correlation measures for at least the com-
putationally-light centrality metrics vs. compu-
tationally-heavy shortest path-based centrality 
metrics. In another recent work [56], it has been 
observed that the Kendall's concordance-based 
correlation measure is more suitable to evalu-

ate pair-wise correlation, especially among the 
top-k ranked vertices, whereas the Spearman's 
correlation measure is more suitable to evalu-
ate rank-based correlation involving all the ver-
tices, especially if several of them have equal 
ranks. The three correlation measures were 
also recently used [57] to analyze the extent to 
which one can predict flux changes using the 
functional centrality metric [58] proposed to 
quantify the functional relevance of individual 
biochemical reactions in metabolic networks. 
In [8], the computationally-light degree cen-
trality metric and the computationally-heavy 
eigenvector centrality metric were observed to 
be strongly correlated with the computational-
ly-heavy maximal clique size for a node (the 
maximal clique size for a node is the clique of 
the largest size that a node is part of) under all 
three levels of correlation. The BWC metric has 
been observed to be weakly correlated (correla-
tion coefficient values in the range 0...0.5) with 
the maximal clique size. Unlike the work in 
[8] wherein the correlation between centrality 
metrics and maximal clique size was studied, in 
this paper: we investigate the correlation among 
the centrality metrics themselves on the lines 
of computationally-light {DegC, LCC'DC} vs. 
computationally-heavy {CLC, EVC, BWC} 
centrality metrics. The LCC'DC metric was 
also not considered in [8].
In [59], the author developed a new centrality 
metric called CIRank (that keeps track of the 
changes propagating among classes in a soft-
ware dependency network) and observed it to 
be significantly correlated with the degree and 
PageRank centrality metrics on the basis of the 
Spearman's rank-based correlation coefficient. 
In [60], the Kendall's concordance-based cor-
relation measure was used to assess the correla-
tion between eight different centrality metrics 
that are suitable for gene regulatory networks in 
E. Coli. It was observed that the ranking of the 
genes with respect to the centrality metrics is 
significantly different (leading to a low correla-
tion coefficient between any two centrality met-
rics), especially when vertices (genes) with non
-zero out degree are only considered. In another 
related study [61], the Kendall's measure was 
used to study the correlation between DegC, 
CLC, BWC and EVC metrics for the M. muscu-
lus protein-protein interaction network. In [62], 
the authors studied the impact of removing the 

top-k ranked vertices (with respect to a central-
ity metric) on the traffic-carrying capacity of 
the remaining nodes and the connectivity of ISP 
(Internet Service Provider) networks: Removal 
of the top-k vertices with respect to the locally 
computable degree centrality metric had a simi-
lar impact on the traffic-carrying capacity of the 
remaining nodes vis-a-vis removal of the top-k 
vertices with respect to the globally computable 
centrality metrics. 
Though some of the recent works in the liter-
ature (as mentioned above) have also used the 
three correlation measures (Kendall's, Spear-
man's and Pearson's) for analyzing the correla-
tion between centrality metrics with respect to 
the three levels of correlation (pair-wise relative 
ordering, network-wide ranking, and prediction 
of the actual values), ours is the first work to 
evaluate the three levels of correlation from 
the point of view of computationally-light vs. 
computationally-heavy centrality metrics and 
demonstrate that the pair-wise relative order-
ing of the vertices could be the most restrictive 
and that the corresponding Kendall's concor-
dance-based correlation measure could serve 
(with a probability as large as 0.75) as the lower 
bound for correlation coefficient among the 
three levels of correlation. We could also con-
clude that the Kendall's correlation coefficient 
is not the largest among the correlation coeffi-
cients of the three measures with a probability 
of 0.97. Moreover, the results of the extensive 
correlation studies in this paper (conducted on 
a wide range of 50 real-world networks) also 
reaffirm the status of LCC'DC to be a compu-
tationally-light alternative that could be consid-
ered alongside the degree centrality metric and 
could be strongly correlated to one or more of 
the computationally-heavy metrics, especially 
the BWC metric with respect to all three levels 
of correlation.

7. Conclusion

We observe the pair-wise relative ordering of 
vertices based on a computationally-light met-
ric in lieu of a computationally-heavy central-
ity metric to be the most restrictive of all three 
levels of correlation and the Kendall's concor-
dance-based correlation coefficient (that is a 
measure of the level of correlation to assess the 

pair-wise relative ordering of vertices) could be 
considered (with a probability as large as 0.75) 
to serve as the lower bound for correlation co-
efficient between a computationally-light and 
computationally-heavy centrality metric. Like-
wise, we could also conclude that the Kendall's 
correlation coefficient is not the largest of the 
three correlation measures (between a com-
putationally-light and computationally-heavy 
centrality metric) with a probability of 0.97. 
Such significant observations on the nature 
of the correlation coefficient values obtained 
for the centrality metrics (especially for com-
putationally-light vs. computationally-heavy 
metrics) with respect to the Kendall's concor-
dance-based correlation measure have been 
hitherto not reported in the literature. In addi-
tion, we also observe the correlation between 
LCC'DC and BWC to be the strongest of all the 
different combinations of the computational-
ly-light and computationally-heavy centrality 
metrics for each of the three levels of correlation 
as well as when all three levels of correlation 
are considered together. Until now, the degree 
centrality metric has been so far considered the 
computationally-light alternative for any com-
putationally-heavy centrality metric, including 
the BWC. Through this paper, we have estab-
lished that LCC'DC is a relatively better com-
putationally-light alternative to BWC with re-
spect to all three levels of correlation, including 
the pair-wise relative ordering of the vertices.
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5.4. LCC'DC-BWC Correlation vs. 
DegC-BWC Correlation

We observe the LCC'DC metric to exhibit a 
very strong correlation with the BWC metric 
(the most time-consuming metric of the three 
computationally-heavy centrality metrics) and 
the data points (in Figure 12 (b), with respect to 
the three correlation measures, are located rel-
atively closer to the largest possible value of 1 
and also closer to each other for a majority of 
the real-world network graphs. Considering a 
total of 150 LCC'DC-BWC correlation coeffi-
cient values obtained with respect to the three 
correlation measures for the 50 real-world net-
work graphs, we observe (see Figure 15 (d)) the 
median value to be 0.887 (the largest median 
value for each of the six combinations of com-
putationally-light vs. computationally-heavy 
centrality metrics: see Figures 15 (a), (b) and 
(c) and only 12 of the 150 correlation coeffi-
cient values (i.e., less than 10%) are below 0.7. 
On the other hand, the median value of the 150 
DegC-BWC correlation coefficient values for 
the three correlation measures analyzed for the 
50 real-world network graphs is 0.766 (see Fig-
ure 15 (d)), appreciably lower than the median 
value of 0.887 for the LCC'DC-BWC correla-
tion.

6. Related Work and Our 
Contributions

The idea of studying correlation between com-
putationally-light centrality metrics and the 
computationally-heavy centrality metrics was 
recently mooted by Li et al. [5] in which the 
Pearson's correlation coefficient was used as 
the correlation measure to evaluate the extent 
to which one could rank the vertices using a 
computationally-light centrality metric in lieu 
of a computationally-heavy centrality metric. 
However, as seen in this paper, the Pearson's 
correlation coefficient values are different from 
those of the Spearman's and Kendall's rank-
based correlation measures for at least the com-
putationally-light centrality metrics vs. compu-
tationally-heavy shortest path-based centrality 
metrics. In another recent work [56], it has been 
observed that the Kendall's concordance-based 
correlation measure is more suitable to evalu-

ate pair-wise correlation, especially among the 
top-k ranked vertices, whereas the Spearman's 
correlation measure is more suitable to evalu-
ate rank-based correlation involving all the ver-
tices, especially if several of them have equal 
ranks. The three correlation measures were 
also recently used [57] to analyze the extent to 
which one can predict flux changes using the 
functional centrality metric [58] proposed to 
quantify the functional relevance of individual 
biochemical reactions in metabolic networks. 
In [8], the computationally-light degree cen-
trality metric and the computationally-heavy 
eigenvector centrality metric were observed to 
be strongly correlated with the computational-
ly-heavy maximal clique size for a node (the 
maximal clique size for a node is the clique of 
the largest size that a node is part of) under all 
three levels of correlation. The BWC metric has 
been observed to be weakly correlated (correla-
tion coefficient values in the range 0...0.5) with 
the maximal clique size. Unlike the work in 
[8] wherein the correlation between centrality 
metrics and maximal clique size was studied, in 
this paper: we investigate the correlation among 
the centrality metrics themselves on the lines 
of computationally-light {DegC, LCC'DC} vs. 
computationally-heavy {CLC, EVC, BWC} 
centrality metrics. The LCC'DC metric was 
also not considered in [8].
In [59], the author developed a new centrality 
metric called CIRank (that keeps track of the 
changes propagating among classes in a soft-
ware dependency network) and observed it to 
be significantly correlated with the degree and 
PageRank centrality metrics on the basis of the 
Spearman's rank-based correlation coefficient. 
In [60], the Kendall's concordance-based cor-
relation measure was used to assess the correla-
tion between eight different centrality metrics 
that are suitable for gene regulatory networks in 
E. Coli. It was observed that the ranking of the 
genes with respect to the centrality metrics is 
significantly different (leading to a low correla-
tion coefficient between any two centrality met-
rics), especially when vertices (genes) with non
-zero out degree are only considered. In another 
related study [61], the Kendall's measure was 
used to study the correlation between DegC, 
CLC, BWC and EVC metrics for the M. muscu-
lus protein-protein interaction network. In [62], 
the authors studied the impact of removing the 

top-k ranked vertices (with respect to a central-
ity metric) on the traffic-carrying capacity of 
the remaining nodes and the connectivity of ISP 
(Internet Service Provider) networks: Removal 
of the top-k vertices with respect to the locally 
computable degree centrality metric had a simi-
lar impact on the traffic-carrying capacity of the 
remaining nodes vis-a-vis removal of the top-k 
vertices with respect to the globally computable 
centrality metrics. 
Though some of the recent works in the liter-
ature (as mentioned above) have also used the 
three correlation measures (Kendall's, Spear-
man's and Pearson's) for analyzing the correla-
tion between centrality metrics with respect to 
the three levels of correlation (pair-wise relative 
ordering, network-wide ranking, and prediction 
of the actual values), ours is the first work to 
evaluate the three levels of correlation from 
the point of view of computationally-light vs. 
computationally-heavy centrality metrics and 
demonstrate that the pair-wise relative order-
ing of the vertices could be the most restrictive 
and that the corresponding Kendall's concor-
dance-based correlation measure could serve 
(with a probability as large as 0.75) as the lower 
bound for correlation coefficient among the 
three levels of correlation. We could also con-
clude that the Kendall's correlation coefficient 
is not the largest among the correlation coeffi-
cients of the three measures with a probability 
of 0.97. Moreover, the results of the extensive 
correlation studies in this paper (conducted on 
a wide range of 50 real-world networks) also 
reaffirm the status of LCC'DC to be a compu-
tationally-light alternative that could be consid-
ered alongside the degree centrality metric and 
could be strongly correlated to one or more of 
the computationally-heavy metrics, especially 
the BWC metric with respect to all three levels 
of correlation.

7. Conclusion

We observe the pair-wise relative ordering of 
vertices based on a computationally-light met-
ric in lieu of a computationally-heavy central-
ity metric to be the most restrictive of all three 
levels of correlation and the Kendall's concor-
dance-based correlation coefficient (that is a 
measure of the level of correlation to assess the 

pair-wise relative ordering of vertices) could be 
considered (with a probability as large as 0.75) 
to serve as the lower bound for correlation co-
efficient between a computationally-light and 
computationally-heavy centrality metric. Like-
wise, we could also conclude that the Kendall's 
correlation coefficient is not the largest of the 
three correlation measures (between a com-
putationally-light and computationally-heavy 
centrality metric) with a probability of 0.97. 
Such significant observations on the nature 
of the correlation coefficient values obtained 
for the centrality metrics (especially for com-
putationally-light vs. computationally-heavy 
metrics) with respect to the Kendall's concor-
dance-based correlation measure have been 
hitherto not reported in the literature. In addi-
tion, we also observe the correlation between 
LCC'DC and BWC to be the strongest of all the 
different combinations of the computational-
ly-light and computationally-heavy centrality 
metrics for each of the three levels of correlation 
as well as when all three levels of correlation 
are considered together. Until now, the degree 
centrality metric has been so far considered the 
computationally-light alternative for any com-
putationally-heavy centrality metric, including 
the BWC. Through this paper, we have estab-
lished that LCC'DC is a relatively better com-
putationally-light alternative to BWC with re-
spect to all three levels of correlation, including 
the pair-wise relative ordering of the vertices.
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