
Journal of Computing and Information Technology - CIT 23, 2015, 4, 329–340
doi:10.2498/cit.1002764

329

Hardware Accelerator Approach
Towards Efficient Biometric
Cryptosystems for Network Security

Charles McGuffey, Chen Liu and Stephanie Schuckers
Clarkson University, Potsdam, New York, USA

Protecting data and its communication is a critical part
of the modern network. The science of protecting data,
known as cryptography, uses secret keys to encrypt data
in a format that is not easily decipherable. However,most
commonly secure logons for a workstation connected to
a network use passwords to perform user authentication.
These passwords are a weak link in the security chain, and
are a common point of attack on cryptography schemes.
One alternative to password usage for network security
is to use a person’s physical characteristics to verify who
the person is and unlock the data correspondingly. This
study focuses on the Cambridge biometric cryptosystem,
a system for performing user authentication based on
a user’s iris data. The implementation of this system
expanded from a single-core software-only system to a
collaborative system consisting of a single core and a
hardware accelerator. The experiment takes place on
a Xilinx Zynq-7000 All Programmable SoC. Software
implementation is performed on one of the embedded
ARM A9 cores while hardware implementation makes
use of the programmable logic. Our hardware accelera-
tion produced a speedup of 2.2X while reducing energy
usage to 47.5 % of its original value for the combined
enrolment and verification process. These results are
also compared to a many-core acceleration of the same
system, providing an analysis of different acceleration
methods.

Keywords: hardware acceleration, biometric cryptosys-
tem, iris recognition, Reed-Solomon code, Hadamard
code

1. Introduction

In the modern world, data is becoming more
prolific, and much of it is digitally accessible
[1]. This widespread availability of data over
the network leads to sensitive information be-
coming vulnerable, which means that it must
be protected. One way for this protection to
happen is through cryptography, the science of

encoding or decoding information. Cryptogra-
phyworks by taking data to be protected, known
as a “secret”, and performing a transformation
on that data to make it appear as though the
data is a random sequence of bits or characters.
This transformation is known as “encryption”.
Intended users of the data will be able to make
sense of the random sequence, or to “decrypt”
the data, through a methodology known only to
them. Other parties that do not have access to
the decryption instructions will not be able to
make sense out of the data. If done correctly,
converting the random sequence of bits back to
the real meaningful data with no knowledge of
the decryption key should be computationally
complex, meaning that it cannot be achieved
with current computing technologywithin a rea-
sonable amount of time.

Most commonly, secure workstation logons for
a workstation connected to a network make
use of passwords for verifying user authenticity
[15]. However, passwords are not ideal in that
they are prone to being lost, stolen, or forgot-
ten. To overcome the weakness of traditional
password-based authentication, many research
groups have investigated the use of biometrics,
which are unique physical or behavioral char-
acteristics of people, to protect cryptographic
keys. Several researchers have developed algo-
rithms using biometric measurement for cryp-
tography systems, which can greatly improve
the security of network systems. These im-
plementations, called biometric cryptosystems,
combine biometrics and cryptography in a man-
ner that allows accurate matching of biometrics
in an encrypted, secure domain [2].



330 Hardware Accelerator Approach Towards Efficient Biometric Cryptosystems for Network Security

In order to take advantage of biometric cryp-
tosystem design, the algorithm needs to be able
to run at a speed that is effective for use in com-
mercial products. For most applications, this
means calculations and cryptography must oc-
cur in real-time. This study attempts to achieve
that goal by performing hardware acceleration
of a biometric cryptosystem algorithm.

Hardware acceleration allows a biometric cryp-
tosystem algorithm to be executed more quickly
by providing a hardware platform that can han-
dle the computation more efficiently. For each
accelerated function, software code is replaced
with a hardware component dedicated to per-
form the assigned computations, allowing in-
creased parallelism and improving the speed of
the function relative to running on a general-
purpose processor. This performance increase
often significantly outweighs the extra power
consumed by the additional hardware compo-
nent(s), reducing the total energy consumed by
the system for the given task.

The performance improvement presented in this
study provides a template for making biomet-
ric cryptosystems more viable in an industrial
setting, such as commercial network security,
where they can provide secure access to data
without the use of passwords. In addition to the
practical benefits of cryptography, this study
provides insights on the strengths and weak-
nesses of the hardware acceleration process.
Analysis of what target function characteristics
lead to the greatest efficiency gain provides a
framework for determining the most efficient
use of hardware acceleration. This will also
allow more effective usage of hardware acceler-
ation, including applications beyond the scope
of biometric cryptosystems.

The rest of the paper is organized as follows:
a brief overview of biometric cryptosystems is
provided in Section II; Section III discusses the
reference biometric cryptosystem design in de-
tail; hardware acceleration methods and ben-
efits are discussed in Section IV; Section V
provides details on the experimental setup and
procedure; results and associated discussion are
provided in Section VI; final conclusions are
drawn in Section VII.

2. Biometric Cryptosystems

Traditional cryptography methods make use of
password protection and cryptographic keys to
guard valuable information from attackers. The
key is used to encrypt or decrypt data as nec-
essary and is usually long and difficult to guess
or memorize. This has led to keys being re-
leased based on password authentication, which
allows users to memorize a relatively short pass-
wordwhile providing data encryption that is still
strong enough to resist attackers [3]. However,
passwords themselves are a relatively vulnera-
ble medium. Passwords are often poorly cho-
sen, allowing them to be compromised through
intelligent guessing or brute force attacks [3].
Additionally, passwords are often recorded on
unsecure mediums, such as unencrypted files or
pieces of paper that are left lying around. If the
password is not recorded, it must bememorized,
causing the existence of password recovery ser-
vices, which take additional time and provide
additional potential for security flaws. These
weaknesses have caused a significant amount
of research into alternatives to passwords.

One alternative method to the usage of pass-
words is the biometric cryptosystem. A bio-
metric cryptosystem takes data about a partic-
ular feature of each user, called a “biometric”,
and records that data. Biometrics are defined
as behavioral or physiological characteristics of
a user. Examples of biometrics include finger-
prints, iris scans, facial patterns, hand geometry,
signatures, and keystrokes, etc. Biometric sys-
tems enroll users by storing information about
the users’ biometrics. If a user attempts to gain
access to the systemunder protection, that user’s
biometric is checked. If the biometric data pro-
vided by the user matches the corresponding
entry in the system and has the appropriate priv-
ileges, the user is granted access. If the biomet-
ric data does not match, or matches an entry
without the required privileges, then the user is
denied access to the system. This eliminates the
need of passwords and the security risks asso-
ciated with their usage.

There are several issues associated with the use
of biometrics prior to their application to cryp-
tography. In order for a biometric to be useful, it
must be able to be collected and accurately com-
pared to other data collections. The difficulty



Hardware Accelerator Approach Towards Efficient Biometric Cryptosystems for Network Security 331

of biometric collection is usually due to the re-
quirement of a specific hardware setup, and is
therefore irrelevant to our discussion. Accu-
rate comparison, however, is a relevant issue.
When biometric collection occurs, there is a
high variance in the data collected due to dif-
ferent positions of the subject in the collection,
variance in the machine, noise, and other is-
sues. Additionally, biometric data can change
due to human growth, injury, habit changes, and
other real-world events [2]. A biometric system
must be able to handle these data variances in
order to be effective. Complicating matters, the
analysis system must also be able to distinguish
between the biometric data of different people.
Biometric systems must seek to minimize the
false acceptance rate (FAR), where two differ-
ent people are identified as the same person, and
the false rejection rate (FRR), where one person
is not identified as himself/herself on separate
data collections [3]. This dual constraint poses a
significant challenge to biometric systems, even
prior to their application in cryptography.

There are also problems that arise specifically
when biometrics are applied to cryptography.
The first of these issues is privacy. If biometric
templates are stored unencrypted in the system,
attackers could potentially steal the biometric
data of users from the system [4]. This has pri-
vacy implications that cause the system losing
its functionality from both ethical and economic
standpoints. In addition to these issues, the sce-
nario of a specific account being compromised
must be taken into consideration as well. It is
important that this scenario would not result in
any other system that uses the same biometric
being compromised. Revocability, or the abil-
ity to generate multiple secure identities for a
user, is a requirement used to prevent a secu-
rity breach from permanently compromising a
user’s access to a system. This prevents the use
of raw biometric data, and instead necessitates
using a transformation that is not based exclu-
sively on the biometric data. However, work-
ingwith biometric template post-transformation
provides significant challenges in coming up
with alignment processes necessary to deal with
the variances and tolerances that must be ac-
counted for [5], as discussed above.

A large amount of research has been performed
attempting to solve these problems [5]. One of
the promisingmethods is an algorithm using iris

biometrics through error correcting code pro-
posed by Anderson et al. from a research group
in Cambridge University [6]. This algorithm is
referred to herein as the “Cambridge biometric
cryptosystem”, which we will discuss in detail
next.

3. The Cambridge Biometric Cryptosystem

TheCambridge biometric cryptosystem is an al-
gorithm that confirms user authenticity through
the use of an iris template. Each user in the
system is enrolled by providing a 256-byte iris
template and receiving a randomly generated
140-bit key. These two inputs are used to gen-
erate two variables that are stored on a physical
token that the user receives. The first of the gen-
erated variables is a hash of the original 140-bit
key. This hash function is a mapping function
used to obscure the original 140-bit key. The
second variable, called a locked template, is
the result of performing an exclusive-or (XOR)
function between the enrollment template and
the result of putting the randomly generated key
through Reed-Solomon and Hadamard encod-
ing sequentially [6, 7]. When a user attempts to
gain access to the system, the user provides an
iris sample and the physical token. The locked
template is XORed with the user’s sample tem-
plate, producing the encoded key with errors in-
troduced by the differences between the enroll-
ment template and the sample template. This
result is then put through Hadamard decoding,
followed by Reed-Solomon decoding. If the
person attempting to access the system is a valid
user with the correct token, the result of the de-
coding will be the original key. If someone is
trying to access the systemusing someone else’s
token, the result will be different. The decoded
key is hashed after calculation using the same
hash method as in the enrollment process, and
then compared to the hashed result stored on the
token. If they are the same, the user is deemed
valid and granted access. If the results are dif-
ferent, then the user is treated as an imposter
and is not given access to the system. A block
diagram of this cryptosystem is shown in Fig-
ure 1.

The Cambridge biometric cryptosystem makes
use of Reed-Solomon error-correction code to
handle burst errors in the iris template. These
are large errors that affect many contiguous bits



332 Hardware Accelerator Approach Towards Efficient Biometric Cryptosystems for Network Security

of an iris template. Burst errors are often caused
by eyelashes blocking views of the iris or other
devices that cause significant error in the pic-
ture. Reed-Solomon code handles these errors
by dividing the input into several blocks. The
blocks are interpreted as coefficients to a poly-
nomial using the domain of a Galois field. Ad-
ditional parity blocks are added to create a re-
sulting polynomial that is evenly divisible by the
defining polynomial of the Galois field. During
the decoding process, the division is performed
on the input blocks, and the remainder is used
to locate blocks that are in error. These error
blocks are then entirely recalculated based on
the results. This means the number of errors
in a particular block does not matter, only the
number of blocks that contain errors. For the
Cambridge biometric cryptosystem, the 140-bit
input is divided into 20 blocks of 7 bits, and 12
parity blocks are added to create a result of 32
blocks of 7 bits. This allows the system to cor-
rect up to 6 block errors for any given encoding
and decoding process.

Hadamard coding is used by the Cambridge bio-
metric cryptosystem to handle random errors in
the iris template. These are small errors that
may be caused by transmission errors, or may
be related to minor changes in the image of the
iris taken. Hadamard coding is based on the
concept of the Hadamard matrix, a matrix con-
taining positive and negative values with a mag-
nitude of one, where the values are arranged in
a particular order. The initial Hadamard matrix,
of order one, is shown in Equation 1.

H1=
[

+ +
+ −

]
(1)

Subsequent Hadamard matrices are computed
as shown in Equation 2.

Hk=
[

Hk−1 Hk−1
Hk−1 −Hk−1

]
(2)

AHadamard code uses amatrix that differs from
a Hadamard matrix in two ways. The first is that
the additive inverse of the Hadamard matrix is
stacked below the original matrix as shown in
Equation 3. The second is that all negative ones
in the Hadamard matrix are replaced by zeros.

Hc=
(

H
−H

)
(3)

Hadamard encoding interprets its input as a se-
ries of blocks. Each block is treated as a row
index. The output result of the block is the
entirety of the row corresponding to that index.
During the decoding process, each block is com-
pared to every row of the Hadamard matrix, and
the row index corresponding to the row with
the least bit differences from the input block is
the output. This allows the system to return
the correct output if the number of bit errors is
less than half the minimum distance between
rows of the matrix. For the Cambridge biomet-
ric cryptosystem, the input consists of 32 7-bit
blocks. A block size of seven means that there
are 128 rows in the matrix. Since the matrix
used is constructed from two square matrices
stacked on top of each other, each row consists
of 64 bits. Thus, the resulting output is 32 64-
bit blocks. This choice allows each block to
contain up to 15-bit errors before becoming a
burst error.

TheCambridge biometric cryptosystem appears
to successfully fulfill the requirements of a
strong and safe biometric cryptosystem. Ac-
cording to the tests performed by Anderson et
al., the system performed with a 99.5 % correct

Figure 1. The Cambridge Biometric Cryptosystem. The Process of enrollment includes all items in the encoding
block. The verification process encompasses the steps illustrated in the decoding block.



Hardware Accelerator Approach Towards Efficient Biometric Cryptosystems for Network Security 333

match rate [6]. The algorithm answers secu-
rity concerns by storing only modified versions
of the key and iris template, protecting these
from being accessed by intruders. In the event
that a user’s access data is compromised, a new
random key can be generated for that user, re-
setting the system without loss of functional-
ity. This combination of accuracy and security
makes the Cambridge biometric cryptosystem a
strong choice for our subsequent software im-
plementation and hardware acceleration.

4. Hardware Acceleration

Since the development of the computer, people
have been trying to make computation faster.
This was initially achieved through increasing
the speed of Central Processing Units (CPUs)
that handle a single stream of instructions. But
recently, CPUs have started to reach a level
where their performance cannot be increased
without generating more heat than can be dissi-
pated in a reasonable amount of time and space
[8]. This has caused the growth of research into
new areas of computational acceleration.

New methods of computation focus on two as-
pects: running multiple instruction sequences
(known as “threads”) simultaneously, and de-
creasing the execution time of certain instruc-
tions. These goals are usually accomplished
through the use of multiple CPU cores running
in parallel, a graphical processing unit (GPU),
or custom hardware. Using multiple CPU cores
allows the execution of multiple threads simul-
taneously on one CPU. This is effective in sce-
narios where programs have many sequences
of instructions that are not dependent on one
another. However, the fact that the hardware
in the CPU is not being modified, just made
more plentiful, means that instructions are not
executed any faster. Programs without oppor-
tunity for parallel computation do not benefit
from multi-core hardware architecture. Simi-
larly, making use of a GPU allows significantly
increased parallelism by performing multiple
calculations simultaneously. In addition, GPUs
are optimized to perform certain types of calcu-
lations commonly used in graphics processing,
allowing faster execution time for these instruc-
tions. The disadvantage of GPUs is that they are
optimized for particular types of calculations,

reducing the benefits they provide for computa-
tion of a more general type. Alternatively, cus-
tom hardware allows particular hardware units
to be defined to handle certain computations
[9]. Systems can be tailored to optimize for
the most common form of computation in the
target application. For custom hardware, the
amount of parallelism in computation is defined
by the amount of hardware space allocated by
the designer for additional hardware for each
particular functionality. The disadvantage of
this method is that custom hardware must be
designed specifically for the system it is in-
tended for, as opposed to off-the-shelf CPUs
or GPUs. This takes significant amount of de-
sign time, and also requires the use of customiz-
able hardware resources, whether a Field Pro-
grammable Gate Array (FPGA) or a Complex
Programmable Logic Device (CPLD). These
hardware devices consist of a variety of hard-
ware resources that can be configured in varying
manners to produce the custom hardware.

Hardware acceleration also changes energy ef-
ficiency in addition to processing speed. A
system using hardware acceleration has more
hardware to power than the same system with-
out hardware acceleration, causing an increase
in the power consumed. However, the energy
usage also depends on the time, which typically
decreases during the process of hardware accel-
eration [10]. Depending on the rates of change
in time and power consumption, it is possible to
improve the total energy usage with hardware
acceleration.

This project makes use of an FPGA for the im-
plementation and testing of the biometric cryp-
tosystem, in order to be able to tailor the system
as exactly as possible for themaximumpotential
benefit. An FPGA was chosen as the method of
customizable hardware due to its increasing use
in commercial product releases. An FPGA is
an integrated circuit consisting of logic blocks
and Random Access Memory (RAM) blocks
designed to be configured by a customer or a
designer after manufacturing. The hardware
used for the project is a Xilinx Zedboard [11],
a system-on-a-chip (SoC) that incorporates the
functionality of an ARM dual-core CortexTM

-A9 MPCoreTM Processing System (PS) and a
Zynq-7000All-programmable FPGA [11]. This
system uses the processor as its main computa-
tional unit, while being able to connect to the



334 Hardware Accelerator Approach Towards Efficient Biometric Cryptosystems for Network Security

FPGA portion of the chip for hardware accel-
eration of various functions. This makes the
platform an ideal setup for testing custom hard-
ware acceleration.

In addition to the hardware package, the Xil-
inx Zedboard also comes with software to pro-
gram the system. Xilinx Software Development
Kit (SDK) and Vivado software packages are
used for programming the software and hard-
ware components, respectively [12]. The Xilinx
SDK software version 2013.4 used in this work
allows a user to create, download, and run C
code on the Zedboard, while the Xilinx Vivado
Design Suite version 2013.4 used in this work
allows the user to create custom hardware se-
tups. These setups can be converted into binary
configuration files used by SDK to setup the
Zedboard. This setup allows the algorithm to
be run both with and without hardware accel-
eration. Different software functions in the al-
gorithm are implemented through the hardware
acceleration process and the results in terms of
performance and efficiency are compared.

5. Methodology

The process used to generate a hardware-accele-
rated version of the Cambridge biometric cryp-
tosystem consisted of several steps. The first
component of the project was identifying the
target function for acceleration. Once this was
completed, a hardware acceleratorwas designed
for the target function. Upon completion of the
hardware accelerator, the software was modi-
fied to make use of the new component. The
resulting systemwas then tested and analyzed to
determine its overall effectiveness. The process
flow diagram for this methodology is shown
below in Figure 2.

The system setup for this project involved a
Zedboard, a computer with Xilinx SDK and

Figure 2. Methodology flowchart.

Xilinx Vivado software and at least two avail-
able USB ports, and two USB-microUSB ca-
bles. The Zedboard was plugged in and set to
cascaded JTAG mode by setting bits MIO[6 : 2]
to ground. One USB-microUSB cable was con-
nected between the UART port of the board
(J14) and the computer, and the other was con-
nected between the JTAG (J17) port and the
computer. The board was then powered on.
In Xilinx SDK, the port used to program the
FPGA was set to the port that was connected to
the JTAG pin.

This research made use of a C implementation
of the Cambridge biometric Cryptosystem de-
veloped by the authors for a past research project
[13]. In order to find a target function for hard-
ware acceleration, the system was profiled using
the profiling option built into the SDK software.
This functionality uses a timer to generate hard-
ware interrupts periodically. At each hardware
interrupt, the system stores its current location
in the program flow. The number of data points
can be used to determine total system runtime
while the locations of the data points can be used
to determine the amount of time spent on each
function, and the number of times each function
was called during execution. The snoop control
unit (SCU) timer on the Zedboard was used to
generate the interrupts.

The profiling results provided a breakdown of
the total time required for computations in the
system, and how that time was spent. Using
this data, the function that required the most
computation time was selected as the target for
hardware acceleration.

The next phase of the research was to design
the hardware accelerators. By analyzing the
target software function, specifications for in-
put and output were created. Based on these
input and output specifications, a control flow
for the hardware accelerator was created. Us-
ing Xilinx Vivado Design Suite and the VHDL
hardware description language, these hardware
accelerators were implemented. Each acceler-
ator consisted of two components: a computa-
tional component and an interface component.
The computational component received input
and control signals as chosen in the specifica-
tion and performed the computations the system
was designed to complete. The interface com-
ponent handled the communication between the
computational component and the Advanced



Hardware Accelerator Approach Towards Efficient Biometric Cryptosystems for Network Security 335

Extensible Interface (AXI) between the pro-
grammable logic (PL) and the PS. This involved
converting between data registers and input or
output signals and converting control registers
to individual control signals for the computa-
tional component. Each component was indi-
vidually tested to ensure that it met specifica-
tions prior to combining the pieces to generate
the finished hardware accelerator. This acceler-
ator was then added to the hardware configura-
tion.

Once the hardware setup was updated with the
new accelerator, the next step was to edit the
software project to use the hardware acceler-
ator instead of the original software function.
This was done using the SDK software. A
C function was written with the same input
and output arguments as the original function.
Rather than performing the computation, this
function would send the appropriate data to the
memory-mapped registers used for input and
control. The function would then wait for a
signal from the hardware accelerator indicating
that the computation was finished. Upon re-
ception of this signal, the function would read
the output register and return the appropriate re-
sults. Each instance of the original computation
function in the project was then replaced by a
call to the new function, completing the soft-
ware changes. After each change, the software
was tested to ensure that its functionality was
unaffected.

Performance evaluation was the final phase of
the project. After each hardware accelerator
was added to the system, the resulting system
was profiled as described above. This provided
data about the runtimes of the overall system
and the specific function accelerated. This data
was used to calculate total runtimes and system
speedups for the entire system and the target
functions. Additionally, the system power us-
age report generated by Vivado was used to ob-
tain the power usage of each system. Multiply-
ing the power usage by the total time per com-
putation provided an estimation of the amount
of energy consumed by that calculation. These
time and energy statistics allow us to compare
the different systems and evaluate the effective-
ness of the acceleration process.

6. Results and Discussion

6.1. Initial Software Profiling

In order to select a target function for hardware
acceleration, the initial software implementa-
tion of the Cambridge biometric cryptosystem
was profiled as described above. Due to the
separation of the enrollment and verification
processes, three distinct runtime profiles were
generated: one for each process run individ-
ually, and one for enrollment and verification
run in sequence. These runtime profiles are
shown in Figure 3, Figure 4, and Figure 5, re-
spectively. For this data, time spent on pro-
filing functions has been removed in order to
focus on the algorithm runtime. Functions that
took less than 50 microseconds were combined
into the “others” section to simplify the infor-
mation. According to the verification and se-
quential profiles, the functions with the most
computational cost and thus the greatest poten-
tial for hardware acceleration are the mult polys
function, the hadamard decode function, and

Figure 3. Profiling results for the initial software
implementation of enrollment.

Figure 4. Profiling results for the initial software
implementation of verification.



336 Hardware Accelerator Approach Towards Efficient Biometric Cryptosystems for Network Security

Figure 5. Profiling results for the initial software
implementation of enrollment followed by verification.

the init exp table function. The profile for en-
rollment does not have the same cost for the
hadamard decode function since this function
is only used during verification. Thus hardware
acceleration began on the mult polys function.

6.2. Hardware Accelerator Setup

The hardware acceleration process involves sev-
eral different phases, as described in Section V.
The results of each of these phases will be dis-
cussed individually below.

The first step in the acceleration process was
creating an input/output specification for the
mult polys function. This function takes two
input arrays and returns one output array. In
the general case, the input arrays can be of any
size, and the size of the output array is equal
to the sum of the sizes of the two input arrays.
For this particular program, both input arrays
have the size equal to twice the number of par-
ity bytes used in the Reed-Solomon Codes: 24
bytes. The mapping from input to output is
very similar to that of regular polynomial mul-
tiplication. Each array element is treated as a
coefficient to a polynomial where the index of
the array corresponds to the power of the term.
When doing regular polynomial multiplication,
each term in the first array would be multiplied
with each term in the second array. The result
from each multiplication is added to the output
term with power (index) equal to the sum of
the powers of the two inputs. In the mult polys
function, this process is changed slightly. Mul-
tiplication across a Galois Field is used rather
than multiplication for combining terms. The
addition used for combining the output terms is

replaced with the XOR operation. This process,
combined with the knowledge of the input and
output sizes, completes the specification of the
mult polys function.

The hardware accelerator was designed to per-
form the same computations as the software
function, but in a manner that allowed mul-
tiple computations to be executed in parallel.
The first step was designing a component that
would perform multiplication across a Galois
field. In the software version of the system,
Galois multiplication was performed by taking
the log of both inputs across a Galois field, and
then taking the Galois exponential of the sum
of the results. This method works for all non-
zero inputs. Any zero inputs were handled by
a check prior to computation, and simply re-
turning zero if a zero input existed. The Galois
multiplication hardware was designed using the
same algorithm. Memory blocks were created
for the Galois logarithm and Galois exponen-
tiation functions. Once these memory blocks
were completed, combining them to create Ga-
lois multiplication became a relatively simple
task.

After the Galois multiplication component was
designed and tested, the mult polys accelerator
could be constructed. The component design
diagram for this component can be found in Fig-
ure 6. This hardware component makes use of
a number of Galois multiplication components
equal to the size of the first input array: 24 in
this case. For each component, the correspond-
ing term of the first input array is the first factor.

Figure 6. Mult polys hardware accelerator schematic.



Hardware Accelerator Approach Towards Efficient Biometric Cryptosystems for Network Security 337

The second factor is time dependent, but com-
ponent independent. That is, the second factor
changes over time, but is the same for any com-
ponent at the same time. At the beginning of the
computation, the second factor is the first term
of the second array. Each computation cycle,
the next lowest index term is used as the second
factor for the components. These computations
combine to create every combination of terms
between the two input arrays.

The output of the computation is stored in a
larger output vector. When computation starts,
this vector is initialized to all 0’s. Upon com-
pletion of a computation, the result of the multi-
plication component is XORed with the appro-
priate output term, and then stored as the new
output term. Because the XOR operation is
commutative and associative, the order of these
operations does not affect the computation. The
appropriate output term is found by adding the
index of the second array used as a factor to the
multiplication component number. This results
in the lower order terms being processed before
the higher order terms, with the same number of
computations taking place during each compu-
tation cycle. After all computation cycles have
been completed, the output vector is complete,
and can be sent back to the processor.

Creating the AXI Interface to the processor in-
volved developing input and output buffers, and
a control buffer that the processor could use to
control the system by setting flags. The con-
trol flags are simple: one bit for the processor
to tell the accelerator to begin computation and
one bit for the accelerator to tell the processor
when computation has finished. For this com-
ponent, the input and output buffers were the
same. Upon receiving a start signal, the ac-
celerator reads the input buffer into its internal
memory, then clears the control buffer. When
the computation completes, the system over-
writes the result to the input/output buffer and
writes a 1 to the completion bit and a 0 to the
start bit. This interface completes the input and
output requirements for this accelerator.

The hardware componentswere tested using the
simulation software in Vivado. The inputs to
the system were forced to particular values, and
the output signals were observed. This allowed
the designers to validate the correctness of the
system.

After the simulation phase, adding the hardware
accelerator to the hardware system took place
in the Vivado environment. An instance of the
accelerator was created, and connected to the
processor using an AXI interface. This results
in the processor treating the accelerator as a
memory-mapped peripheral. This change also
required setting one of the PL clocks to control
the accelerator. For this research, a clock fre-
quency of 200 MHz was chosen since it was the
highest frequency supported. This new hard-
ware configuration was then imported into SDK
in order to update the software.

Updating the software involved replacing calls
to the mult polys function with calls to the
hardware accelerator. A replacement function
with the same signature was created that could
be called by other sections of the code that re-
quired this computation. This function, called
mult polys HW, made use of the memory-map-
ped accelerator. Using the memory locations
specified in the configuration files, it would load
the inputs into the appropriate registers, then
write a 1 to the start flag. The function would
then periodically check the completion flag.
Upon the flag becoming a 1, the function would
read the data from the registers and return them
to its caller. Once this function was completed
and tested, calls to mult polys in the project
were replaced with calls to mult polys HW.
This completed the acceleration cycle.

6.3. Hardware Accelerator Profiling

Upon the completion of the hardware acceler-
ator for the mult polys function, the system
was again profiled to determine its effective-
ness. The results of comparing the runtime pro-
files before and after hardware acceleration are
shown in Figure 7. As this graph shows, the run-
time of the mult polys function is much lower in
the accelerated version, with a relative speedup
of approximately 25X. This has resulted in the
overall system speedups shown in Table 1. The
speedup is the greatest for the enrollment pro-
cess since the mult polys function occupies a
larger fraction of the total runtime. The verifica-
tion process has a lesser speedup. The speedup
for the sequential run is a balancing of the in-
dividual speedups, with weight assigned to the



338 Hardware Accelerator Approach Towards Efficient Biometric Cryptosystems for Network Security

Figure 7. Cryptosystem runtimes before and after hardware acceleration.

individual processes based on their relative run-
time.

Function

Runtime
before
Acceleration
(ms)

Runtime
after
Acceleration
(ms)

Speedup

Enrollment 2.55 0.97 2.63

Verification 3.7 2.43 1.52

Both 6.09 2.77 2.20

Table 1. Hardware acceleration speedups.

The hardware acceleration also affected the to-
tal energy usage of the system. The additional
hardware component caused the power usage to
change from 1.477 W to 1.704 W, represent-
ing a 15.4 % increase. However, the amount
of energy used for any given computation was
reduced due to the improved runtime. Table
2 shows the energy consumption of the result-
ing systems. Since the power usage is constant

Function

Energy
before
Acceleration
(mJ)

Energy
after
Acceleration
(mJ)

Percentage
of
Reduction

Enrollment 3.77 1.65 56.1

Verification 5.46 4.14 24.2

Both 8.99 4.72 47.5

Table 2. System energy consumption.

between different computation sets, the energy
usage follows the same patterns as the runtime
data.

These results show that hardware acceleration is
an effective choice for improving the overall ef-
ficiency of biometric cryptosystems. The hard-
ware acceleration caused significant decreases
in the runtime of the original system. These
runtime decreases help outweigh the additional
power that they require, resulting in overall en-
ergy cost reductions per computation.

6.4. Comparison with Multi-Core
Acceleration

Comparing the results of custom hardware ac-
celeration methods to alternative methods al-
lows researchers to analyze the similarities and
differences of methods and their relative lev-
els of effectiveness. One such comparison can
be drawn between this work and the many-
core acceleration methods applied to the Cam-
bridge biometric cryptosystem [14], in which
case the authors used the 48-core Intel Single-
Chip Cloud Computer (SCC) platform.

In this work, custom hardware acceleration was
used to achieve a speedup of approximately
2.20X. This was achieved by accelerating the
mult polys function. By contrast, the many-
core acceleration attempted to improve the hada-
mard decode function. This is because the
mult polys function is of sequential computa-
tion type, which is suitable for hardware ac-
celerator design; while the hadamard decode



Hardware Accelerator Approach Towards Efficient Biometric Cryptosystems for Network Security 339

function is of parallel computation type, which
is suitable for being distributed over many cores
for parallel processing. The acceleration of
hadamard decode resulted in a speedup of up
to 1.18X [14]. The limited effectiveness of
this approach can be explained with a cou-
ple of reasons. The first reason is that the
hadamard decode function takes a lower per-
centage of the computation runtime than that
of the mult polys function, as shown in Figures
3-4. Another reason is that in the many-core
implementation, the MPI-like (message pass-
ing interface) programming model contributed
significant communication overhead.

This shows that custom hardware acceleration
can have greater potential impact on system run-
times than many-core acceleration for this ap-
plication. However, due to the fact that many-
core systems are more prevalent and versatile
than custom hardware systems, which must be
designed for a particular operation, a hybrid ap-
proach would provide the benefits from both
approaches.

7. Conclusions

Biometric cryptosystems represent a future di-
rection that provides user security without the
drawbacks of traditional password-based ap-
proaches. By combining biometrics with cryp-
tography, biometric cryptosystems allow accu-
rate matching of biometrics in an encrypted and
secure domain. This is an important step to-
wards creating a network where data can be
protected efficiently and securely. Henceforth,
improving the efficiency of biometric cryptog-
raphy would greatly enhance its potential to be
readily deployed towards modern network se-
curity.

In this work, a concrete software implementa-
tion of the biometric cryptosystemdeveloped by
Anderson, Daugman, and Hao at the University
of Cambridge has been optimized using hard-
ware acceleration. The result is a system that
can perform user enrollment in 0.97 ms and user
verification in 2.43 ms on a Xilinx Zedboard
System-on-a-Chip (SoC) platform, represent-
ing a 2.63X and 1.52X speedup comparing with
the software counterpart. This system requires
only 1.704 W of power, resulting in energy con-
sumption of 1.65 and 4.14 mJ for enrollment

and verification, respectively. This represents a
56.1 % and 24.2 % reduction comparing with
the software counterpart.

This work also compares the custom hardware
acceleration with a many-core acceleration im-
plementation of the same system. This compar-
ison illustrates the greater acceleration poten-
tial provided by custom hardware acceleration
compared to parallel computing on many-core
platform, and the corresponding increase in de-
signer overhead. Understanding these tradeoffs
allows system designers to select the best hard-
ware system for their application.

In addition to providing a concrete implemen-
tation of a biometric cryptosystem, this project
provides a process that can be used as a guide-
line for future applications of hardware accel-
eration to biometric cryptosystems for network
security. Making use of this methodology will
allow for the development of systems that take
significantly less runtime and less energy per
computation, significantly increasing their use-
ful potential.

Acknowledgment

The Zedboard SoC platform used for FPGA im-
plementation is provided through Xilinx Uni-
versity Program. The Intel Single Chip Cloud
Computer Platform is provided by Intel Labs.
This work is supported by the National Science
Foundation under Grant Numbers IIP-1332046,
IIP-1068055 and ECCS-1301953. Any opin-
ions, findings, and conclusions or recommen-
dations expressed in this material are those of
the authors and do not necessarily reflect the
views of the National Science Foundation.

References

[1] T.HEY, S. TANSLEY,K. TOLLE,The fourth paradigm,
data-intensive scientific discovery. Microsoft Re-
search, Redmond, WA.

[2] A. JAIN, A. ROSS, U. ULUDAG, Biometric template
security: challenges and solutions. European Signal
Processing Conference, (2005).

[3] U. ULUDAG, S. PANKANTI, S. PRABHAKAR,
A.K.JAIN, Biometric cryptosystems: issues and
challenges. Proceedings of the IEEE, 92(6), (2004)
pp. 948–960.



340 Hardware Accelerator Approach Towards Efficient Biometric Cryptosystems for Network Security

[4] A. ROSS, A. OTHMAN, Visual cryptography for bio-
metric privacy. IEEE Transactions on Information
Forensics and Security, 6(1), (2011) pp. 70–81.

[5] C. RATHGEB, A. UHL, A survey on biometric cryp-
tosystems and cancelable biometrics. Journal on
Information Security, 2011, (2011) pp. 3.

[6] R. ANDERSON, J. DAUGMAN, F. HAO, Combining
cryptography with biometrics effectively. Technical
Report 640, University of Cambridge, 2005.

[7] C. CLARK, Reed-Solomon error correction. British
Broadcasting Company Research and Development
White Paper, WHP 031, July 2012.

[8] C. LIU, R. DUARTE, O. GRANADOS, J. TANG, S. LIU,
J. ANDRIAN, Critical path based hardware accel-
eration for cryptosystems. International Journal
of Advancements in Computing Technology, 4(1),
(2012) pp. 438–452.

[9] D. LAU J. BLACKBURN C. JENKINS, Using c-to-
hardware acceleration in FPGAs forwaveformbase-
band processing. Software Defined Radio Technical
Conf. Product Exposition, (2006).

[10] C. LIU, O. GRANADOS, R. DUARTE, J. ANDRIAN,
Energy efficient architecture using hardware ac-
celeration for software defined radio components.
Journal of Information Processing Systems, 8(1),
(2012) pp. 133–144.

[11] GETTING STARTED WITH ZEDBOARD. Version 7,
AVnet Electronics Marketing.

[12] ZYNQ ALL PROGRAMMABLE SOC LINUX-FREERTOS
AMP GUIDE. Version 2013.10, Xilinx, November
25, 2013.

[13] C. MCGUFFEY, C. LIU, S. SCHUCKERS, Implemen-
tation and optimization of a biometric cryptosystem
using iris recognition. Biometric and Surveillance
Technology for Human and Activity Identification
XII, SPIE DSS 2015, Baltimore, Maryland, USA,
April 20-24, 2015.

[14] C. MCGUFFEY, C. LIU, Multi-core Approach To-
wards Efficient Biometric Cryptosystems. The 2015
International Workshop on Embedded Multicore
Systems (ICPP–EMS 2015), in conjunction with
ICPP 2015, Beijing, China, September 1-4, 2015.

[15] P. REID, Biometrics and Network Security. Prentice
Hall PTR, Upper Saddle River, NJ, USA, 2003.

Received: August, 2015
Revised: October, 2015

Accepted: October, 2015

Contact addresses:

Charles McGuffey
Clarkson University
8 Clarkson Avenue

Potsdam
NY 13699

USA
e-mail: mcguffcj@clarkson.edu

Chen Liu
Clarkson University
8 Clarkson Avenue

Potsdam
NY 13699

USA
e-mail: cliu@clarkson.edu

Stephanie Schuckers
Clarkson University
8 Clarkson Avenue

Potsdam
NY 13699

USA
e-mail: sschucke@clarkson.edu

MR. CHARLES MCGUFFEY obtained his B.S. Degree with Honors in
Computer Engineering and Computer Science in 2015 from Clarkson
University, Potsdam, New York, USA. He is currently a Computer
Science Ph.D. candidate at Carnegie Mellon University. His research
interests include hardware acceleration, many-core computing and al-
gorithm design.

DR. CHEN LIU received the B.E. Degree in Electronics and Informa-
tion Engineering from the University of Science and Technology of
China in 2000, the M.S. Degree in Electrical Engineering from the
University of California, Riverside in 2002, and the Ph.D. Degree in
Electrical and Computer Engineering from the University of California,
Irvine in 2008, respectively. Currently he is an assistant professor in
the Department of Electrical and Computer Engineering at Clarkson
University, Potsdam, New York, USA. His research interests are in the
areas of multi-core multi-threading architecture, hardware acceleration
for scientific computing and the interaction between system software
and micro-architecture. He is a member of IEEE, ACM, and ASEE.

DR. STEPHANIE SCHUCKERS is the Paynter-Krigman Endowed Profes-
sor in Engineering Science in the Department of Electrical and Com-
puter Engineering at Clarkson University and serves as the Director of
the Center of Identification Technology Research (CITeR), a National
Science Foundation Industry/University Cooperative Research Center.
She received her doctoral degree in Electrical Engineering from The
University of Michigan. Professor Schuckers’s research focuses on
processing and interpreting signals which arise from the human body.


