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Both Feedback and Forward Channels

The networked non-fragile H∞ control problem for 
Lipschitz nonlinear system with quantization and 
packet dropout in both feedback and forward channels 
is investigated in this paper. The sensor measurement 
and controller output are quantized by logarithmic 
quantizers before beeing transmitted over the net-
work. The packet transmissions in the communication 
channels from the sensor to the controller and from 
the controller to the actuator are modeled as Markov 
chains respectively. Based on the Lyapunov functional 
approach, the networked non-fragile H∞ controller is 
designed to stabilize the Lipschitz nonlinear system 
and achieve the prescribed H∞ performance. Finally, a 
numerical example is provided to illustrate the effec-
tiveness and superiority of the proposed method.
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1. Introduction

Networked control system where the control 
loop is closed through communication network 
has attracted considerable attention in recent 
years. Networked control system has been ap-
plied in a broad range of areas such as compli-
cated industrial control system, remote control 
of robot, unmanned aircrafts and vehicles, etc 

[1]. In networked control system, the sensors, 
controllers and actuators exchange information 
via the shared communication network. The in-
troduction of network in control loop gives rise 
to some issues such as data quantization [2], 
[3], network induced delay [4] and packet drop-
out [5] – [8], which complicate the analysis and 
design of networked control systems.
There exists perturbation in the coefficient of 
the controller due to the effect of finite resolu-
tion measuring instruments, finite word length 
and roundoff errors [9]. Therefore, it is neces-
sary that the non-fragile controller is designed. 
Many efforts have been made in networked 
control system recently. The network induced 
delay is transformed into the uncertainties of 
the system coefficients for networked control 
system with network induced delay. Then non-
fragile controllers are designed based on robust 
control theory [10] – [12]. In [13], the net-
worked control system is modeled as time de-
lay system, and then the non-fragile guaranteed 
cost fault tolerant controller is designed. Using 
the structure vertex separator method, the prob-
lem of non-fragile H∞ control is studied for 
networked continuous time linear system with 
time delay and logarithmic quantizer in [14]. 
Considering the randomly occurring gain vari-
ations, distributed delays and channel fadings, 
Li et al. designed the non-fragile H∞ controller 
for networked discrete time linear system [15] 
– [16]. For networked switch fuzzy time delay 
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system, Liu and Sun design the non-fragile con-
troller based on parallel distributed compensa-
tion and multiple Lyapunov functions method 
[17]. It is worth pointing out that the existing 
literature is concerned with non-fragile control 
of networked control system with quantization 
and/or network induced delay. To the best of the 
authors' knowledge, the problem of networked 
non-fragile H∞ control for Lipschitz nonlinear 
system subject to quantization and packet drop-
out, both in the feedback and forward paths, has 
not been fully investigated, which motivates the 
present study.
The rest of this paper is organized as follows. In 
Section 2, the effects of quantization and packet 
dropout are analyzed. The networked control 
system is modeled as a Markovian jumping sys-
tem. The sufficient condition for the existence 
of non-fragile H∞ controller is given in terms 
of linear matrix inequality in Section 3. A sim-
ulation example is presented to illustrate the ef-
fectiveness of the proposed method in Section 
4. In Section 5, conclusions are given.
Notation: Rn denotes the n dimensional Euclid-
ean space. || || stands for the Euclidean norm.    
I and 0 denote the identity and zero matrices 
of compatible dimensions respectively. Pr[·] 
means the occurrence probability of event ''·''. 
E{x} stands for the expectation of stochastic 
variable x. MT and M –1 denote respectively 
the transpose and inverse of a matrix M. X > 0 
(X < 0) means that the matrix X is real sym-
metric positive definite (negative definite). The 
asterisk ''*'' in a matrix is used to represent the 
term that is induced by symmetry. diag{M1, ..., 
M2} stands for a block-diagonal matrix with the 
matrices M1, ..., M2 on the diagonal.

2. Problem Formulation and 
Preliminaries

The diagram of networked control for Lipschitz 
nonlinear system studied in this paper is shown 
in Figure 1. Lipschitz nonlinear system is very 
common. For example, the sinusoidal terms 
encountered in some problems of robotics are 
global Lipschitz. Considered in a given neigh-
borhood, most nonlinearities are local Lipschitz 
[18].

The controlled system is described by
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where x (k) ∈ Rn is the state, u (k) ∈ Rp is the 
control input, w (k) ∈ Rm is the disturbance be-
longing to L2 [0,∞], z (k) ∈ Rq is the controlled 
output. A, B1, B2, F, C and D are known con-
stant matrices with appropriate dimensions. 
f (k, x (k)) is a nonlinear vector function that is 
assumed to be Lipschitz with respect to x (k), 
i.e. there exists known constant matrix F1 such 
that f (0,0) = 0, || f (k, x1 (k)) – f (k, x2 (k))|| ≤ 
||F1 (x1 (k) – x2 (k))||.
The system state is quantized before beeing 
transmitted to the controller via the network due 
to the limited bandwidth. Logarithmic quantiz-
ers are essential for quadratic stabilization via 
quantized feedback if a coarse quantization 
density is required. Nonlogarithmic quantizers 
such as finite quantizers and linear quantizers 
are unsuitable [19]. The following logarithmic 
quantizer is used in this paper
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where the set of quantized levels U = {±ui, ui = 
ρiu0, i = ±1, ±2, ...} ∪ {±u0} ∪ {0}, 0 < ρ < 1, 
u0 > 0, δ = (1 – ρ)/(1 + ρ), ρ is the quantization 
density of q1 (ν). The quantized state can be de-
scribed by

When the guided system is controlled, the con-
troller uc (k) = V ‒ (Kα(k) + ∆K) xc(k), where V is 
the reference signal.
The output of the controller uc (k) is also quan-
tized by a logarithmic quantizer q2 (ν) which is 
similar to the state quantizer q1 (ν). The control 
input of the system is described by

              

2( ) ( )( ( )) ( )
(1 ( )) ( 1)

cu k k I H k u k
k u k

β
β

= +

+ − −           
(8)

where ||H2 (k)|| ≤ δ2, δ2 = (1 – ρ2)/(1 + ρ2), ρ2 is 
the quantization density of q2 (ν).
Defining the augmented state x (k) = [xT (k), 
xc

T(k ‒ 1), uT
 (k ‒ 1)]T, the networked control 

system can be modeled as
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Because the networked control system is mod-
eled as Markovian jumping system, we intro-
duce the following stochastically stable and H∞ 
performance definitions and a lemma which 
will be used in the sequel.
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where ||H1 (k)|| ≤ δ1.
When the quantized data are transmitted over 
the network, it is supposed that the network in-
duced delay is small enough to be neglected. 
In addition, due to the disturbance or network 
congestion, the data packet may be dropped 
out, which is common in wireless network. The 
packet transmission process can be modeled as 
Markov chain [8]. Assume that Markov chains 
α (k) and β (k) denote the packet transmission 
process in the channels from the sensor to the 
controller and from the controller to the actu-
ator respectively. The finite state sets are Φ1 = 
{0,1} and Φ2 = {0,1}. The state 0 means that the 
data packet is dropped out. The state 1 indicates 
that the data packet is transmitted successfully. 
The transition probability matrices of Markov 
chains are P = [λij] and Q = [πrs] with

[ ]Pr ( 1) | ( )ij k j k iλ α α= + = = , λij ≥ 0,
1

0 1ijj λ= =∑ , [ ]Pr ( 1) | ( )rs k s k rπ β β= + = = ,

πrs ≥ 0, 1
0 1rss π= =∑ , ∀i, j ∈ Φ1, ∀r, s ∈ Φ2.

The input of the controller can be described by
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It is necessary that the controller which is part 
of a closed-loop system can tolerate some un-
certainty in its coefficients [9]. Consider the 
non-fragile controller

              ( )( ) ( ) ( )c k cu k K K x kα ∆= +               (5)

where Kα(k) is the controller gain, ∆K stands for 
the controller gain perturbations which are of 
additive and multiplicative forms:

         2 2 2 2 2( ) , ( ) ( )TK M F k N F k F k I∆ = ≤     (6)

   3 3 3 ( ) 3 3( ) , ( ) ( )T
kK M F k N K F k F k Iα∆ = ≤  

(7)

where M2, N2, M3, N3 are known constant ma-
trices.
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Figure 1. Diagram of control for networked 
nonlinear system.
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control input, w (k) ∈ Rm is the disturbance be-
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transmitted to the controller via the network due 
to the limited bandwidth. Logarithmic quantiz-
ers are essential for quadratic stabilization via 
quantized feedback if a coarse quantization 
density is required. Nonlogarithmic quantizers 
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Definition 1 [20]. When w (k) = 0, the net-
worked control system (9) is said to be stochas-
tically stable if for every initial state (x(0), α (0), 
β (0)), { }2

0 ( )k x kΕ ∞
= < ∞∑ .

Definition 2 [20]. Given a scalar γ > 0 , the net-
worked control system (9) is said to have an H∞ 
performance γ, if 

{ } { }2
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k kz k z k w k w kΕ γ Ε∞ ∞
= =<∑ ∑

for all nonzero w (k) ∈ L2 [0,∞〉 under zero ini-
tial condition.
Lemma 1 [21]. Given matrices Γ1 = Γ1

T, Γ2 and   
Γ3 of appropriate dimensions, then Γ1 + Γ2F4(k) 
Γ3 + Γ3

T F4
T (k) Γ2 < 0 holds for all F4(k) satis-

fying F4
T (k)F4(k) ≤ I, if and only if there exists 

scalar ε > 0 such that Γ1 + ε‒1Γ2Γ2
T  + ε Γ3

T Γ3 < 0. 

3.	Non-Fragile	H∞	Controller	Design

In this section, we explore the sufficient condi-
tion of the existence of non-fragile H∞ control-
ler for networked control system (9). First, we 
establish the sufficient condition of stability for 
the networked control system.
Theorem 1. Given the quantization densi-
ties  ρ1, ρ2 and controller gain Kα(k) + ∆K, the 
networked control system (9) is stochastically 
stable if there exist symmetric positive defi-
nite matrices P (i, r) = diag {P1 (i, r), P2 (i, r), 
P3 (i, r)}, i ∈ Φ1, r ∈ Φ2, scalar ε > 0 such that 
the following matrix inequalities hold
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Proof. Consider the following Lyapunov func-
tional V [x(k), α (k) = i, β (k) = r] = xT

 (k)P (i, r) x (k) 
where P (i, r) = diag {P1 (i, r), P2 (i, r), P3 (i, r)}, 
P1 (i, r), P2 (i, r) and P3 (i, r) are symmetric 
positive definite matrices.
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T F1x (k), there 
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r] along the trajectory of system (9) with w (k) 
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Therefore, by Definition 1, the networked con-
trol system (9) is stochastically stable. The 
proof is completed.
The following theorem proposes the sufficient 
condition for the existence of non-fragile H∞ 
controller for networked control system (9).
Theorem 2. Given a scalar γ > 0, quantiza-
tion densities ρ1 and ρ2, the networked control 
system (9) is stochastically stable and has an 
H∞ performance γ, if there exist scalars ε1 > 
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{X1 (i, r), X2 (i, r), X3 (i, r)}, i ∈ Φ1, r ∈ Φ2, Q, 
matrices Y0 and Y1 such that the following lin-
ear matrix inequalities hold
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1

1
1,21

1

1

(0,0) (0,0)
(0,0) (0,0)
(0,0) (0,0)
(0,0) (0,0)

A X B F
A X B F
A X B F
A X B F

ε
ε

Ω
ε
ε

 
 
 =
 
 
 

Ω1,22 = diag {‒1/(λ00π00) X (0, 0), ‒1/(λ00π01) X (0, 1), 
‒1/(λ01π00)X (1, 0), ‒1/(λ01π01) X (1, 1)}, Ω1,31 = 
[C, D, 0], Ω1,33 = ‒I, Ω1,41 = [F1, X (0, 0), 0, 0], F1 

= [F1, 0, 0], Ω1,44 = ‒ε1I, Ω2,11 = diag {‒X (0, 1), 
‒γ2I, ‒ε1I},

2,21 1

2,21 1
2,21

2,21 1

2,21 1

,

B F
B F
B F
B F

Π ε
Π ε

Ω
Π ε
Π ε

 
 
 =  
 
  

1 1 0

2,21 2

0

(0,1) 0
0 (0,1) 0 ,
0 0

AX B Y
X

Y
Π

 
 =  
  

Ω2,22 = diag {‒1/(λ00π10) X (0, 0), ‒1/(λ00π11) X (0, 1), 
‒1/(λ01π10)X (1, 0), ‒1/(λ01π11) X (1, 1)},

1
2,31

1 1

(0,1) 0 0 0
(0,1) 0 0 0 0

CX D
F X

Ω
 

=  
 

{ }2,33 1, ,diag I IΩ ε= − −

2,41
2 2

0 0 0 0 0
,

0 (0,1) 0 0 0N X
Ω

 
=  
 

2,42 2,42 2,42 2,42 2,42 ,Ω Π Π Π Π =  

2 2 1 2 2
2,42

0 ,
0 0 0

T T TM B Mε ε
Π

 
=  
 

{ }2,44 2 2, ,diag I IΩ ε ε= − −

2,51
0

0 0 0 0 0
,

0 0 0 0Y
Ω

 
=  
 

2,52 2,52 2,52 2,52 2,52, , , ,Ω Π Π Π Π =  

3 1 3
2,52

0 ,
0 0 0

TB Iε ε
Π

 
=  
 

2,54
2 2

0 0
,

0 M
Ω

ε
 

=  
 

{ }2
2,55 3 3 2, ,diag I IΩ ε ε δ= − −

{ }2
3,11 1(1,0), , ,diag X I IΩ γ ε= − − −

3,21 1

3,21 1
3,21

3,21 1

3,21 1

,

B F
B F
B F
B F

Π ε
Π ε

Ω
Π ε
Π ε

 
 
 =  
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Definition 1 [20]. When w (k) = 0, the net-
worked control system (9) is said to be stochas-
tically stable if for every initial state (x(0), α (0), 
β (0)), { }2

0 ( )k x kΕ ∞
= < ∞∑ .

Definition 2 [20]. Given a scalar γ > 0 , the net-
worked control system (9) is said to have an H∞ 
performance γ, if 

{ } { }2
0 0( ) ( ) ( ) ( )T T

k kz k z k w k w kΕ γ Ε∞ ∞
= =<∑ ∑

for all nonzero w (k) ∈ L2 [0,∞〉 under zero ini-
tial condition.
Lemma 1 [21]. Given matrices Γ1 = Γ1

T, Γ2 and   
Γ3 of appropriate dimensions, then Γ1 + Γ2F4(k) 
Γ3 + Γ3

T F4
T (k) Γ2 < 0 holds for all F4(k) satis-

fying F4
T (k)F4(k) ≤ I, if and only if there exists 

scalar ε > 0 such that Γ1 + ε‒1Γ2Γ2
T  + ε Γ3

T Γ3 < 0. 

3.	Non-Fragile	H∞	Controller	Design

In this section, we explore the sufficient condi-
tion of the existence of non-fragile H∞ control-
ler for networked control system (9). First, we 
establish the sufficient condition of stability for 
the networked control system.
Theorem 1. Given the quantization densi-
ties  ρ1, ρ2 and controller gain Kα(k) + ∆K, the 
networked control system (9) is stochastically 
stable if there exist symmetric positive defi-
nite matrices P (i, r) = diag {P1 (i, r), P2 (i, r), 
P3 (i, r)}, i ∈ Φ1, r ∈ Φ2, scalar ε > 0 such that 
the following matrix inequalities hold

             31 32 33

( , ) * *
0 * 0

P i r
I

εΦ
ε

Ξ Ξ Ξ

− + 
 − < 
           

(10)

where

31 ( , ), ( , ), ( , ), ( , ) ,
TT T T TA i r A i r A i r A i rΞ  =  

32 , , , ,
TT T T TF F F FΞ  =  

{

}

1
33 0 0

1 1
0 1 1 0

1
1 1

1/ ( ) (0,0),

1/ ( ) (0,1), 1/ ( ) (1,0),

1/ ( ) (1,1) ,

i r

i r i r

i r

diag P

P P

P

Ξ λ π

λ π λ π

λ π

−

− −

−

= −

− −

−

1 1 0 .
0 0

TF F
Φ

 
=  
 

Proof. Consider the following Lyapunov func-
tional V [x(k), α (k) = i, β (k) = r] = xT

 (k)P (i, r) x (k) 
where P (i, r) = diag {P1 (i, r), P2 (i, r), P3 (i, r)}, 
P1 (i, r), P2 (i, r) and P3 (i, r) are symmetric 
positive definite matrices.
As f T (k, x (k)) f (k, x (k)) ≤ xT(k)F1

T F1x (k), there 
exists ε > 0 so that εxT(k)F1

T F1x (k) ‒ f T (k, x (k)) 
f (k, x (k)) ≥ 0.
Taking the difference of V [x(k), α (k) = i, β (k) = 
r] along the trajectory of system (9) with w (k) 
= 0, we can obtain

{
}

( ) [ ( 1), ( 1), ( 1) | ( ) ,

( ) , ( ) ] [ ( ), ( ) ,

( ) ] ( ) ( , ) ( )T

V k V x k k k x k

k i k r V x k k i

k r k i r k

∆ Ε α β

α β α

β ζ Ξ ζ

= + + +

= = − =

= = 

where

11( , ) *
( , ) ,

T T

i r
i r

F HA HF I

Ξ
Ξ

Φ ε

 
=  

−  





( ) ( ), ( , ( )) ,
TT Tk x k f k x kζ  =  

11( , ) ( , ) ( , ) ( , ) ,Ti r A i r HA i r P i rΞ εΦ= − +

1 1
0 0 ( , ).ij rsj sH P j sλ π= == ∑ ∑

Thus,
( ) ( ) ( ) ( ) ( )T TV k k k x k x k∆ φζ ζ φ≤ − ≤ −

where ϕ is the least eigenvalue of ( , )i rΞ−  .
Then,

{ }2 1
0 ( ) (0) ( (0), (0)) (0)T

k x k x P xΕ φ α β∞ −
= < < ∞∑

Therefore, by Definition 1, the networked con-
trol system (9) is stochastically stable. The 
proof is completed.
The following theorem proposes the sufficient 
condition for the existence of non-fragile H∞ 
controller for networked control system (9).
Theorem 2. Given a scalar γ > 0, quantiza-
tion densities ρ1 and ρ2, the networked control 
system (9) is stochastically stable and has an 
H∞ performance γ, if there exist scalars ε1 > 

0, ε2 > 0, ε3 > 0, ε4 > 0, ε5 > 0, ε6 > 0, sym-
metric positive definite matrices X (i, r) = diag 
{X1 (i, r), X2 (i, r), X3 (i, r)}, i ∈ Φ1, r ∈ Φ2, Q, 
matrices Y0 and Y1 such that the following lin-
ear matrix inequalities hold

             

1,11

1,21 1,22

1,31 1,33

1,41 1,44

* * *
* *

0
0 *
0 0

Ω
Ω Ω
Ω Ω
Ω Ω

 
 
  <
 
 
         

 (11)

       

2,11

2,21 2,22

2,31 2,33

2,41 2,42 2,44

2,51 2,52 2,54 2,55

* * * *
* * *

0 * * 0
0 *
0

Ω
Ω Ω
Ω Ω
Ω Ω Ω
Ω Ω Ω Ω

 
 
 
  <
 
 
     

(12)

            

3,11

3,21 3,22

3,31 3,33

3,41 3,42 3,44

* * *
* *

0
0 *

0

Ω
Ω Ω
Ω Ω
Ω Ω Ω

 
 
  <
 
 
         

(13)

       

4,11

4,21 4,22

4,31 4,32 4,33

4,41 4,42 4,43 4,44

4,51 4,52 4,53 4,54 4,55

* * * *
* * *

* * 0
*

Ω
Ω Ω
Ω Ω Ω
Ω Ω Ω Ω
Ω Ω Ω Ω Ω

 
 
 
  <
 
 
    

( 14)

where Ω1,11 = diag {‒X (0, 0), ‒γ2I, ‒ε1I},

1

1
1,21

1

1

(0,0) (0,0)
(0,0) (0,0)
(0,0) (0,0)
(0,0) (0,0)

A X B F
A X B F
A X B F
A X B F

ε
ε

Ω
ε
ε

 
 
 =
 
 
 

Ω1,22 = diag {‒1/(λ00π00) X (0, 0), ‒1/(λ00π01) X (0, 1), 
‒1/(λ01π00)X (1, 0), ‒1/(λ01π01) X (1, 1)}, Ω1,31 = 
[C, D, 0], Ω1,33 = ‒I, Ω1,41 = [F1, X (0, 0), 0, 0], F1 

= [F1, 0, 0], Ω1,44 = ‒ε1I, Ω2,11 = diag {‒X (0, 1), 
‒γ2I, ‒ε1I},

2,21 1

2,21 1
2,21

2,21 1

2,21 1

,

B F
B F
B F
B F

Π ε
Π ε

Ω
Π ε
Π ε

 
 
 =  
 
  

1 1 0

2,21 2

0

(0,1) 0
0 (0,1) 0 ,
0 0

AX B Y
X

Y
Π

 
 =  
  

Ω2,22 = diag {‒1/(λ00π10) X (0, 0), ‒1/(λ00π11) X (0, 1), 
‒1/(λ01π10)X (1, 0), ‒1/(λ01π11) X (1, 1)},

1
2,31

1 1

(0,1) 0 0 0
(0,1) 0 0 0 0

CX D
F X

Ω
 

=  
 

{ }2,33 1, ,diag I IΩ ε= − −

2,41
2 2

0 0 0 0 0
,

0 (0,1) 0 0 0N X
Ω

 
=  
 

2,42 2,42 2,42 2,42 2,42 ,Ω Π Π Π Π =  

2 2 1 2 2
2,42

0 ,
0 0 0

T T TM B Mε ε
Π

 
=  
 

{ }2,44 2 2, ,diag I IΩ ε ε= − −

2,51
0

0 0 0 0 0
,

0 0 0 0Y
Ω

 
=  
 

2,52 2,52 2,52 2,52 2,52, , , ,Ω Π Π Π Π =  

3 1 3
2,52

0 ,
0 0 0

TB Iε ε
Π

 
=  
 

2,54
2 2

0 0
,

0 M
Ω

ε
 

=  
 

{ }2
2,55 3 3 2, ,diag I IΩ ε ε δ= − −

{ }2
3,11 1(1,0), , ,diag X I IΩ γ ε= − − −

3,21 1

3,21 1
3,21

3,21 1

3,21 1

,

B F
B F
B F
B F

Π ε
Π ε

Ω
Π ε
Π ε

 
 
 =  
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1 1 3

3,21 1

3

(1,0) 0 (1,0)
(1,0) 0 0 ,
0 0 (1,0)

AX B X
X

X
Π

 
 =  
  

Ω3,22 = diag {‒1/(λ10π00) X (0, 0), ‒1/(λ10π01) X (0, 1), 
‒1/(λ11π00)X (1, 0), ‒1/(λ11π01) X (1, 1)},

1
3,31

1 1

(1,0) 0 0 0
,

(1,0) 0 0 0 0
CX D
F X

Ω
 

=  
 

3,33 2,33,Ω Ω=

3,41
1

0 0 0 0 0
,

(1,0) 0 0 0 0X
Ω

 
=  
 

3,42 3,42 3,42 3,42 3,42, , , ,Ω Π Π Π Π =  

4
3,42

0 0
,

0 0 0
Iε

Π
 

=  
 

{ }2
3,44 4 4 1, ,diag I IΩ ε ε δ= − −

{ }
{ }

2
4,11 1

2
1

(1,1), ,

,0,0 ,

diag X I I

diag Q

Ω γ ε

δ

= − − −

+

4,21 1

4,21 1
4,21

4,21 1

4,21 1

,

B F
B F
B F
B F

Π ε
Π ε

Ω
Π ε
Π ε

 
 
 =  
 
  

1 1 1

4,21 1

1

(1,1) 0 0
(1,1) 0 0 ,

0 0

AX B Y
X

Y
Π

+ 
 =  
  

Ω4,22 = diag {‒1/(λ10π10) X (0, 0), ‒1/(λ10π11) X (0, 1), 
‒1/(λ11π10)X (1, 0), ‒1/(λ11π11) X (1, 1)},

1

4,31 1 1

(1,1) 0 0 0
(1,1) 0 0 0 0 ,

0 0 0 0 0

CX D
F XΩ
 
 =  
  

4,32 4,32 4,32 4,32 4,32, , , ,Ω Π Π Π Π =  

4,32

1 1 1

0 0 0
0 0 0 ,

T T TY B I Y

Π
 
 

=  
 
 

{ }4,33 , , ,diag I I QΩ ε= − − −

4,41
2 1

0 0 0 0 0
,

(1,1) 0 0 0 0N X
Ω

 
=  
 

4,42 4,42 4,42 4,42 4,42, , , ,Ω Π Π Π Π =  

5 2 1 5 2
4,42

0 ,
0 0 0

T T TM B Mε ε
Π

 
=  
 

4,43
2 1

0 0 0
,

0 0 (1,1)N X
Ω

 
=  
 

{ }4,44 5 5, ,diag I IΩ ε ε= − −

4,51
1

0 0 0 0 0
,

0 0 0 0Y
Ω

 
=  
 

4,52 4,52 4,52 4,52 4,52, , , ,Ω Π Π Π Π =  

6 1 6
4,52

0 ,
0 0 0

TB Iε ε
Π

 
=  
 

4,53 4,54
5 21

0 00 0 0
, ,

00 0 MY
Ω Ω

ε
  

= =   
   

{ }2
4,55 6 6 2, .diag I IΩ ε ε δ= − −

Furthermore, the additive non-fragile H∞ con-
troller gains in the form of (5) and (6) are K0 = 
Y0 X2

‒1
 (0,1) and K1 = Y1 X1

‒1
 (1,1).

Proof. Consider the following Lyapunov func-
tional V [x(k), α (k) = i, β (k) = r] = xT

 (k)P (i, r) x (k) 
where P (i, r) = diag {P1 (i, r), P2 (i, r), P3 (i, r)}, 
P1 (i, r), P2 (i, r) and P3 (i, r) are symmetric 
positive definite matrices.

Taking the difference of V [x(k), α (k) = i, β (k) 
= r] along the trajectory of system (9), we can 
obtain

{
}

1

( ) [ ( 1), ( 1), ( 1) | ( ) ,

( ) , ( ) ] [ ( ), ( ) ,

( ) ] ( ) ( , ) ( )T

V k V x k k k x k

k i k r V x k k i

k r k i r k

∆ Ε α β

α β α

β η Θ η

= + + +

= = − =

= =

where ( ) ( ), ( ), ( , ( )) ,
TT T Tk x k w k f k x kη  =  

1,11

1 1,22

( , ) * *

( , ) ( , ) ( , ) * ,

( , )

T

T T T

i r

i r B HA i r i r

F HA i r F HB F HF I

Θ

Θ Θ

ε

 
 

=  
 − 

1,11( , ) ( , ) ( , ) ( , ) ,Ti r A i r HA i r P i rΘ εΦ= − +
1 1

0 0 ( , ),ij rsj sH P j sλ π= == ∑ ∑

1,22 ( , ) .Ti r B HBΘ =

Consider the following performance index

{ }2
0 ( ) ( ) ( ) ( ) .N T T

N kJ z k z k w k w kΕ γ=
 = − ∑

Under zero initial condition, we can obtain

{
} { }

2
0

0

20

[ ( ) ( ) ( ) ( )

( )] ( )

( ) ( , ) ( )

N T T
N k

N
k

N T
k

J z k z k w k w k

V k V k

k i r k

Ε γ

∆ Ε ∆

η Θ η

=

=

=

= −

+ −

<

∑

∑

∑

where

[ ]
2 1

2

( , ) ( , ) , ,0 , ,0

0, ,0 0, ,0 .

T

T

i r i r C D C D

I I

Θ Θ

γ

   = +    

 −  

Case 1. i = 0, r = 0. Let X1 (i, r) = P1
‒1

 (i, r), X2 
(i, r) = P2

‒1
 (i, r), X3 (i, r) = P3

‒1
 (i, r), ε1 = ε‒1, 

both sides of (11) are respectively multiplied 
by diag {Λ1,11, Λ1,22, Λ1,33, Λ1,44}, where Λ1,11 = 
diag{P (0, 0), I, εI}, Λ1,22 = diag{I, I, I, I}, Λ1,33 
= I, Λ1,44 = I. By Schur complement, one can 
obtain Θ2 (0, 0) < 0.
Case 2. i = 0, r = 1. Let Y0 = K0X2 (0, 1), both 
sides of (12) are respectively multiplied by 
diag {Λ2,11, Λ2,22, Λ2,33, Λ2,44 Λ2,55}, where Λ2,11 = 
diag{P (0, 1), I, εI}, Λ2,22 = diag{I, I, I, I}, Λ2,33 
= diag{I, I}, Λ2,44 = Λ2,33, Λ2,55 = Λ2,33. Using 
Lemma 1 and the method similar to case 1, one 
can obtain Θ2 (0, 1) < 0.
Case 3. i = 1, r = 0. By the method similar to 
Case 2, one can obtain Θ2 (1, 0) < 0.
Case 4. i = 1, r = 1. Let Q = ε4P1

‒1
 (1, 1), P1

‒1
 (1, 1), 

Y1 = K1P1
‒1

 (1, 1), by the method similar to Case 
2, one can obtain Θ2 (1, 1) < 0.
According to the above, Θ2 (i, r) < 0 implies that 
matrix inequalities (10) hold. So the networked 

control system (9) is stochastically stable. On 
the other hand, as N → ∞,

{ }2
0 ( ) ( ) ( ) ( ) 0.T T

kJ z k z k w k w kΕ γ∞
∞ =

 = − < ∑

Therefore, from definition 2 it follows that the 
networked control system (9) has an H∞ perfor-
mance γ. This completes the proof.
Remark 1. The sufficient condition for the ex-
istence of multiplicative non-fragile H∞ con-
troller in the form of (5) and (7) is similar to 
(11), (12), (13) and (14), except that M2 and N2 
are substituted by M3 and N3Kα(k) respectively.
Remark 2. As the packet transmissions in both 
feedback and forward channels are considered 
simultaneously, the controller can be designed 
by the proposed algorithm. The obtained result 
is general.
Remark 3. The networked control system is 
modeled by augmented state, so the dimension 
of the system is enlarged, which makes the 
computation complex.

4. Numerical Example

To illustrate the effectiveness of the method 
proposed in this paper, consider the Lipschitz 
nonlinear system with the following parameters 
[6]

1 2

0.75 0.5 0 1 0.2
0.7 0 0 , 0 , 0.2 ,
0 1 0 0 0.2

A B B
−     

     = = =     
          

1

2

3

0.03sin( ( ))1 0 0
0.01sin( ( ))0 1 0 , ( , ( )) ,

0 0 1 0.02sin( ( ))

x k
x kF f k x k
x k

  
  = =   
     

[ ]
0,0 30

( ) 0.8,30 60, 0.1,0,0 , 0.6.
0, 60

k
w k k C D

k

≤ <
= ≤ < = =
 ≥

The additive controller gain perturbations are 
M2 = 0.1 and N2 = [0.1, 0.1, 0.2], while the quan-
tization densities of the quantizer of the system 
state and controller output are respectively ρ1 
= 0.5 and ρ2 = 0.6. The transition probability 
matrices of Markov chains are
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1 1 3

3,21 1

3

(1,0) 0 (1,0)
(1,0) 0 0 ,
0 0 (1,0)

AX B X
X

X
Π

 
 =  
  

Ω3,22 = diag {‒1/(λ10π00) X (0, 0), ‒1/(λ10π01) X (0, 1), 
‒1/(λ11π00)X (1, 0), ‒1/(λ11π01) X (1, 1)},

1
3,31

1 1

(1,0) 0 0 0
,

(1,0) 0 0 0 0
CX D
F X

Ω
 

=  
 

3,33 2,33,Ω Ω=

3,41
1

0 0 0 0 0
,

(1,0) 0 0 0 0X
Ω

 
=  
 

3,42 3,42 3,42 3,42 3,42, , , ,Ω Π Π Π Π =  

4
3,42

0 0
,

0 0 0
Iε

Π
 

=  
 

{ }2
3,44 4 4 1, ,diag I IΩ ε ε δ= − −

{ }
{ }

2
4,11 1

2
1

(1,1), ,

,0,0 ,

diag X I I

diag Q

Ω γ ε

δ

= − − −

+

4,21 1

4,21 1
4,21

4,21 1

4,21 1

,

B F
B F
B F
B F

Π ε
Π ε

Ω
Π ε
Π ε

 
 
 =  
 
  

1 1 1

4,21 1

1

(1,1) 0 0
(1,1) 0 0 ,

0 0

AX B Y
X

Y
Π

+ 
 =  
  

Ω4,22 = diag {‒1/(λ10π10) X (0, 0), ‒1/(λ10π11) X (0, 1), 
‒1/(λ11π10)X (1, 0), ‒1/(λ11π11) X (1, 1)},

1

4,31 1 1

(1,1) 0 0 0
(1,1) 0 0 0 0 ,

0 0 0 0 0

CX D
F XΩ
 
 =  
  

4,32 4,32 4,32 4,32 4,32, , , ,Ω Π Π Π Π =  

4,32

1 1 1

0 0 0
0 0 0 ,

T T TY B I Y

Π
 
 

=  
 
 

{ }4,33 , , ,diag I I QΩ ε= − − −

4,41
2 1

0 0 0 0 0
,

(1,1) 0 0 0 0N X
Ω

 
=  
 

4,42 4,42 4,42 4,42 4,42, , , ,Ω Π Π Π Π =  

5 2 1 5 2
4,42

0 ,
0 0 0

T T TM B Mε ε
Π

 
=  
 

4,43
2 1

0 0 0
,

0 0 (1,1)N X
Ω

 
=  
 

{ }4,44 5 5, ,diag I IΩ ε ε= − −

4,51
1

0 0 0 0 0
,

0 0 0 0Y
Ω

 
=  
 

4,52 4,52 4,52 4,52 4,52, , , ,Ω Π Π Π Π =  

6 1 6
4,52

0 ,
0 0 0

TB Iε ε
Π

 
=  
 

4,53 4,54
5 21

0 00 0 0
, ,

00 0 MY
Ω Ω

ε
  

= =   
   

{ }2
4,55 6 6 2, .diag I IΩ ε ε δ= − −

Furthermore, the additive non-fragile H∞ con-
troller gains in the form of (5) and (6) are K0 = 
Y0 X2

‒1
 (0,1) and K1 = Y1 X1

‒1
 (1,1).

Proof. Consider the following Lyapunov func-
tional V [x(k), α (k) = i, β (k) = r] = xT

 (k)P (i, r) x (k) 
where P (i, r) = diag {P1 (i, r), P2 (i, r), P3 (i, r)}, 
P1 (i, r), P2 (i, r) and P3 (i, r) are symmetric 
positive definite matrices.

Taking the difference of V [x(k), α (k) = i, β (k) 
= r] along the trajectory of system (9), we can 
obtain
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Consider the following performance index
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Case 1. i = 0, r = 0. Let X1 (i, r) = P1
‒1

 (i, r), X2 
(i, r) = P2

‒1
 (i, r), X3 (i, r) = P3

‒1
 (i, r), ε1 = ε‒1, 

both sides of (11) are respectively multiplied 
by diag {Λ1,11, Λ1,22, Λ1,33, Λ1,44}, where Λ1,11 = 
diag{P (0, 0), I, εI}, Λ1,22 = diag{I, I, I, I}, Λ1,33 
= I, Λ1,44 = I. By Schur complement, one can 
obtain Θ2 (0, 0) < 0.
Case 2. i = 0, r = 1. Let Y0 = K0X2 (0, 1), both 
sides of (12) are respectively multiplied by 
diag {Λ2,11, Λ2,22, Λ2,33, Λ2,44 Λ2,55}, where Λ2,11 = 
diag{P (0, 1), I, εI}, Λ2,22 = diag{I, I, I, I}, Λ2,33 
= diag{I, I}, Λ2,44 = Λ2,33, Λ2,55 = Λ2,33. Using 
Lemma 1 and the method similar to case 1, one 
can obtain Θ2 (0, 1) < 0.
Case 3. i = 1, r = 0. By the method similar to 
Case 2, one can obtain Θ2 (1, 0) < 0.
Case 4. i = 1, r = 1. Let Q = ε4P1

‒1
 (1, 1), P1

‒1
 (1, 1), 

Y1 = K1P1
‒1

 (1, 1), by the method similar to Case 
2, one can obtain Θ2 (1, 1) < 0.
According to the above, Θ2 (i, r) < 0 implies that 
matrix inequalities (10) hold. So the networked 

control system (9) is stochastically stable. On 
the other hand, as N → ∞,

{ }2
0 ( ) ( ) ( ) ( ) 0.T T

kJ z k z k w k w kΕ γ∞
∞ =

 = − < ∑

Therefore, from definition 2 it follows that the 
networked control system (9) has an H∞ perfor-
mance γ. This completes the proof.
Remark 1. The sufficient condition for the ex-
istence of multiplicative non-fragile H∞ con-
troller in the form of (5) and (7) is similar to 
(11), (12), (13) and (14), except that M2 and N2 
are substituted by M3 and N3Kα(k) respectively.
Remark 2. As the packet transmissions in both 
feedback and forward channels are considered 
simultaneously, the controller can be designed 
by the proposed algorithm. The obtained result 
is general.
Remark 3. The networked control system is 
modeled by augmented state, so the dimension 
of the system is enlarged, which makes the 
computation complex.

4. Numerical Example

To illustrate the effectiveness of the method 
proposed in this paper, consider the Lipschitz 
nonlinear system with the following parameters 
[6]
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The additive controller gain perturbations are 
M2 = 0.1 and N2 = [0.1, 0.1, 0.2], while the quan-
tization densities of the quantizer of the system 
state and controller output are respectively ρ1 
= 0.5 and ρ2 = 0.6. The transition probability 
matrices of Markov chains are
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0.2 0.8 0.3 0.7
, .

0.4 0.6 0.2 0.8
P Q   
= =   
   

The H∞ performance is γ = 1.5.
The packet transmissions in the communication 
channels from the sensor to the controller and 
from the controller to the actuator are shown in 
Figure 2 and Figure 3 respectively.

Solving the inequalities (11), (12), (13) and 
(14) by the MATLAB linear matrix inequality 
toolbox, we can obtain the additive networked 
non-fragile H∞ controllers

[ ]0 0.0099, 0.0099, 0.0198 ,K = − − −

[ ]1 0.0122,0.0135, 0.0004 .K = − −

When the packet dropouts are not taken into 
consideration, the existent condition of the clas-

sical controller is reduced to linear matrix in-
equality (14). Solving the inequality (14) by the 
MATLAB linear matrix inequality toolbox, we 
can obtain the additive networked non-fragile 
H∞ controllers

[ ]0.4093, 0.4436, 0.4112 .K = − − −

Assume that the initial state of the system is 
[1.5, 0, ‒1]T. The state trajectories of the net-
worked control system controlled by the pro-
posed and classical controllers are shown in 
Figure 4 – Figure 6. It can be seen that the 
system is stable. The dynamic and static per-
formance indices of the proposed controller 
are superior to those of the classical controller, 
which verifies the effectiveness of the method 
presented in this paper.

5.	Conclusion

In this paper, the networked non-fragile H∞ 
controller for Lipschitz nonlinear system is de-
signed. The logarithmic quantizer and packet 
dropouts governed by Markov chain in the 
feedback and forward communication channels 
are taken into consideration simultaneously. 
The sufficient condition established for the ex-
istence of non-fragile H∞ controller is general. 
If the packet dropouts are not considered, the 
existent condition of the classical controller is 
simplified to linear matrix inequality. The con-
troller can be obtained by solving a set of lin-
ear matrix inequalities. A simulation example is 
presented to demonstrate the effectiveness and 
superiority of the method proposed in this pa-
per.
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