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Traditional methods including algebra and category
theory have some deficiencies in analyzing semantics
properties and describing inductive rules of inductive
data types, we present a method based on Fibrations
theory aiming at those questions above. We systemati-
cally analyze some basic logical structures of inductive
data types about a fibration such as re-indexing functor,
truth functor and comprehension functor, make semantics
models of non-indexed fibration, single-sorted indexed
fibration and many-sorted indexed fibration respectively.
On this basis, we thoroughly discuss semantics prop-
erties of fibred, single-sorted indexed and many-sorted
indexed inductive data types, and abstractly describe
their inductive rules with universality. Furthermore, we
briefly introduce applications of the three inductive data
types for analyzing semantics properties and describing
inductive rules based on Fibrations theory via some ex-
amples. Compared with traditional methods, our works
have the following three advantages. Firstly, brief de-
scriptions and flexible expansibility of Fibrations theory
can analyze semantics properties of inductive data types
accurately, whose semantics are computed automatically.
Secondly, superior abstractness of Fibrations theory does
not rely on particular computing environments to depict
inductive rules of inductive data types with universal-
ity. Thirdly, its rigorousness and consistence provide
sound basis for testing and maintenance of software
development.
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1. Introduction

Traditional methods of inductive data types are
mainly algebra and categorical theory [1-3].
The former focuses on describing the finite syn-
tax construction of inductive data types, e.g.,

Abstract Data Type Research Groups encapsu-
lated inductive data types and their operations
in -algebras. The latter presents model of type
theory in local Cartesian closed category, but
both render inductive data types and predicates
denoting their semantic properties to coexist in
the same category, which leads to functors and
their lifting are equivalent. Traditional methods
are difficult to process the recursive computa-
tions of inductive data types effectively, and
there are some limitation to analyze semantic
properties and describe inductive rules.

Fibrations theory is a new field in computer
science foundation. Recently, it has become
a hot spot, especially in categorical methods.
It is also applied widely by database system
modeling [4-6], software specifications [7] and
programming methods [8], etc., which provides
universal theoretical tools, thinking means and
research ways for depicting diverse relation-
ships between structured systems effectively.
The method of inductive data types based on Fi-
brations theory in programming integrates tradi-
tional methods, provides a mathematical frame-
work of syntax construction and semantic com-
putation for inductive data types. It also in-
corporates their formal semantics and program
logic of programming, which enhances the abil-
ities of program languages on analyzing seman-
tic properties and describing inductive rules.

In the formal framework of Fibrations theory,
the predicates representing semantics of induc-
tive data types do not limit to functions or mor-
phisms, but lift to objects in total category.
Meanwhile, it is more important that inductive
data types and their predicates do not coexist
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in the same category any more, but constructs
functor lifting in total category to depict recur-
sive computing and program logic of inductive
data types abstractly. Hermida and Jacobs have
done lots of foundational researching works for
this in [9]. The main idea of inductive data types
based on Fibration theory is that we take induc-
tive data types in programming to be object-set
in base category, semantic properties of induc-
tive data types to be object-set in total category,
establish the responsible relations in program
logic directly between inductive data types and
their semantic properties by semantic models
of fibration, construct recursive operations of
inductive data types to analyze semantic prop-
erties by the tools of endo-functors in base cat-
egory and their lifting in total category as well
as and abstractly describe inductive rules with
universality by initial property of initial algebra.

Our primary works are researching inductive
data types and their inductive rules by Fibrations
theory. The rest of this paper is structured as
follows. In Section 2, we firstly introduce some
basic concepts for our research works, such as
Cartesian arrow and fibration, then demonstrate
adjunction properties of re-indexing functor and
op-re-indexing functor. In Section 3, we make
semantic model of non-indexed fibration to an-
alyze semantics of fibred inductive data types
and depict their inductive rule with universality
abstractly. In Section 4, we extend non-indexed
fibration to single-sorted indexed fibration on
slice category, make its semantic model to ana-
lyze semantics of single-sorted indexed induc-
tive data types and depict their inductive rule. In
Section 5, we develop single-sorted discrete ob-
ject to indexed category, further extend single-
sorted indexed fibration to many-sorted indexed
fibration, make its semantic model to analyze
many-sorted indexed inductive data types and
depict their inductive rule. In Section 6, we
study some related works in the research field
of inductive data types. At last, we summarize
our conclusions and discuss our future research.

2. Fibration and Opfibration

2.1. Fibration and Re-Indexing Functor

We assume readers have the categorical foun-
dations, functor, adjunction, natural transforma-

tion, etc. Considering not making set theoret-
ical models by mathematical logic, currently,
some basic math literatures do not require all
morphisms to be a set, but from the practical
applications perspective of computer process-
ing discrete objects, we deem it is reasonable
to take all morphisms to be a set. If all objects
and morphisms can form two sets respectively
in a category, the category is called a small cat-
egory, as stated by [10]. All research objects
in this paper are based on small category, more
details about Fibrations theory can be found in
[10-12]. Let Obj be a set of objects for cat-
egory , and Mor a set of morphisms for
category . We introduce some basic concepts
in this paper.

Definition 1. Let P : → be a functor be-
tween small categories and , f : C → D ∈
Mor , u : X → Y ∈Mor . We call morphism
u a Cartesian arrow of f and Y if P(Y) = D,
P(u) = f , for ∀Z ∈ Obj , v : Z → Y ∈
Mor and ∀h : P(Z) → C ∈ Mor , it sat-
isfies f ◦ h = P(v), and there exists a unique
w : Z → X ∈ Mor such that u ◦ w = v and
P(w) = h.

For Cartesian arrow u of f and Y , we call u lies
above f ; and similarly for f , Y lies above D. If
u is a cone [10] in category , in definition 1
the Cartesian arrow u is also a universal cone
in by the uniqueness of cones morphism w,
namely, limit cone. Accordingly, the vertex X
of universal cone u is the terminal object in [13]
of X.

Definition 2. Let P : → be a functor
between small categories and ; then if for
∀Y ∈ Obj and ∀f : C → P(Y) ∈ Mor there
exists a Cartesian arrow of f and Y , we call P a
fibration.

By definition 2, we know that fibration is a func-
tor that in fact ensures a large supply of Carte-
sian arrows. For a fibration P : → , we
call the base category of P, and its total
category. If for an object C in Obj , ∃X ∈
Obj , k ∈ Mor is satisfied P(X) = C and
P(k) = idC, then the subcategory C is called a
fiber over C in [10], and k is vertical morphism.

Fiber C is actually a full subcategory of total
category . Without loss of generality, we write
f ↓
Y for Cartesian arrow u of f and Y in defini-

tion 1 if f ∗(Y) is domain of f ↓
Y , then f ∗(Y) lies

above C, that is, Y ∈ Obj D, f ∗(Y) ∈ Obj C.
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Definition 3. A morphism f : C → D in
base category is extended to be a functor
f ∗ : D → C between fibers D and C; we
call f ∗ a re-indexing functor induced by f .

f is the relationship between inductive data
types in base category, and re-indexing func-
tor f ∗ is a lifting of f in total category, which
is related to their semantic properties. The dual
concept to fibration, i.e., opfibration, is as fol-
lows.

2.2. Opfibration and Op-Re-Indexing
Functor

Definition 4. Let P : → be a functor be-
tween small categories and , f : C → D ∈
Mor , u : X → Y ∈ Mor . We call mor-
phism u an opposite Cartesian arrow of f and
X if P(X) = C, P(u) = f , for ∀Z ∈ Obj ,
v : X → Z ∈ Mor and ∀h : D → P(Z) ∈
Mor , it satisfies h ◦ f = P(v), and there ex-
ists a unique w : Y → Z ∈ Mor such that
w ◦ u = v and P(w) = h.

Similarly to definition 1, if u is a co-cone [10]
in category , the opposite Cartesian arrow u in
definition 4 is a universal co-cone in by the
uniqueness of co-cones morphism w, namely,
co-limit co-cone. Accordingly, the vertex Y of
universal co-cone u is the initial object of u in
[13].

Definition 5. Let P : → be a functor be-
tween small categories and ; if for ∀X ∈
Obj and ∀f : P(X) → D ∈ Mor , there
exists an opposite Cartesian arrow of f and X,
we call P an opfibration.

Definition 6. If the functor P : → be-
tween small categories and is simultane-
ously a fibration and an opfibration, then it is a
bifibration.

Without loss of generality, we write f X
↓ for the

opposite Cartesian arrow u of f and X; let ∗f (X)
be the codomain of f X

↓ , then we say ∗f (X) lies
above D, that is, X ∈ Obj C, ∗f (X) ∈ Obj D.

Definition 7. A morphism f : C → D in
base category is extended to be a functor
∗f : C → D between fibers C and D, we
call ∗f is an op-re-indexing functor induced by
f .

2.3. Adjunction Properties of Re-Indexing
Functor and Op-Re-Indexing Functor

Definition 8. If F � G : → is a pair of
ad joint functors, ,  is the unit and co-unit of
this adjunction respectively, and for ∀X ∈ Obj

, ∀Y ∈ Obj , ∃f : F(X) → Y ∈ Mor ,
∃g : X → G(Y) ∈ Mor , then the transpose
of f and g is G(f )X and YF(g) respectively.

Theorem 1. Let P : → be a fibration be-
tween small categories and ; P is a bifibra-
tion iff ∀f : C → D ∈ Mor , the re-indexing
functor f ∗ has a left ad joint functor ∗f which
is an op-re-indexing functor.

Proof. ⇒. Let ∗f � f ∗ : C → D be a
pair of ad joint functors, the unit is , the co-
unit is , and P : → is a fibration be-
tween small categories and . For ∃Y ∈
Obj D, we can construct a Cartesian arrow
f ↓
Y : f ∗(Y) → Y whose codomain is Y . ∃X ∈

Obj C, let l : X→∗f (X) be a morphism above
f , the proof that l is an opposite Cartesian arrow
above f is as follows: it satisfies l = f ↓

∗f (X) ◦X

by the adjunction properties of ∗f � f ∗, seen
from Figure 1. We write id to identify mor-
phism, if g : X → Y is another morphism above
f , let  : X → f ∗(Y) be vertical morphism in

C, we get P() = idC. By definition 1 we
know g = f ↓

Y ◦  , Cartesian arrow f ↓
Y is an uni-

versal cone, whose universal property ensures 
is the unique morphism from g to f ↓

Y . We write
∧
 for the transpose of  under the adjunction
∗f � f ∗, then

∧
 = Y ◦ ∗f () : ∗f (X) → Y ,

f ∗(
∧
)◦X =  . Universal property of universal

cone f ↓
Y ensures the unique existence of f ∗(

∧
),

and it satisfies
∧
 ◦f ↓

∗f (X) = f ↓
Y ◦ f ∗(

∧
). Above

all, there exist two equalities, that are,
∧
 ◦l =

∧
 ◦f ↓

∗f (X) ◦X = f ↓
Y ◦ f ∗(

∧
) ◦X = f ↓

Y ◦  = g,

g =
∧
 ◦l, then the transpose of  is the unique

morphism from l to g, and P(
∧
) = idD. We thus

prove that l is an opposite Cartesian arrow f X
↓

above f by definition 4.
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Figure 1. Proof of opposite Cartesian arrow.

⇐. We assume g : X → Y ∈ Mor lies above
f , write C(X, f ∗(Y)) for set composed of mor-
phisms above C in fiber C, D(∗f (X), Y) for
set composed of morphisms above D in fiber

D. For ∀k : X′ → X ∈ Mor C, ∀h : Y →
Y ′ ∈ Mor D, because P : → is a bi-
fibration, this gives us one-to-one correspond-
ingmapX,Y : D(∗f (X), Y) → C(X, f ∗(Y)).
We write kop : X → X′ ∈ Mor C for an oppo-
site morphism of k, it satisfies that kop ◦ f Xop

↓ =

f X′op
↓ ◦ ∗f (kop) and idf ∗(Y) ◦ f ↓op

Y = f ↓op
Y ◦ idY ,

so the left part of diagram in Figure 2 com-
mutes. Similarly, it also satisfies idX ◦ f Xop

↓ =

f Xop
↓ ◦ id∗f (X) and f ∗(h) ◦ f ↓op

Y = f ↓op
Y ′ , i.e., the

right part of diagram in Figure 2 commutes, so
X,Y is natural isomorphism. We thus prove
∗f � f ∗ by definition of ad joint functors in
[13].
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Figure 2. Proof of adjunction properties.

Theorem 1 provides a convenient condition for
judgment of bifibration. At the same time, it
also amalgamates well adjunction property of
re-indexing functor f ∗ and op-re-indexing func-
tor ∗f in the framework of bifibration.

3. Semantic Properties and Inductive
Rule of Fibered Inductive Data Types

Fibered inductive data types, such as natural
numbers and finite partial order sets, are usual
inductive data typeswith fibered structures from
the view of Fibrations theory. This section
presents a semantic model of non-indexed fi-
bration by Fibrations theory, which analyzes se-

mantic properties and describes inductive rule
of fibered inductive data types.

3.1. Semantic Model of Non-Indexed
Fibration

Definition 9. Let P : → and P′ : ′ →
be two fibrations between small categories, a
fibered functor F : → ′ from P to P′ above
base category satisfies diagram commutes,
that is, P = P′ ◦ F, and we call F preserves
Cartesian arrow.

Definition10. LetF : → ′ andG : ′ →
be two fibered functors above base category ,
we call G a right fibered ad joint functor to F,
and F � G is a pair of fibred adjunction above

, iff G is a right ad joint functor to F, the unit
or co-unit of F � G is vertical.

Definition 9 and definition 10 lift standard cate-
gory structures to fibered structures. It is easy to
process many practical problems with discrete
structures in computer science effectively, that
is, semantic properties of inductive data types in
programming are mapped to their correspond-
ing fibers in total category, which is closely re-
lated to inductive data types to their semantic
properties further. At the same time, what is
more important is that describing inductive rules
with universality and program logic abstractly
by the tools of fibered functor and fibered ad-
junction does not depend on particular comput-
ing environments, which improves the cohesion
of inductive data types, and further enhances in-
dependence of program languages.

Definition 11. Let P : → be a functor
between small categories and , F : →
is an endo-functor in base category , the lift-
ing of F with respect to P is an endo-functor
F⊥ : → in total category . If there exists
diagram commute, i.e., PF⊥ = FP, then we
call P a non-indexed fibration.

Definition 11 makes the semantic model of non-
indexed fibration. For ∀D ∈ Obj , if ∃1D ∈
Obj D, which is the terminal object of fiber

D, and ∀f : C → D ∈ Mor , f ∗(1D) is
then the terminal object of fiber C, namely, re-
indexing functor f ∗ preserves terminal objects,
non-indexed fibration P is called having fibered
terminal objects.
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3.2. Semantic Properties of Fibered
Inductive Data Types

Definition 12. Let P : → be a non-indexed
fibration, functor T : → maps ∀C ∈ Obj

to the terminal object in fiber C, T is called
a truth functor of P. If TF ∼= F⊥T , we call F⊥
a lifting of F with respect to P preserving truth.

We write that 1 and 1 are terminal objects
of base category and total category respec-
tively, we thus get P(1 ) =1 . For ∀C ∈ Obj

there exists a unique morphism u : C →1 in
base category , so we have a isomorphism ex-
pression, that is, T(C) ∼= u∗(1 ). For ∀f : C →
D ∈ Mor , we have an isomorphism expres-
sion f ∗(T(D)) ∼= T(C), and the truth functor T
maps f to a Cartesian arrow f ↓

T(D) in total cate-
gory . If the truth functor T is full and faithful
[13], then it is a fibered right ad joint functor to
non-indexed fibration P [8].

For each object C in category , a F-algebra
(C, i : F(C) → C) is constructed by the endo-
functor F, we call the carrier of this F-
algebra. The morphism between (C, i) and
another F- algebra (D, j : F(D) → D) is a
morphism f : C → D between their carri-
ers, which satisfies diagram commutes, that
is, f ◦ i = j ◦ F(f ). F-algebra category is
constituted of F-algebras and their morphisms,
we write AlgF for it. If the initial F-algebra
(F, in : F(F) → F) exists, it is up to a
unique isomorphism, whose properties of this
unique isomorphism determined by its initial
universal property is our main tool for research-
ing semantics and inductive rules of inductive
data types. An inductive data type F, as the
carrier of initial F-algebra, is least fixed point
of functor F. The functor Fdenotes syntax con-
struction of F, and its morphism in gives a
kind of semantic interception of F under this
syntax construction.

A F-algebra (C, i : F(C) → C) is mapped to a
F⊥-algebra (T(C), T(i) : T(F(C)) ∼= F⊥(T(C))
→ T(C)) by the truth functor T . Accordingly,
T(F) is the carrier of initial F⊥-algebra, i.e.,
truth functor preserves initial objects. We write
Alg(T) for the functor from F-algebra category
AlgF to F⊥-algebra category AlgF⊥, and de-

fine Alg(T)
def
= T . Objects and morphisms in

base category with respect to non-indexed

fibration P are mapped to those responded in
total category by the truth functor T , which
further makes connections from AlgF to AlgF⊥
via Alg(T) and isomorphism property of com-
posed functors of definition 12. The initial F⊥-
algebra (T(F), in⊥ : F⊥(T(F)) → T(F))
in total category with respect to the non-
indexed fibration P, is the homomorphism im-
age of in which is the morphism of initial F-
algebra (F, in) by the action of Alg(T), that
is, Alg(T)(in) = in⊥. Initial property of initial
F-algebra ensures that in⊥ is up to unique iso-
morphism, whose existence provides extreme
convenience for analyzing semantic properties
and depicting inductive rule of fibered inductive
data types.

Definition 13. Let P : → be a non-
indexed fibration between small categories
and , T : → is a truth functor of P. If
{−} is a right ad joint functor to T , namely,
T � {−}, then {−} is called a comprehension
functor of P.

Let  : {−} → P be a natural transformation,
F is also a natural transformation by composed
theorem of natural transformations, as stated in
[13], then for ∀X ∈ Obj , ∗(FX) : F{X} →

FP(X) is an op-re-indexing functor induced by
FX, and F⊥(X) = ∗(FX)(T(F{X})) ∈ Obj

FP(X), i.e., the action F⊥(X) of each object
X in total category by the lifting F⊥ of endo-
functor F in base category, is determined com-
pletely by its semantic behaviors of F above
{X}, and {X} is the extension of X over the
comprehension functor {−}. For ∀k : X →
X′ ∈ Mor , F⊥(k) = F⊥(X) → F⊥(X′) =
∗(FX)(T(F{X})) → ∗(FX′)(T(F{X′})), that
is, F⊥(k) ∈ ∗(FP(k)), then F⊥(k) is an element
of re-indexing functor morphism ∗(FP(k)).

Similar to Alg(T), we write Alg{−} for the
functor from F⊥-algebra category AlgF⊥ to F-

algebra category AlgF, define Alg{−} def
= {−},

it satisfies Alg(T) � Alg{−} in [9] by adjunc-
tion property of T � {−} from definition 13.
For each F⊥-algebra (X, j : F⊥(X) → X),
Alg{−}(j) = F{X} → {X}, that is, Alg{−}(j)
= {j}, seen from Figure 3. By previous anal-
ysis we also know that {j} is an isomorphism
image of j by the action of functor Alg{−}.
If g : X → T(C) is a F⊥-algebra morphism
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from j to Alg(T)(i), then a F-algebra morphism
h : {X} → C from Alg{−}(j) to i is a F-
algebras homomorphism above g. Accordingly,
g is aF⊥-algebras homomorphism above h. The
right ad joint functor Alg{−} to Alg(T) estab-
lishes a kind of intuitively mutual induction re-
lations between F⊥-algebra whose carrier is X
and F-algebras whose carrier is {X}, which fur-
ther supplies a succinct and coherent modeling
method for describing inductive rules of induc-
tive data types formally, whose initial algebra
carrier is F.

C( )F C

{ }X

( ( )) ( ( ))T F C F T C�	 ( )T C

( )F X� X

i

j

FAlg

{ }Alg 


F
Alg �

( )Alg T

{ ( )} }{F X F X� �
h

g

Figure 3. Adjunction properties of Alg(T) � Alg{−}.

3.3. Inductive Rule of Fibered Inductive
Data Types

For semantic model of non-indexed fibration
with comprehension functor, formal descrip-
tion of inductive rules and semantic analysis
of fibered inductive data types are coherent. A
non-indexed fibration P : → , its compre-
hension functor {−} is right ad joint to its truth
functor T , i.e., P � T � {−}. Let F be an
endo-functor in base category , and F is the
carrier of initial F-algebra, then each preserv-
ing truth lifting F⊥ of F with respect to P has a
inductive rule [9], which provides a sound foun-
dation for judging on validity of inductive rules
generated from fibered inductive data types for
F⊥ applied by initial F-algebra. Accordingly,
if semantic model of non-indexed fibration P
defines and utilizes comprehension functor to
compute recursively on fibered inductive data
types, then its inductive rule based on F-algebra
is validwhen processing semantic logic analysis
in programming.

In the framework of Fibrations theory, describ-
ing inductive rule of fibered inductive data types
with universality is as follows: we consider re-
cursive computation of fibered inductive data
types firstly, which arises from initial algebra

semantics categorically in [2]. Let inductive
data types F be the carrier of initial F-algebra,
we utilize endo-functor F in base category to
construct a recursive operation on fibered induc-
tive data types fold : (F(C) → C) → F → C.
For each F-algebra (C, i : F(C) → C), by the
action of recursive operation fold, fold i is the
map sending i to the unique F-algebra mor-
phism fold i : F → C from initial F-algebra
morphism in to i, seen from Figure 4. The
essence of fold stems from initial algebra se-
mantics is a parameterized recursive operation
on inductive data types, which possesses lots
of good properties such as correct semantics,
flexible extension and succinct expression.

( )F F�

F�

( )F C

C

in i

fold i

( )F fold i

Figure 4. F-algebra morphism.

Henceforth, the following isomorphism equa-
tions hold: TF(C) ∼= F⊥T(C), TF(F) ∼=
F⊥T(F), and by the property of truth functor
T preserving initial objects, T(F) is the carrier
of initial F⊥-algebra, we write F⊥ = T(F),
X = T(C) ∈ Obj . Similarly, we can con-
struct a recursive operation fold : (F⊥(X) →
X) → F⊥ → X, which depicts semantics of
fibered inductive data types in total category
by the tool of preserving truth lifting F⊥ of F,
see Figure 5. So for ∀C ∈ Obj , X ∈ Obj C,
we have the inductive rule of fibered inductive
data types with universality, that is,

IndGen : (F⊥(X) → X) → T(F) → X.

If (X, j : F⊥(X) → X) is a F⊥-algebra over F-
algebra (C, i : F(C) → C), then IndGen X j :
T(F) → X is a F⊥ algebra homomorphism
over fold i.

( )F F�� �

F� �

( )F X�

X

in� j

fold j

( )F fold j

Figure 5. F⊥-algebra morphism.
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3.4. Example Analysis of Fibered Inductive
Data Types

Example 1. Let natural number type Nat be
the carrier F of initial F-algebra in base cate-
gory , we write 1 for the terminal object. For
∀N ∈ Obj , it is to be said F : N →1+N, then
its inject in1(1) = 0 is the minimum natural
number, its inject in2(N) = N + 1 is a success-
ful function. For any natural number property
X ∈ Obj N in total category with respect
to the non-indexed fibration P, e.g., transitivity,
compatibility and completeness, an induction
(X(in1(1)) → (X(N) → X(in2(N))) → X(N)
holds for property X of Nat. For each F-
algebra (N, h : F(N) → N), it is lifted to
be a F⊥-algebra (X, k : F⊥(X) → X) via the
non-indexed fibration P, which satisfies dia-
gram commutes, that is, FP(X) = PF⊥(X).
A recursive operation fold h is defined by the
initial property of initial F-algebra, it executes
to be judgment of fibered inductive data type
Nat; And another recursive operation defined
by the initial property of initial F⊥-algebra de-
scribes semantics of Nat. If k lies over h, then
IndGen X k is a F⊥-algebra homomorphismover
fold h, and when it iterates each object in total
category , we can get the semantics set de-
scribing properties of Nat, that is {X(N)|∀N ∈
Obj }.
Compared with traditional methods including
algebras and category theory, inductive rule
IndGen depicting recursive computing of Nat
is established based on semantic model of non-
indexed fibration P given by example 1, which
presents a succinct descriptive pattern for se-
mantic properties and program logic of fibered
inductive data type Nat, especially in functional
program languages, such as ML and Haskell, in-
ductive rule IndGen makes code fragments easier
to read, write and understand.

4. Semantic Properties and Inductive
Rule of Single-Sorted Indexed
Inductive Data Types

As a simple inductive data type, fibered induc-
tive data type is limited to analyze semantics and
depict inductive rule, but indexed inductive data
types are a kind of inductive data types whose
syntax construction and semantic computation

are stronger than fibered inductive data types,
and can process more complex data structure.
Dybjer in [14] and Morris in[15] obtained some
prominent achievements in the field of initial al-
gebra semantics, but there has been few works
about inductive rules of indexed inductive data
types nowadays. This section presents a seman-
tic model of single-sorted indexed fibration by
Fibrations theory, analyzes semantic properties
of some classical single-sorted indexed induc-
tive data types, such as streams, lists, trees, and
so on. On the basis of [15], and borrowing
from research production of Ghani et al. [16],
we present an inductive rule of single-sorted in-
dexed inductive data types with universality.

4.1. Semantic Model of Single-Sorted
Indexed Fibration

Theorem 2. Let P : → be a fibra-
tion or bifibration between small categories
and , T : → is the truth functor of P.
∃I ∈ Obj is a discrete indexed object in base
category , let single-sorted indexing functor
P/I : /T(I) → /I be P/I(u) = P(u) :
P(Y) → I ∈ Obj /I for ∀u : Y → T(I) ∈
Obj /T(I), then single-sorted indexing func-
tor P/I is also a fibration or bifibration.

Proofs. For ∀f : C → D ∈ Mor , there exists
a Cartesian arrow f ↓

X : f ∗(X) → X above f with
respect to fibration P such that P(X) = D, and
exists an unique morphism w : TP(I) → f ∗(X)
such that v = f ↓

X ◦ w and P(v) = f ◦ h,
seen from Figure 6. Let  : D → I ∈ Obj

/I,  : C → I ∈ Obj /I, we thus have
two morphisms in the slice category /I, i.e.,
 : P(u) →  = P(Y) → D ∈ Mor /I
and  : P(u) →  = P(Y) → C ∈ Mor

/I, which satisfy diagram commutes, that is
 = f ◦  . In total category /T(I) of functor
P/I, s : X → T(I) ∈ Obj /T(I), t : f ∗(X) →
T(I) ∈ Obj /T(I), so g : u → s = Y → X ∈
Mor /T(I), there exists a unique morphism
k : u → t = Y → f ∗(X) such that g = f ↓

X ◦ k,

then f ↓
X is a Cartesian arrow of f with respect

to functor P/I by definition 1, namely, if P is
a fibration, single-sorted indexed functor P/I is
also a fibration.
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Figure 6. Cartesian arrow f ↓
X above f with respect to

P/I.

We assume that m : Z → T(I) ∈ Obj /T(I),
then P/I(m) =  by the definition of single-
sorted indexing functor P/I. Let f Z

↓ : Z →
∗f (Z) be an opposite Cartesian arrow with re-
spect to P above f , seen from Figure 7. In slice
category /I the diagram commutes =  ◦ f ,
there exists a unique morphism n : ∗f (Z) →
TP(I) in total category /T(I) with respect to
the functor P/I such that m = n ◦ f Z

↓ , by defini-

tion 4 we know that f Z
↓ is an opposite Cartesian

arrow with respect to P/I above f , that is, if P
is an opfibration, then the single-sorted indexed
functor P/I is also an opfibration.

Above all, if P is a bifibration, then the single-
sorted indexed functor P/I is also a bifibration.

Z

*
( )f Z

( )T I IP

C

D

/P I

Zf�

m

n
f

�



Figure 7. Opposite Cartesian arrow f Z
↓ above f with

respect to P/I.

Theorem 2 demonstrates single-sorted functor
P/I and P have the same properties of fibrations
or bifibrations, for ∀ : C → I ∈ Obj /I,
fiber C above C is up to isomorphism with
indexed fiber ( /T(I)) above  in [16], i.e.,

C
∼= ( /T(I)) . We construct domain func-

tor dom : /I → , dom( : C → I) = C ∈
Obj . By the property of pullback preserv-
ing structures, namely, the pullback of fibra-
tion along any functor is also a fibration in
[10], and the pullback of fibration P : →
along dom forms a single-sorted indexed fibra-
tion P/I : /T(I) → /I, which preserves
fibered terminal objects [15], so it has property
of preserving truth functor, that is, if fibration P

has truth functor, then single-sorted indexed fi-
bration P/I constructed by its pullback also has
truth functor. The semantic model of single-
sorted indexed fibration is as follows:

Definition 14. Let P : → be a bifibra-
tion with truth functor T and comprehension
functor {−}, P/I : /T(I) → /I is a single-
sorted indexed fibration of P. We write TP/I
for truth functor of P/I, a right ad joint functor
{−}P/I to TP/I is called to be a comprehen-
sion functor of P/I. Let F be a endo-functor
in base category /I, F� is called a preserv-
ing truth lifting of F with respect to P/I in total
category /T(I), which satisfies diagram com-
mutes, that is, (P/I)F� = F(P/I) such that
TP/IF ∼= F�TP/I and F{−}P/I

∼= {−}P/IF
�.

4.2. Semantic Properties of Single-Sorted
Indexed Inductive Data Types

For ∀ : C → I ∈ Obj /I, a F-algebra
(, : F() → ) is constructed by the action
of endo-functor F, and the truth functor TP/I of
single-sorted indexed fibration P/I maps (,)
to a F�-algebra (TP/I(), TP/I() : TP/I(F())
∼= F�(TP/I()) → TP/I()). Let F be the
carrier of initial F-algebra, by the property of
truth functor TP/I preserves initial objects we
know that TP/I(F) is the carrier of initial
F�-algebra (TP/I(F), in� : F�(TP/I(F)) →
TP/I(F)). Similarly for subsection 2.2, we
write Alg(TP/I) for the functor from F-algebra
category AlgF to F�-algebra category AlgF�,

defineAlg(TP/I)
def
= TP/I . We thus haveAlg(TP/I)

(in) = in�, then in� is the homomorphism im-
age of in, which is the morphism of initial F-
algebra (F, in) by the action of the functor
Alg(TP/I).

For each F�-algebra (Y,  : F�(Y) → Y),
the comprehension functor {−}P/I of single-
sorted indexed fibration P/I maps (Y, ) to
a F-algebra ({Y}P/I, {}P/I : {F�(Y)}P/I

∼=
F{Y}P/I → {Y}P/I), seen from Figure 8. If
n : Y → TP/I() is a F�-algebra morphism
from  to TP/I(), we then have an F-algebra
homomorphism m : {Y}P/I →  over n send-
ing {}P/I to . Similarly, n is a F�-algebra
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homomorphism over m. We define the functor

Alg{−}P/I
def
= {−}P/I from AlgF� to AlgF,and

Alg{−}P/I presents an intuitionalmutual deriva-
tion relationship between F�-algebra Y as its
carrier andF-algebra{Y}P/I as its carrier, which
provides a succinct and consistent modeling
method for describing inductive rule of single-
sorted indexed inductive data types and F as
the carrier of initial F-algebra. That is, if the
functor Alg(TP/I) preserves initial objects, then
the preserving truth lifting F� of F with respect
to P/I generates a sound inductive rule.

( )F  

/ /{ ( )} { }P I P IF Y F Y	

/ ( )P IT 
/ /( ( )) ( ( ))P I P IT F F T 	

Y( )F Y

�

�

FAlg

/}{ P IAlg 


FAlg

/( )P IAlg T

/{ }P IY/{ }P I�

/ ( )P IT �

n

m

Figure 8. Adjunction properties of Alg(TP/I) and
Alg{−}P/I.

4.3. Inductive Rule of Single-Sorted
Indexed Inductive Data Types

Let P : → be a bifibration with truth func-
tor T and comprehension functor {−}, ∀I ∈
Obj is a discrete indexed object in base cate-
gory . F is an endo-functor in base category

/I, and the carrier of initial F-algebra is F,
then each preserving truth lifting F� of F with
respect to single-sorted indexed fibration P/I
of P has an inductive rule [16], which further
ensures the validity of inductive rules generated
on single-sorted indexed inductive data types by
single-sorted indexed fibration. The following
is the inductive rule of single-sorted indexed in-
ductive data types with universality presented
by us in the framework of Fibrations theory.

For∀ : C → I ∈Obj /I,F ∈Obj /I, a re-
cursive operation fold : (F() → ) → F →
 is constructed on single-sorted indexed induc-
tive data types in base category /I by F. For
each F-algebra r : F() → , fold r maps r to
unique F-algebra morphism fold r : F → 
from initial F-algebra (F, in : F(F) → F)
to (, r).

By definition 14, we get the following two iso-
morphism expressions: TP/I(F()) ∼= F�(TP/I

()), TP/I(F(F)) ∼= F�(TP/I(F)). The
truth functor TP/I preserves initial objects, then
TP/I(F) is the carrier of initialF�-algebra. We
write F� = TP/I(F), and Y = TP/I(). Ap-
plying endo-functor F� to construct a recursive
operation fold : (F�(Y) → Y) → F� → Y
on single-sorted indexed inductive data types
in total category /T(I), for each F�-algebra
q : F�(Y) → Y , fold q maps q to a unique
F�-algebra morphism fold q : F� → Y from
initial F�-algebra (F�, in� : F�(F�) →
F�) to (Y, q). For ∀ ∈ Obj /I, Y ∈ Obj

/T(I), inductive rule of single-sorted indexed
inductive data types with universality is as fol-
lows:

Ind′Gen : (F�(Y) → Y) → TP/I(F) → Y.

If (Y, q : F�(Y) → Y) is a F�-algebra over the
F-algebra (, r : F() → ), then Ind′GenYq is
a F�-algebra homomorphism over fold r.

4.4. Example Analysis of Single-Sorted
Indexed Inductive Data Types

Example 2. Element types of single-sorted in-
dexed inductive data types including streams
and infinite lists are designated by indexed ob-
ject I, such as natural number Nat, integer Int,
character Char and so on, ∀I ∈ Obj . For any
stream  : S → I ∈ Obj /I, F :  → I × 
is an endo-functor in /I, head :  → I is
head function of this stream, and tail :  → 
is tail function after cut head element in the
stream. Let stream type Stream(I) be the car-
rier F of initial F-algebra in base category

/I, for each stream property Y ∈ Obj /T(I)
in total category /T(I) on single-sorted in-
dexed fibration P/I, such as merging and in-
versing, there exists an induction for property of
stream Stream(I): (Y(head()) → (Y() →
Y(tail())) → Y(). For any F-algebra (, r :
F() → ), it is lifted to be an F�-algebra
(Y, q : F�(Y) → Y) with respect to P/I such
that F(P/I)(Y) = (P/I)F�(Y). Initial property
of initialF-algebra defines a recursive operation
fold r on Stream(I), which executes judgment
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of data type of Stream(I); a recursive opera-
tion by initial property of initial F�-algebra de-
scribes semantics of Stream(I). If q lies above
r, then Ind′GenYq is an F�-algebra homomor-
phism above fold r, and when it iterates each
object in total category /T(I) with respect to
single-sorted indexed fibration P/I, finally we
obtain the semantics set {Y()|∀ ∈ Obj /I}
depicting properties of Stream(I).

In the research of semantic computing and pro-
gram logic for programming, codes describing
procedure of input/output based on streams or
infinite lists are a dynamic executing process.
Traditional methods including algebras and do-
main theory are difficult to effectively manage
formal semantics of streams whose complex
single-sorted indexed inductive data types are
dynamic process of input/output. Example 2
establishes a semanticmodel of single-sorted in-
dexed inductive data types by Fibrations theory,
analyzes semantic properties of stream deeply,
and depicts inductive rule of stream abstractly,
which lays strong mathematical foundations for
semantic computing and program logic in pro-
gramming.

5. Semantic Properties and Inductive
Rule of Many-Sorted Indexed
Inductive Data Types

Modeling by slice category /I processes to
analyze semantic properties and depict induc-
tive rule of single-sorted indexed inductive data
types indexed by I well, but I only aims at
single-sorted indexed inductive data types, it
is difficult to manage effectively more com-
plex many-sorted indexed inductive data types,
e.g., mutual recursive. On the basis of ahead
works, we extend discrete indexed object I to
indexed category , present semantic model of
many-sorted indexed fibration, describe many-
sorted indexed inductive data types in base cate-
gory indexed by Obj , make semantic logic
model of many-sorted indexed inductive data
types in indexed category by the fibration
G : → , choose different program logics
pointing to different indexes.

5.1. Semantic Model of Many-Sorted
Indexed Fibration

Let P : → and G : → are two fi-
brations between small categories, by the com-
posed property that composing of two fibrations
is also a fibration in [10], GP is a fibration.
For ∀a ∈ Obj , a is a fiber in total cate-
gory on fibration GP over a. The restriction
Pa : a → a of P at a is a pullback of P
along including functor Inc : a → , and a
is a fiber in total category on fibration G over
a, then by the property of pullbacks preserving
structure, Pa is also a fibration. Different fibra-
tions Pa processes different indexed objects a,
if P is an opfibration or bifibration, then its re-
striction Pa is also an opfibration or bifibration.
Henceforth, if P has truth functor, then Pa also
has truth functor, write Ta for it. In fact, Pa is a
subfibration of P in [15], i.e., Pa and P have the
same fibration structures and logical properties.

For a bifibration P, by the right adjunction prop-
erty that re-indexing functor preserves termi-
nal objects, when a iterates each indexed ob-
ject in indexed category the set of Ta con-
structs the truth functorT of fibrationP, namely,
T = {Ta|∀a ∈ Obj }. But F : a → a is
indeed an endo-functor in fiber a not in base
category , so whether its lifting F⊥

G is also an
endo-functor in total category is not decid-
able. Similar to undesirability of F⊥

G , that each
restriction Pa of P at a has truth functor and
comprehension functor cannot decide P itself
has a truth functor and a comprehension func-
tor; on the contrary, what P has truth functor
and comprehension functor cannot also decide
its each restriction Pa at a has truth functor and
comprehension functor. In the following works
we introduce the definition of fibered fibration
and demonstrate the decidability of P and its
restriction Pa on the existences of truth functor
and comprehension functor based on [16].

Definition 15. Let P : → and G : →
are two fibrations between small categories,
T : → is a truth functor of P. If T has
a fibered right ad joint functor {−} : GP → G,
then P is called a fibered fibration with truth
functor T and comprehension functor {−} over
G.

From definition 10 and definition 9 we know
that truth functor T : G → GP of P is a fibered
fibration, so we can judge that it is equivalent
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to what P is a fibered fibration over G and what
P is a fibration with truth functor and compre-
hension functor. Then, by the demonstration of
theorem 3 below we research deeply the decid-
ability of fibered fibration P and its restriction
Pa at a on the existence of truth functor and
comprehension functor.

Theorem 3. Let P : → and G : →
be two fibrations between small categories, P is
a fibered fibration over G, then for ∀a ∈ Obj ,
a restriction Pa : a → a of P at a is also a
fibered fibration.

Proofs. Let fibered adjunction T � {−} be
truth functor and comprehension functor of the
fibration P respectively, for ∀a ∈ Obj , Ta
and {−}a are the restriction of T and {−} at
a respectively. For any f : a → b ∈ Mor ,
f ↓
Y : f ∗(Y) → Y ∈ Mor a is a Cartesian arrow

of f on fibration G, now we prove that Ta(f
↓
Y )

is also a Cartesian arrow of f on fibration GP,
i.e., truth functor Ta preserves Cartesian arrow.
∃g : c → a ∈ Mor , let l : X → Ta(Y) ∈ Mor

a lies above f g, we can see it from Figure 9.

a

c

b Y

*( )f Y

{ }aX

{ }a aT X

X

( )aT Y

{ ( )}a aT Y

*( ( ))aT f Y

g

f

fg

Yf
�

v

ll
�

Y�

{ }al
( )aT v

( )a YT f �

X�

 

Figure 9. Truth functor Ta preserves Cartesian arrows.

Let  :1
a
→ Ta{−}a and  : {−}aTa →1

a
be two natural transformations, the transpose
∧
l = Y{l}a of l lies above f g, then in fiber a
there exists a unique morphism v : {X}a →
f ∗(Y) ∈ Mor a over g such that diagram

commutes f ↓
Y v =

∧
l . Henceforth, in fiber a

we obtain an unique morphism (Ta(v))X :
X → Ta(f ∗(Y)) ∈ Mor a over g such that
Ta(f

↓
Y )(Ta(v)X) = l, so Ta(f

↓
Y ) is a Carte-

sian arrow of f on the fibration GP, namely,
the truth functor Ta preserves Cartesian arrows.
Similarly, we also can prove the comprehension
functor {−}a preserves opposite Cartesian ar-
rows by dual principles. We omit this proof by
length of this paper.

Above all, we prove Ta � {−}a,  and  is unit
and co-unit of this adjunction, and  is vertical
morphism, that is, the restriction Pa : a → a
of P at a is also a fibered fibration.

Fibration G : → depicts indexed types,
and theorem 3 ensures if P : → is a fibered
fibration over G. Then for ∀a ∈ Obj , the re-
striction Pa : a → a of P at a is also a
fibered fibration with truth functor Ta and com-
prehension functor {−}a, and Ta � {−}a. The
following is semantic model of many-sorted in-
dexed fibration Pa.

Definition 16. Let G : → be a fibration
in indexed category , P : → is a fibered
fibration over G with truth functor T and com-
prehension functor {−}. ∀a ∈ Obj is an in-
dexed object, then the restriction Pa : a → a
of P at a is a many-sorted indexed fibration con-
structed by the pullback of P. F⊥

G is called to be
a lifting of F on Pa, which preserves truth such
that PaF⊥

G = FPa and there exists two isomor-
phism expressions, namely, TaF ∼= F⊥

GTa and
{−}aF⊥

G
∼= F{−}a.

5.2. Semantic Properties of Many-Sorted
Indexed Inductive Data Types

For ∀D ∈ Obj a, we can construct a F-algebra
(D, : F(D) → D) by the action of endo-
functorF. The restrictionPa of fibered fibration
P at indexed object a is a many-sorted indexed
fibration, whose truth functor, that is, Ta maps
the (D,) to a F⊥

G -algebra (Ta(D), Ta() : Ta

(F(D)) ∼= F⊥
G (Ta(D)) → Ta(D)). We let F be

the carrier of initial F-algebra, since truth func-
torTa preserves initial objectsTa(F) is the car-
rier ofF⊥

G -algebra (Ta(F), in⊥G : Ta(F(F)) ∼=
F⊥

G (Ta(F)) → Ta(F)). Similarly, for sub-
section 3.2, we write Alg(Ta) for the functor
from F-algebra category AlgF to F⊥

G -algebra

category AlgF⊥
G
, and define Alg(Ta)

def
= Ta, we

then have Alg(Ta)(in) = in⊥G , that is, in⊥G is
the isomorphism image of in which is the mor-
phism of initial F-algebra (F, in) by the action
of functor Alg(Ta).

For any F⊥
G -algebra (Z,  : F⊥

G (Z) → Z), the
comprehension functor {−}a of many-sorted
indexed fibration Pa maps the F-algebra (Z, )
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to a F⊥
G -algebra ({Z}a, {}a : {F⊥

G (Z)}a
∼=

F{Z}a → {Z}a), as it can be seen from Fig-
ure 10. If t : Z → Ta(D) is a F⊥

G -algebra
morphism from  to Ta(), then the F-algebra
morphism s : {Z}a → D from {}a to  is a
F-algebra homomorphism over t. Similarly, t is
a F⊥

G -algebra homomorphism over s. We define

Alg{−}a
def
= {−}a, and Alg{−}a is the functor

from AlgF⊥
G

toAlgF. Alg{−}a establishes a kind
of intuitive mutual derivation relation between
F⊥

G -algebra Z as its carrier and F-algebra {Z}a
as its carrier, which presents a succinct and co-
herent modeling means for describing formally
inductive rule of many-sorted indexed induc-
tive data types and F as the carrier of initial
F-algebra. That is, if the functor Alg(Ta) pre-
serves initial object, then the preserving truth
lifting F⊥

G of F, with respect to Pa, generates a
sound inductive rule.

( )F D D

{ ( )} { }G a aF Z F Z� 	

( )aT D( ( )) ( ( ))a G aT F D F T D�	

Z( )GF Z�

�

�

FAlg

}{ aAlg 


FG
Alg �

( )aAlg T

{ }aZ{ }a�

( )aT �

t

s

Figure 10. Adjunction properties of Alg(Ta) and
Alg{−}a.

5.3. Inductive Rule of Many-Sorted Indexed
Inductive Data Types

Let P : → be a fibered fibration over
the fibration G : → , for ∀a ∈ Obj ,
F : a → a is an endo-functor in fiber a,
and F is the carrier of initial F-algebra. Each
preserving truth lifting F⊥

G : a → a of F has
an inductive rule in [16], so it ensures the valid-
ity of inductive rules generated on many-sorted
indexed inductive data types by many-sorted in-
dexed fibrations. Then we present and describe
inductive rule of many-sorted indexed inductive
data types with universality in the framework of
Fibrations theory.

For ∀D ∈ Obj a, (D, m : F(D) → D) is a
F-algebra in fiber a. A recursive operation
fold : (F(D) → D) → F → D is constructed

by fibration Pa in base category a on many-
sorted indexed inductive data types, and fold m
maps m to a unique morphism fold m :F → D
from the initial F-algebra (F, in : F(F) →
F) to m. By the property that truth functor Ta
preserves initial objects, Ta(F) is the carrier of
initial F⊥

G -algebra. We write F⊥
G = Ta(F),

and the two isomorphism expressions are as fol-
lows: Ta(F(D)) ∼= F⊥

G (Ta(D)), Ta(F(F)) ∼=
F⊥

G (Ta(F)) = F⊥
G (F⊥

G ). A recursive opera-
tion fold : (F⊥

G (Z) → Z) → F⊥
G → Z is con-

structed by F⊥
G in total category a on fibration

Pa, for any F⊥
G -algebra (Z, n : F⊥

G (Z) → Z),
fold n maps n to unique F⊥

G -algebra morphism
fold n : F⊥

G → Z from initial F⊥
G -algebra

(F⊥, in⊥G : F⊥(F⊥) → F⊥) to n. For
∀D ∈Obj a, ∀Z ∈Obj a, an inductive rule of
many-sorted indexed inductive data types with
universality is as follows:

Ind′′Gen : (F⊥
G (Z) → Z) → Ta(F) → Z.

If (Z, n : F⊥
G (Z) → Z) is a F⊥

G -algebra over the
F-algebra (D, m : F(D) → D), then Ind′′GenZm
is a F⊥

G -algebra homomorphism over fold n.

5.4. Example Analysis of Many-Sorted
Indexed Inductive Data Types

Example 3. Even number EVEN and odd num-
ber ODD are mutually recursive many-sorted
indexed inductive data types, we let a, b be only
two indexed objects and succe, pree : a → b,
succo, preo : b → a be two pairs of morphisms
in indexed category , a is indexed object of
EVEN, and b is indexed object of ODD. We
define a functor F : × → × on bi-
nary production × in base category, for
∀E ∈ EVEN, ∀O ∈ ODD, F(E, O) = (O, E).
For any pair of properties (Z, Z′) of even num-
ber type and odd number type in total category
( a, b) with respect to many-sorted indexed
fibration (Pa, Pb), such as Z ∈ Obj a, Z′ ∈
Obj b, the former is exactly divisible by 2 and
the latter is indivisible by 2, then there exists an
induction principle for EVEN and ODD:

(Z′(0) → ((Z(E) → (Z′(succe(E))
∧Z′(pree(E))) ∧ (Z′(O) → (Z(succo(O))

∧Z(preo(O)))) → (Z′(E) × Z(O)).
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Let (EVEN,ODD) be carrierF = (FE, FO)
of initial F-algebra over binary production in
base category ( a, b) with respect to many-
sorted indexed fibration (Pa, Pb), for any F-
algebra m : F(E, O) → (E, O), it is lifted to be
a F⊥

G -algebra n : F⊥
G (Z, Z′) → (Z, Z′) by many-

sorted indexed fibration (Pa, Pb), which satis-
fies diagram commutes (F(Pa, Pb))(Z, Z′) =
((Pa, Pb)F⊥

G )(Z, Z′). A recursive operation fold
m is defined by initial properties of initial F-
algebra on (EVEN, ODD), it executes judgment
of data type (EVEN, ODD); another recursive
operation defined by initial properties of ini-
tial F⊥

G -algebra depicts semantics of (EVEN,
ODD). If n lies abovem, then Ind′′Gen(Z, Z′)n is a
F⊥

G -algebra homomorphism over fold m, when
iterating each objects in total category ( a, b)
on many-sorted indexed fibration (Pa, Pb), a
semantic set describing properties of (EVEN,
ODD) is as follows:

{(Z(E), Z′(O))|∀E ∈ EVEN, ∀O ∈ ODD}.
Mutual recursive is a complex many-sorted in-
dexed inductive data type. Therefore, tradi-
tional methods, including algebras and category
theory, are difficult to process effectively its se-
mantic computing. Example 3 makes a seman-
tic model of many-sorted indexed fibration by
Fibrations theory, which is not dependent on
some particular tools such as predicates logics
and set theory strictly, which analyzes deeply
semantic properties of mutual recursive, and de-
picts abstractly inductive rule with universality.
The work of example 3 expands and deepens
traditional methods in the level of category the-
ory, deals with semantic computation of mu-
tual recursive in the uniform Fibrations theory
framework, and further develops the width and
depth of traditional methods of inductive data
types in math.

6. Related Works

Inductive data types is an import branch of types
theory. Martin-Löf constructive types theory
[17] achieved a series of significant research re-
sults in 1970s, which laid the foundations for
constructive inductive data types. However,
there exist some deficiencies in polymorphism
type system, e.g., inability to give sound in-
terpretation in classical set theory models [18],

and inconsistent problems of classical reason-
ing in constructive logics [19]. Joint efforts of
many scholars promote the development of in-
ductive data types further, such as Pitt’smodel in
[19], effective topos in [20], Mod model in [21],
and so on, which resolves the problems above
to some extent. Therewith, generalized induc-
tive types have become a key point of inductive
data types, and it is introduced to researching
of construction calculus [22-23]. Literature [24]
presented categorical model Per of generalized
inductive types, and gave its interpretations of
construction calculus in the subcategory−Set
of effective topos [25].

The existing researchmainly focus on finite syn-
tax construction of inductive data types bymeth-
ods of algebras or category theory, for instance,
[26] analyzed constructions of inductive data
types based on algebraic functors, described se-
mantic relationships and properties in uniform
formal frameworks. However, for numerous
inductive data types, including streams, lists,
trees, stacks and heaps, there still exist plenty
of unsolved problems in semantic computing
and program logic, for example, analyzing se-
mantic properties and depicting inductive rules,
especially the latter, are mostly generated au-
tomatically. For example, construction calcu-
lus generates its inductive rules automatically
only from inductive structures of inductive data
types, which hardly satisfies logic modeling re-
quirements of semantic computing at the level
of functor syntax, and not the level of functor
semantics, so their inductive rules are weakened
to some appended axioms. In terms of induc-
tive rules generated automatically, we take an
example of Church Encoding in construction
calculus, which is proved to be invalid [27].

Inductive rules generated automatically are
scarce of solid math foundation and accurate
formal description. Considering the status quo
of the three usual inductive data types includ-
ing fibered, single-sorted indexed and many-
sorted indexed inductive data types, this pa-
per presents semantic models of non-indexed,
single-sorted indexed and many-sorted indexed
fibration by math tools of Fibrations theory, an-
alyzes their semantic properties deeply, and de-
picts abstractly their inductive rules with uni-
versality. Matthes had gained more promi-
nent achievements in the field of inductive data



14 D. Miao et al.

types [28], he researched systematically induc-
tive rules of nested data types in intentional
types theory, but his functor only manages to
depict inductive rules within the second-order
limitation. Nevertheless, the single-sorted in-
dexed fibration P/I presented by this paper de-
picts well inductive rule of Stream(I) which is
first-order inductive data types, and the many-
sorted indexed fibration (Pa, Pb) depicts well
inductive rule of EVEN and ODD which are
second-order inductive data types. Therefore,
by combining with single-sorted indexed fibra-
tion and many-sorted indexed fibration, we can
further describe inductive rules of any high-
order inductive data types. At the same time,
Matthes processed his recursive computation of
inductive data types based on unassertive axiom
methods, which was dependent on predicates
logic strictly, whose inductive rules are not uni-
versal. However, this paper depicts inductive
rules of inductive data types by initial algebras
semantics, which further enhances the abilities
of analyzing semantic properties and describing
inductive rules of complex inductive data types
by the tool of Fibrations theory which is a highly
abstract and flexible extensive.

Inductive data types in programming based on
Fibrations theory present the expansion and
deepening of traditional inductive data types
methods at the level of category theory, espe-
cially after coalgebraic methods in [2] appear
some categorical concepts including Cartesian
arrow and opposite Cartesian arrow, fibration,
and after opfibration has been integrated organ-
ically, which renders Fibrations theory to re-
vitalize in the field of inductive data types in
programming, and possesses promising appli-
cation in the proceeding of theory researching,
as well as in engineering practice in computer
science. Meanwhile, inductive data types based
on Fibrations theory do not represent research
of pure math, but from the applicative stand-
point of program languages, combining Fibra-
tions theory with the latest research findings
of object-oriented languages, algebraic specifi-
cations and semantic computation, it carries out
fundamental research for some kernel problems,
e.g., categorical properties and semantic inter-
pretations of core concepts of inductive data
types in programming, semantic computation,
and specifications description of operation be-
haviors.

Compared with traditional methods including
algebras and category theory, the advantages
of this paper in analyzing semantic properties
and describing inductive rules of inductive data
types are mainly reflected in the following three
aspects:

Firstly, succinct description and flexible exten-
sion of Fibrations theory can accurately ana-
lyze semantics of inductive data types, compute
semantics automatically, reduce coupling fac-
tors between inductive data types in program-
ming, and strengthen cohesion of inductive data
types, thus improving dependence of program
languages;

Secondly, a high abstract of Fibrations theory
does not rely on particular constraints of tradi-
tional methods, gives semantic interpretations
of inductive data types in the level of fibration
semantics, and depicts abstractly inductive rules
of inductive data types with universality, which
provides solid math foundations and accurate
formal descriptions for semantic computation
of program languages modeling;

Thirdly, rigorousness and consistency of Fibra-
tions theory in semantics computing are suitable
for reasoning precisely, for programming, espe-
cially analyzing and constructing of inductive
data types on preliminary stages in program-
ming, which reduces extreme errors in early
software developing, and provides a sound ba-
sis for post-works, e.g., confirmation testing and
system maintenance.

7. Conclusion

Fibrations theory integrates traditional thinking
of program languages, whose high abstraction,
flexible extension and succinct description pro-
duces vigorous and profound impact on pro-
gramming and its formal semantics, and pro-
motes extreme applications of category theory
in computer science. However, from the sta-
tus of document retrieval performed nowadays,
there are a few scholars carrying out research
of Fibrations theory internationally, and rela-
tively small amount of literature applies Fibra-
tions theory to computer science. Notably, the
literature systematically researching and deeply
aiming at programming and its formal seman-
tics are of even less quantity. Regarding China,
we have not found other scholars carrying out
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research Fibrations theory and their applications
in computer science.

This paper researches syntax construction and
semantics of inductive data types in program-
ming by Fibrations theory to make semantic
models of fibration, and depicts their induc-
tive rules with universality by ad joint functors
and their adjunction properties. This provides
succinct and uniform descriptive ways for se-
mantics computation and program logic in pro-
gramming. At the same time, it also enhances
processing and proving abilities of program lan-
guages for semantic behaviors of inductive data
types. Fibrations theory has particular advan-
tages over resolving abstract problems descrip-
tion. Meanwhile, it also has promising applica-
tions in theoretical computer science. We hope
our work will stimulate other scholars in China
to pay closer attention to Fibrations theory.

Our future work will discuss preliminarily
soundness, completeness, and consistence of
formal system involving inductive data types
and their inductive rules. Furthermore, we will
extend our works to co-inductive data types
and their co-inductive rules, as well as analyze
deeply integration and computation between in-
ductive data types and co-inductive data types
by dual principles of category theory and ap-
propriate distributive laws. Moreover, expand-
ing our work on inductive data types and co-
inductive data types to 2-category by Fibrations
theory, profoundly discussing math structures
and categorical properties of semantic comput-
ing and program logic in high-order category
still lies ahead of us.
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