
Journal of Computing and Information Technology - CIT 23, 2015, 4, 303–315
doi:10.2498/cit.1002537

303

A Risk and Similarity Aware
Application Recommender System

Xiaoyuan Liang, Jie Tian, Xiaoning Ding and Guiling Wang
Department of Computer Science, New Jersey Institute of Technology, Newark, New Jersey, USA

As mobile devices, especially smartphones, become
more and more popular, the number of mobile applica-
tions increases dramatically. Thoughmobile applications
provide users convenience and entertainment, they have
potential threat to violate users’ privacy and security.
In order to decrease the risk of violation, we propose
a risk and similarity aware application recommender
system, which recommends high quality applications to
users. The system estimates applications’ risk based on
the requested permissions and calculates the similarity
between applications based on the ratings and the number
of ratings. It recommends applications with the lowest
risk and highest similarity based on a user’s current ap-
plications. The evaluation shows that the system works
efficiently in recommending low-risk and high-similarity
applications.

Keywords: computer science, security

1. Introduction

Mobile devices, such as smartphones, iPad, and
tablets, now become increasingly popular. A
large number of mobile applications have been
developed to fully utilize these smart devices.
For example, there are over 1.3 million Android
applications and over 1.2 million iOS applica-
tions by year 2014 [1, 2]. These applications
have uneven quality. Some have even been
identified as malwares (e.g., DroidDream and
DroidKungFu) [3]. With such a big number of
applications, when a user searches for an ap-
plication to fit her needs, usually she will find
multiple applications on the market. It is im-
portant to avoid selecting the applications with
low quality or high risks. Low-quality appli-
cations lead to bad user experience, and unsafe
applications open doors to security and privacy
intrusions [4]. However, it would be a challenge
to screen the applications, since the number of

applications may be large and their actual quali-
ties vary widely.

The potential risks of bad user experience and
security/privacy breaches make many users re-
luctant to install mobile applications. Statis-
tics have shown that 54 % of smartphone users
decide not to install a cell phone application
when they discover that their personal informa-
tion needs to be shared [5]. Studies also show
that nowadays about 38 % of users are more
concerned about phones than laptops in terms
of security and over 50 % are more concerned
about privacy [6]. Thus, it is an urgent issue
to automatically and reliably evaluate applica-
tions and help users make decisions on which
applications should be selected.

Permissionwarning, malware detecting, and us-
ing recommender systems are existing meth-
ods that can help users evaluate applications to
keep safe ones and avoid risky ones. The first
two methods apply to the applications which
are about to be installed or are already installed
on mobile devices. With permission warning,
users are informed of the permissions applica-
tions may request before they install the ap-
plications. However, since it requires users to
pay attention to and understand the permissions
and permission warnings, it can be a big bur-
den for most users. One reason is that most
users have limited knowledge of the meaning
of each permission [4, 7, 8]. The other reason
is that applications may request a large number
of permissions and/or incur frequent permis-
sion warnings. Figure 1 shows a list of permis-
sions requested by Facebook Messenger as an
example [9]. For most users, it would be over-
whelming to pay attention to every permission

304 A Risk and Similarity Aware Application Recommender System

warning. Impatient users may choose to ignore
some permission warnings, making them vul-
nerable to malwares. Malware detecting uses
software detectors to identify behavior break-
downs of the installed applications [10]. How-
ever, malware detectors may fail to detect new
malwares that have not been included in their
libraries [11]. At the same time, it takes time
for malware detectors to identify malwares on
mobile devices. Recommender systems have
been designed to evaluate and recommend mo-
bile applications [12, 13]. However, most ex-
isting recommender systems consider only one
metric, either potential risks or user preference.
They cannot provide users with the most suit-
able applications which are also safe and can
preserve user privacy.

In this paper, we propose a Risk and Similar-
ity Aware Application recommender system,
named RSAA. It evaluates applications based
on their potential risks and their similarity with
the existing applications already installed on the
mobile device of the user. Based on the evalu-
ation, it recommends a number of applications
that carry the lowest risks and are most similar
to the applications already owned by the user.
Specifically, the system first estimates the po-
tential risk of every application based on the
permissions it requests. It adopts the Inverse
Document Frequency (IDF)method used in text
mining area to estimate the importance of a per-
mission in each application category. Different

permissions indicate different risks. Thus, they
are given different weights in the estimation.
Based on the estimation, RSAA filters out the
applications with high risks. Then, RSAA es-
timates the similarity between applications in
the same category based on their ratings and
rating numbers. Finally, RSAA considers both
the potential risks and the similarity, and recom-
mends a number of applications with the largest
similarity in the low risk application category.

The remainder of the paper is organized as fol-
lows. Section 2 introduces the background in-
formation. The system design is presented in
Section 3. Section 4 analyzes the data and eval-
uates the system. We discuss the deficiency
of permission systems and the privacy expecta-
tions of mobile users in Section 5. The related
work is discussed in Section 6. Finally, Section
7 concludes this paper and introduces our future
work.

2. Background

In this section, we introduce the life cycles of
mobile applications from development to instal-
lation, to better understand the quality and se-
curity/privacy issues with mobile applications.
Then, we introduce permission-based security

Figure 1. Screenshot of the permissions requested by Facebook Messenger.

A Risk and Similarity Aware Application Recommender System 305

measures widely used in mobile devices, us-
ing Android permission system as an example.
RSAA is built upon permissions.

2.1. Mobile Application Life Cycle

Mobile applications are developed and then re-
leased on application markets by millions of
developers, most of whom are individual devel-
opers or small teams. There are several steps be-
fore an application is released. Taking Android
application development as an example, Google
divides the whole development process into the
steps shown in Figure 2 [14]. In the first two
steps, the application is being built by its devel-
opers. Then, it is tested on both virtual devices
and hardware devices, signed by the developers,
and connected to remote servers for production.
At the last step, it is put on application markets
for users to download. For Android applica-
tions, the official market is Google Play. There
are also a number of third-party applicationmar-
kets, such as 1Mobile and AppsLib. Compared

Figure 2. Life cycle of Android applications.

to official application markets, third-party mar-
kets may have special advantages, such as free
applications, in order to attract more users. De-
velopers may publish their applications in third-
party markets to reach more users or certain
users (e.g., those speaking a specific language)
[15]. However, third-party markets may repack-
age applications from official markets for some
unsafe purposes [16].

When a user looks for an application to meet a
specific need, with her mobile device, she may
search an application market with related key-
words, or receive some recommendations [6].
Usually, multiple applications will be provided
to choose after the search. The user may look at
the ratings and reviews before she chooses one
to install. When the installation is about to start,
the system lists the permissions that the applica-
tion requests. The user must decide whether the
permissions should be granted or not. The ac-
tual installation starts when the system receives
the confirmation from the user.

2.2. Android Permission System

In most mobile operating systems, applications
are isolated from each other. Personal data and
resources can only be accessed by applications
that have been granted with the related permis-
sions. For example, Android provides 135 per-
missions for developers [17]. If one application
wants to send a short message, it must request
the SEND SMS permission in advance.

Permissions can be specified in advance, be-
fore installation or on demand when a specific
resource or data is needed. For an Android ap-
plication, all its permissions are saved in an
xml file. When a user installs the applica-
tion, these permissions will be displayed on a
confirmation page. Only after the user con-
firms the permissions, can the application be
installed. An iOS application requests permis-
sions on demand, just before it accesses the re-
lated data/resources.

Permission systems protect critical data and
code that could be misused to distort or dam-
age the user experience. Usually, permissions
are classified into multiple levels, depending on
their risks and how critical the related data/reso-
urces are. For example, based on official An-

306 A Risk and Similarity Aware Application Recommender System

droid documents, there are four protection levels
on Android systems [18]:

• Normal for lower-risk permissions that al-
low the accesses to isolated application-level
features. Normal permissions have minimal
risks to other parts of the system.

• Dangerous for higher-risk permissions that
allow the accesses to private user data or
grant the control over the device that can
negatively impact the user.

• Signature for the permissions that are only
granted to the applications with certain sig-
natures.

• SignatureOrSystem for the permissions that
are only granted to pre-installed applications
and applications with certain signatures.

Though the permissions at Signature level and
SignatureOrSystem level may allow accesses to
critial data and resources, pre-installed applica-
tions and applications with required signatures
are usually deemed safe, and these permissions
are granted without the awareness of users. For
this reason, users are more concerned about the
permissions at the Normal and Dangerous pro-
tection levels. The levels of Android permis-
sions are hard-coded in Android systems [19].

3. System Design

3.1. Overview

The objective of our study is to recommend high
quality and safe applications to users based on
their personal needs. To achieve this goal, a
Risk and Similarity Awareness Application rec-
ommender system, called RSAA, is proposed.
It recommends a number of applications which
are similar to the applications a user has in-
stalled and have the lowest risk in the same
category as the already installed applications.
There are two challenges in implementing the
system. One is how to evaluate the risks of
applications. The other is how to recommend
applications based on both the risk and the simi-
larity. We have designed two algorithms to deal
with these challenges.

Risk Prediction Algorithm: The purpose of this
algorithm is to estimate the risk level of each ap-
plication and to filter out the applications with

high risks. The algorithm estimates each appli-
cation’s potential risk based on the permissions
it requests. With the application risk and the
number of requested permissions, the system
clusters applications into three levels — low
risk, medium risk, and high risk. High-risk ap-
plications are filtered out, and applications at the
other two levels are kept for recommendation.

Recommendation Algorithm: With the recom-
mendation algorithm, applicationswith the high-
est similarity at the medium and low risk levels
are recommended to users. The algorithm first
estimates the similarity between each installed
application and each one left on the market
based on their ratings and the number of rat-
ings. Then, it recommends a certain number of
applications based on the application risk and
the similarity.

These two algorithms are described in detail in
the following two subsections.

3.2. Risk Prediction Algorithm

The risk prediction algorithm evaluates the risk
level of an application based on the permissions
the application requests. Two factors are con-
sidered in the evaluation: (1) whether an ap-
plication requests a particular permission that
is not necessary to use in the applications with
similar functionality. If the application does,
the request is considered to be suspicious, and
the application is likely to be problematic. (2)
If a particular permission is granted, what is the
potential risk associated with the permission.
The algorithm assumes that applications have
been categorized based on their functionalities.
With the two factors, it evaluates the risks of the
applications within each category.

Before we present the algorithm, we introduce
the following notations.

• Let ck denote a category. The size of the
category is |ck| (i.e., the total number of ap-
plications in category ck).

• Let ai denote an application in category ck
(1 ≤ i ≤ |ck|).

• Let pj denote a permission. Suppose there
are m different permissions in a system (e.g.,
135 for Android). Then, j is from 1 to m.

A Risk and Similarity Aware Application Recommender System 307

• We use pi,j to represent whether permission
pj is requested by application ai. If appli-
cation ai requests permission pj, pi,j is 1.
Otherwise, pi,j is 0.

The algorithm first estimates to what degree a
permission is essential for the applications in
each category. For this purpose, the algorithm
adopts the Inverse Document Frequency (IDF)
concept widely used in text mining areas [20].
For a permission pj, it calculates an inverse fre-
quency Fpj as follows:

Fpj = lg
|ck|∑|ck|
i=1 pi,j

. (1)

For a permission pj, the smaller the value Fpj is,
the more likely the applications in the category
need the permission. If all the applications in
the category request permission pj, Fpj takes the
smallest value 0. This indicates that permission
pj may be indispensable for the applications in
this category. Thus, later on, when RSAA eval-
uates the risk of an application in this category,
the request for this permission (pj) is not con-
sidered to be suspicious.

Then, the algorithm takes into account the po-
tential risks associated with the permissions
by giving a weight to each permission. Cur-
rently, the algorithm classifies permissions into
two groups, safe and dangerous. It assigns a
higher weight to the applications in the danger-
ous group and a lower weight to the applications
in the safe group. The weights are predefined
in advance and will be discussed in detail in the
next section.

Suppose the weight of permission pj is wj. With
the weight and the inverse frequency of pj, the
algorithm calculates the risk Rpj of permission
pj in category ck as follows:

Rpj = wj × Fpj . (2)

Please note that the algorithm calculates the in-
verse frequency and the weighted risk of a per-
mission based on the requests for the permission
made by the applications in the same category.
Thus, the inverse frequency and the risk are
specific to the category. They may have other
values in another category.

With the risk of each permission, the algorithm
defines a weighted risk Rai for application ai,

which is calculated by adding up the risks of all
the permissions requested by application ai.

Rai =
m∑

j=1

Rpj × pi,j. (3)

Finally, the algorithm clusters applications into
different risk levels – high risk, medium risk,
and low risk. The applications with medium
risks or low risks are kept for recommendation
and thosewith high risks are filtered out. The al-
gorithm adopts k-medoids algorithm to cluster
applications [21]. K-medoids is similar to k-
means. It first selects K initial cluster centers.
Then, it iteratively assigns instances (i.e., ap-
plications in our case) to clusters until there are
no further changes with the assignment. Dur-
ing the process, the cluster centers may change.
With different k-means, when choosing a new
cluster center, k-medoids chooses one of the fea-
ture values to be the new center, instead of the
virtual mean of the feature values. K-medoids
algorithm proves to have a better performance
in handling noise and outliers [22].

The clustering of applications in RSAA is based
on three features – the number of safe permis-
sions, the number of dangerous permissions,
and the weighted risk Rai . However, these fea-
tures have different scales. For example, the
number of safe permissions can be larger than
the weighted risks by one or more orders of
magnitudes. When estimating the distance be-
tween two applications, directly using their fea-
ture values may lead to undesirable effects since
the features with large scales will dominate the
clustering. Thus, the feature values of the appli-
cations must be normalized before clustering.

For each feature, we employ Z-score to normal-
ize the feature values of the applications using
the following equation:

Z =
X −

. (4)

In the equation, X is the feature value before
normalization, and Z is the feature value after
normalization. and are, respectively, the
mean value and standard variance of the feature
values of all the applications.

308 A Risk and Similarity Aware Application Recommender System

3.3. Recommendation Algorithm

Collaborative filtering (CF) algorithms are wi-
dely adopted in recommender systems [23, 24].
We employ one kind of the CF algorithms, the
item-based collaborative filtering (CF) algo-
rithm, to classify and recommend applications
at low-risk or medium-risk levels [25]. The rec-
ommendation algorithm first calculates the sim-
ilarity scores between the installed applications
and the application on the market in the cor-
responding categories, and then classifies the
applications on the market based on the scores.
We employ cosine similarity to calculate simi-
larity scores. The similarity score between ap-
plications ai and aj is calculated as follows:

similarity(ai, aj) =
�ai · �aj

‖�ai‖ ‖�aj‖ . (5)

In this equation, �ai and �aj are two vectors re-
spectively for application ai and aj. Each vector
includes two attribute values of the correspond-
ing application. One attribute value is the aver-
age rating of the application. The other is the
number of ratings received by the application.

The system calculates a similarity score for ev-
ery pair of applications, with one application
already installed on the mobile device and the
other application on the market in the corre-
sponding category. The similarity scores of all
the application pairs form a similarity matrix.
With the similarity matrix, the system chooses
a number of applications that have the highest
similarity scores with the installed applications

in the user’s device. Then it sorts the selected
applications based on their weighted risks, and
presents the sorted list of applications to the
user. If a user wants to check the top L appli-
cations, the system picks 2L applications first
based on their similarity scores. Then, among
these 2L applications, it selects L applications
with the lowest weighted risks.

4. Evaluation

In this section,we evaluate the proposed system.
We also explain some implementation details.

4.1. Data Analysis

To evaluate the system, we use real applica-
tions provided by Frank et al. [26], which were
downloaded from Google Play. After filtering
out duplicated applications, we get 183127 ap-
plications in total. These applications are clas-
sified into 30 categories, including Productivity,
News & Magazines and Entertainment. Figure
3 shows the top 20 largest categories and the
proportions of the applications in them. The
Entertainment category has the most applica-
tions, about 12 %, followed by Personalization,
10 %, and Tools, 8 %. In our evaluation, the
applications in these top 3 largest categories are
selected to test the proposed system.

In each category there are free applications and
paid applications. Their percentages are shown
in Table 1 for the selected three categories. In

Figure 3. Application categories.

A Risk and Similarity Aware Application Recommender System 309

Entertainment Tools Personalization

Free 69.85 % 74.23 % 26.74 %

Paid 30.15 % 25.77 % 73.26 %

Total 100.00 % 100.00 % 100.00 %

Table 1. Percentages of free applications and paid
applications in the selected categories.

the first two categories, there are more free ap-
plications than paid applications. The ratio be-
tween free applications and paid ones in Enter-
tainment is about 2 : 1 while the ratio in Tools
is around 3 : 1. In Personalization category, the
number of paid applications is approximately 3
times as the free ones. It indicates that the appli-
cations in Personalization are more likely to be
paid ones than those in the other two categories.

Apart from the costs of applications, we have

also analyzed the permissions requested by the
applications. We want to know the number of
safe permissions and the number of dangerous
permissions requested for the applications in
each category. On Android systems, permis-
sions are classified into four protection levels,
which have been introduced in Subsection 2.2.
In our system, permissions at the normal protec-
tion level on Android systems are classified as
safe permissions, and permissions at other An-
droid protection levels are considered as danger-
ous ones. Since application descriptions only
list detailed permissions (as illustrated in Fig-
ure 1) and do not report their protection lev-
els, we translated the requested permissions into
their protection levels, and then determined for
each requested permission whether it is “safe”
or “dangerous”.

For the free applications and paid applications in

Figure 4. Average number of requested permissions.

Figure 5. Variance of requested permission numbers.

310 A Risk and Similarity Aware Application Recommender System

each category, Figure 4 shows the average num-
ber of safe permissions and the average number
of dangerous permissions requested by these
applications, and Figure 5 presents the variance
of safe permission numbers and the variance
of dangerous permission numbers requested by
the applications. As shown in Figure 4, on
average, free applications request more permis-
sions than paid applications, indicating that paid
applications generally have higher quality than
free ones. This also indicates that some permis-
sions may not be necessary for free applications.

The figures also show that both free and paid
applications request more dangerous permis-
sions than safe permissions. Free applications
in Entertainment category tend to request the
most permissions (both safe ones and danger-
ous ones). In paid applications, the applications
in Tools category tend to request more permis-
sions than those in other categories (both safe
ones and dangerous ones). At the same time,
the number of permissions requested by these
applications show larger variances than other
paid applications.

4.2. Risk Evaluation

For each category, we employ the k-medoids
method to cluster free and paid applications sep-
arately. The applications in the category are
clustered into three levels, high risk, low risk
and medium risk.

When estimating the potential risks, we use the
following features to cluster applications:

• Safe PermissionNumber: the number of safe
permissions that are requested by each appli-
cation.

• Dangerous Permission Number: the number
of dangerous permissions that are requested
by each application.

• Weighted Risk: the weighted risk of each
application calculated in Eq. 3.

Different weights are assigned to dangerous per-
missions and safe permissions based on the
numbers of safe permissions and the number
of dangerous permissions. The weight for nor-
mal permissions is 1. The weight for dangerous
permissions is the value of the number of safe
permissions divided by that of dangerous per-
missions.

The results of the clustering are shown in Ta-
ble 2. We can see that in each category, for both
free and paid applications, high risk applications
account for much smaller percentages than the
applications with low risks. The free applica-
tions in the high risk cluster of Personalization
category account for a higher percentage than
those in the other two categories, but paid appli-
cations in the high risk cluster of Personalization
category account for a much lower percentage
than those in the other two categories. This
indicates that, for Personalization applications,
users can get much higher quality applications
if they download the paid ones.

Taking Personalization applications as samples,
we have also studied the mean values of the
features in every risk level. The mean values
(before normalization) are shown in Table 3.

This table clearly shows that applications at the
high risk level tend to request more permissions
(both dangerous ones and safe ones) and tend
to obtain higher weighted risks. In addition, for
each feature, the differences between different
risk levels in paid applications are larger than
those with free applications. Take the number

Category High Risk Medium Risk Low Risk

Entertainment Free 10.16 % 19.98 % 69.86 %

Paid 16.13 % 37.18 % 46.69 %

Tools Free 5.97 % 30.39 % 63.64 %

Paid 6.30 % 32.39 % 63.11 %

Personalization Free 17.40 % 24.88 % 57.72 %

Paid 3.83 % 22.59 % 73.58 %

Table 2. Percentages of applications in different risk clusters.

A Risk and Similarity Aware Application Recommender System 311

Type High Risk Medium Risk Low Risk

Free Number of Dangerous Permissions 5.23 3.22 0.13

Number of Safe Permissions 1.97 1.34 0.03

Weighted Risk 0.10 0.06 0.01

Paid Number of Dangerous Permissions 12.98 5.26 0.36

Number of Safe Permissions 4.53 1.88 0.10

Weighted Risk 0.96 0.27 0.02

Table 3. Mean feature values of Personalization applications.

of dangerous permissions requested by applica-
tions as an example. At the high risk level, the
number with paid applications is much larger
than that with free applications. However, at
the medium and low risk levels, the numbers
with paid applications are close to those with
free applications.

After obtaining the risk levels of applications,
we filter out those at the high risk level. This is
necessary to ensure the high quality of applica-
tions. The percentages of free applications and
paid applications that are filtered out in each
category are shown in Table 2. For example,
10.16 % of free applications in Entertainment
category are filtered out.

4.3. Recommender System

We evaluate the recommender system with sim-
ulation. In the simulation, 10 applications are
randomly chosen and installed on a mobile de-
vice. Then, with these installed applications,
we use three different methods to choose appli-
cations to recommend, and compare the quality
and the risks of the applications recommended
by these methods. Among these three methods,
RSAA is the proposed method, and the rating
first recommendation method and the random
recommendation method are used as baselines.
The rating first method recommends applica-
tions based only on their ratings. The random
method picks applications randomly. To eval-
uate the quality and risks of the recommended
applications, we select two metrics, maximum
weighted risk and minimum similarity. Maxi-
mum weighted risk is the largest weighted risk
value in a recommendation list. Minimum simi-
larity is the minimum similarity value in a rec-
ommendation list.

In each experiment, we use a recommendation
method to generate a list of recommended ap-
plications. In the evaluation, we vary the length
of the list L between 50 and 200, and use each
method to generate a list for each L value. We
repeat the experiments 100 times. Every time,
we re-select 10 random applications and use
them as the applications installed on the mobile
device. Then we rerun the tests to generate lists
of recommended application for these newly se-
lected applications. We average the maximum
weighted risks over the lists generated for dif-
ferent L values and across the repeated experi-
ments. For brevity, we still refer to the average
value as maximum weighted risk. Similarly, we
also average the minimum similarities and refer
to the average value as minimum similarity for
brevity.

Figure 6 compares the maximum weighted risks
for the three methods. This figure shows that
the applications recommended by RSAA have
the lowest maximum weighted risks, which are
close to 0. For RSAA, the maximum weighted

Figure 6. Maximum weighted risks of the applications
recommended by three methods.

312 A Risk and Similarity Aware Application Recommender System

risk decreases when the number of recommen-
ded applications increases, because applications
with lower risks can be chosen based on the
similarity metric, which replaces the high risk
applications on the final recommendation list.
This also indicates that there are a large num-
ber of low risky applications available to users.
The figure also shows that applications recom-
mended by rating first method have high risks.
The maximum weighted risks of the rating first
method is always above 0.6.

We have also compared the minimum similar-
ities for the three methods with the number of
recommended applications L varied from 50 to
200. The results are shown in Figure 7. The
figure shows that the rating first method can
keep the similarity high for different L values.
RSAA can also keep the similarity over 99.5 %,
achieving similar performance as the rating first
method. When the number of recommended
applications increases, the minimum similarity
decreases slightly. The random method shows
the worst performance.

Figure 7. Minimum similarities of the applications
recommended by three methods.

5. Discussion

In this section, we discuss the potential prob-
lems in recommender systems. The first one
is about the deficiency on permission systems.
The second one is about users’ expectations on
security and privacy of mobile devices.

5.1. Deficiency on Permission Systems

The permission system is widely used in mo-
bile systems, like Android and iOS. The initial
purpose for this system is to isolate personal
data and resources from applications. However,
most users do not pay attention to the permis-
sions, which gives an opportunity for malware.

Google provides developer documentation for
Android developers, but there is limited infor-
mation of permissions. Felt et al. even find
that there are 6 errors in the Android permis-
sion documentation [27]. In addition, they list
several reasons that permissions are requested
more than an application really needs. The
first one is permission name error, such as
ACCESS NETWORK STATE and ACCESS
WIFI STATE. Developers usually get confused
about the above two. So they often request them
together. The second is deputies. An applica-
tion can send an Intent to another deputy appli-
cation, asking it to perform an operation. If the
deputy does a permission-needed operation, it
needs the permission while the sender does not
need it. Felt et al. also find that developers tend
to request unnecessary permissions because ap-
plications would not receive automatic updates
if the updated ones need more permissions [28].
From the above reasons, we can see that the
permission system is not efficient or effective,
which makes developers confused and tends
to request unnecessary permissions. Thus, a
mechanism is needed to penalize those appli-
cations that request too many permissions, es-
pecially dangerous permissions. It not only en-
sures that users get high quality applications,but
also pushes developers to develop more secure
applications.

5.2. Users’ Expectations on Security and
Privacy

Users’ expectations on security and privacy show
that we need to focus on improving the secu-
rity and protecting the privacy. From the sur-
vey done by Erika et al., the top four factors
that users worry about regarding the privacy in
smartphones are as follows [6]:
1. physical phone loss

2. physical damage

3. data loss and (lack of) backup

A Risk and Similarity Aware Application Recommender System 313

4. trusting applications

We can see that most people are not aware of
the importance of applications’ security and pri-
vacy. In fact, personal information loss caused
by applications happens frequently. For exam-
ple, 13 GB of Snapchat content was recently
leaked due to the use of third party Snapchat
applications [29] and Whisper was said to track
users and share information with one of the U.S.
departments [30]. There are more applications
unreported and still stealing users’ information.

For users, it is very easy to install low qual-
ity applications in mobile devices, since it is
hard for most of them to identify them. When
users are installing a new application, they only
pay attention on the functions it provides. For
example, if a user wants to download a video ap-
plication, then she will certainly choose the one
with many video resources and smooth watch-
ing experience, ignoringwhether it has potential
risk or not.

In addition, the mobile application system is not
good enough. It does not filter out the malware
in time and does not highlight these potentially
dangerous information. Also, the provided in-
formation is confusing tomany users. It is found
that only 9 % of users could answer the mean-
ing of permission READ CONTACTS broadly
correctly [7].

Thus, we need to find new ways of developing
the mobile application system to provide users
with more information as well as to identify the
potential risks by the system instead of users.

6. Related Work

Mobile Privacy and Security

Several works focus on understanding the users’
feeling about the mobile privacy and security.
Lin et al. do a survey on users’ expectations
about what an application does and does not
do to build a users’ mental model of privacy.
They also design a new permission screen that
displays the permissions requested by an appli-
cation [4]. This increases users’ privacy aware-
ness and is easier to comprehend than the origi-
nal permission screen. Felt et al. analyze users’
preference and comprehension of different per-
missions via Internet and lab surveys [7]. Chin
et al. measure users’ confidence in smartphone

security and privacy via interviews and surveys
and compare it with that in computers [6]. These
works provide us with intuitive feeling about
users’ expectations and give a guide for the im-
provement.

Some other works mainly pay attention to how
to detect mobile malware from the normal ones.
Zhou et al. present a system, namedDroidRanger,
to detect malicious applications on both of-
ficial and unofficial markets, which includes
footprint-based detection and heuristics-based
detection [31]. Zhou et al. develop a system,
called DroidMoss, to detect repackaged smart-
phone applications in third-party markets [16].
Enck et al. analyze the Trojans applications
and set malware rules only with the permis-
sions [32]. A follow-up work reports a series
of systematic findings in Android application
security from the study of 1100 free Android
applications [33]. Frank et al. build a proba-
bilistic model to mine permission request pat-
terns from Android and Facebook applications
[26]. These methods provide some important
information on detecting malware. But it is still
hard for users to detect all of them since there
are no certain patterns in them.

Application Recommender System

Recommender Systems (RSs) are software tools
and techniques providing suggestions for items
to be of use to a user [34, 35, 36]. The sug-
gestions relate to various decision-making pro-
cesses, such as what items to buy, what music
to listen to, or what online news to read [23].

Research on mobile application recommender
systems focus on suggesting mobile applica-
tions to users with one or more metrics. Follow-
ing are some related application recommender
systems. Sanz et al. implement a system to au-
tomatically classify Android applications using
machine learning techniques [37]. Enrique et
al. propose a recommender system using user-
based CF algorithms, which monitors users’
interaction [12]. However, they only take the
users’ preference into consideration and do not
consider the applications’ quality. A mobile
application recommender system with different
security levels is presented in [13]. But it does
not provide a differentiated service and permis-
sions are treated as the same. In this paper, we
take both application security and user prefer-
ence into consideration.

314 A Risk and Similarity Aware Application Recommender System

7. Conclusion and Future Work

In this paper, we propose a risk and similarity
aware application recommender system to pro-
vide differentiated services for different users.
The system is to recommend applications with
the lowest risk and highest similarity based on
user’s current applications.

In the future, we plan to do the following work.
More data, including training data and testing
data, will be added to better evaluate the system.
A user data collector will be developed to get
users’ application usage information. Using the
usage information, we plan to refer a user’s ap-
plication usage habit. The usage habit informa-
tion, combined with a user’s other information,
such as age and occupation, will be leveraged
to provide more personalized recommendation
service.

References

[1] iTunes App Store Now Has 1.2 Million Apps,
Has Seen 75 Billion Downloads To Date,
http://techcrunch.com/2014/06/02/itunes-
app-store-now-has-1-2-million-apps-has-
seen-75-billion-downloads-to-date/, 2014.

[2] Number of Android applications, http://www.
appbrain.com/stats/number-of-android-
apps, 2014.

[3] Android malicious apps, http://www.bullguard
.com/bullguard-security-center/mobile-
security/mobile-threats/android-
malicious-apps.aspx

[4] J. LIN, S. AMINI, J. I. HONG, N. SADEH, J.
LINDQVIST, J. ZHANG, Expectation and purpose:
understanding users’ mental models of mobile app
privacy through crowdsourcing. In Proceedings of
the 2012 ACM Conference on Ubiquitous Comput-
ing, 2012.

[5] J. L. BOYLES, A. SMITH, M. MADDEN, Privacy and
data management on mobile devices. Pew Internet
& American Life Project, 2012.

[6] E. CHIN, A. P. FELT, V. SEKAR, D. WAGNER, Mea-
suring user confidence in smartphone security and
privacy. In Proceedings of the Eighth Symposium
on Usable Privacy and Security, 2012.

[7] A. P. FELT, E. HA, S. EGELMAN, A. HANEY, E. CHIN,
D. WAGNER, Android permissions: User attention,
comprehension, and behavior. In Proceedings of the
Eighth Symposium on Usable Privacy and Security,
2012.

[8] P. G. KELLEY, S. CONSOLVO, L. F. CRANOR, J. JUNG,
N. SADEH, D. WETHERALL, A conundrum of per-
missions: installing applications on an android
smartphone. In Financial Cryptography and Data
Security, 2012.

[9] The Truth About the Facebook Messenger App and
Your Privacy, http://crambler.com/truth-
about-facebook-messenger-app-privacy/,
2014.08.

[10] Y. ZHOU, X. JIANG, Dissecting android malware:
Characterization and evolution. In Security and
Privacy (SP), 2012 IEEE Symposium on, 2012.

[11] T. PETSAS, G. VOYATZIS, E. ATHANASOPOULOS, M.
POLYCHRONAKIS, S. IOANNIDIS, Rage against the
virtual machine: hindering dynamic analysis of
Android malware. In Proceedings of the Seventh
European Workshop on System Security, 2014.

[12] E. COSTA-MONTENEGRO, A. B. BARRAGÁNS-
MARTÍNEZ, M. REY-LÓPEZ, Which App? A rec-
ommender system of applications in markets: Im-
plementation of the service for monitoring usersò
interaction. Expert systems with applications, 2012.

[13] H. ZHU, H. XIONG, Y. GE, E. CHEN, Mobile app
recommendations with security and privacy aware-
ness. In Proceedings of the 20th ACM SIGKDD
international conference on Knowledge discovery
and data mining, 2014.

[14] Introduction | Android Developers,
http://developer.android.com/tools/
workflow/index. html

[15] Understanding 3rd Party Android App Stores,
http://www.airpush.com/understanding-
3rd-party-android-app-stores/, 2014.05.

[16] W. ZHOU, Y. ZHOU, X. JIANG, P. NING, Detecting
repackaged smartphone applications in third-party
android marketplaces. In Proceedings of the second
ACM conference on Data and Application Security
and Privacy, 2012.

[17] Manifest.permission | Android Developers,
http://developer.android.com/reference/
android/Manifest.permission.html

[18] 〈Permissions〉 | Android Developers,
http://developer.android.com/guide/to-
pics/manifest/permission-element.html

[19] Android Permissions – Protection Levels,
http://rupertrawnsley.blogspot.de/2011/
11/android-permissions-protection-
levels.html, 2011.11

[20] tf-idf ,
http://en.wikipedia.org/wiki/Tf-idf,
2014.08

[21] L. KAUFMAN, P. ROUSSEEUW, Clustering by means
of medoids. North-Holland, 1987.

[22] P. BERKHIN, A survey of clustering data mining
techniques. In Grouping multidimensional data,
Springer, 2006, pp. 25–71.

[23] F. RICCI, L. ROKACH, B. SHAPIRA, Introduction to
recommender systems handbook, 2011.

A Risk and Similarity Aware Application Recommender System 315

[24] B. SARWAR, G. KARYPIS, J. KONSTAN, J. RIEDL,
Item-based collaborative filtering recommendation
algorithms. In Proceedings of the 10th international
conference on World Wide Web, 2001.

[25] G. D. LINDEN, J. JACOBI, A. JENNIFER, E. A.
BENSON, Collaborative recommendations us-
ing item-to-item similarity mappings, 2001,
US Patent 6,266,649. [Online]. Available:
http://www.google.com/patents/US6266649

[26] M. FRANK, B. DONG, A. P. FELT, D. SONG, Min-
ing Permission Request Patterns from Android and
Facebook Applications. In ICDM, 2012.

[27] A. P. FELT, E. CHIN, S. HANNA, D. SONG, D. WAG-
NER, Android permissions demystified. In Proceed-
ings of the 18th ACM conference on Computer and
communications security, 2011.

[28] A. P. FELT, K. GREENWOOD, D. WAGNER, The effec-
tiveness of application permissions. In Proceedings
of the 2nd USENIX conference on Web application
development, 2011.

[29] 200,000 Snapchat leaks and it is all your fault,
http://houstonianonline.com/2014/10/16/
200000-snapchat-leaks-and-it-is-all-
your-fault/, 2014.10.

[30] Whisper App Accused Of Violating Pri-
vacy, http://www.valuewalk.com/2014/10/
whisper-app-accused-of-violating-
privacy/, 2014.10.

[31] Y. ZHOU, Z. WANG, W. ZHOU, X. JIANG, Hey, You,
Get Off of My Market: Detecting Malicious Apps in
Official and Alternative Android Markets. In NDSS,
2012.

[32] W. ENCK, M. ONGTANG, P. MCDANIEL, On
lightweight mobile phone application certification.
In Proceedings of the 16th ACM conference on
Computer and communications security, 2009.

[33] W. ENCK, D. OCTEAU, P. MCDANIEL, S. CHAUD-
HURI, A Study of Android Application Security. In
USENIX security symposium, 2, 2011.

[34] R. BURKE, Hybrid web recommender systems. In
The adaptive web, 2007.

[35] T. MAHMOOD, F. RICCI, Improving recommender
systems with adaptive conversational strategies. In
Proceedings of the 20th ACM conference on Hyper-
text and hypermedia, 2009.

[36] P. RESNICK, H. R. VARIAN, Recommender systems.
Communications of the ACM, 40, 1997.

[37] B. SANZ, I. SANTOS, C. LAORDEN, X. UGARTE-
PEDRERO, P.G.BRINGAS,On the automatic categori-
sation of android applications. In Consumer Com-
munications and Networking Conference (CCNC),
2012 IEEE, 2012.

Received: November, 2014
Revised: June, 2015

Accepted: August, 2015

Contact addresses:

Xiaoyuan Liang
Department of Computer Science

New Jersey Institute of Technology
Newark, NJ, USA

e-mail: xl367@njit.edu

Jie Tian
Department of Computer Science

New Jersey Institute of Technology
Newark, NJ, USA

e-mail: jt66@njit.edu

Xiaoning Ding
Department of Computer Science

New Jersey Institute of Technology
Newark, NJ, USA

e-mail: xiaoning.ding@njit.edu

Guiling Wang
Department of Computer Science

New Jersey Institute of Technology
Newark, NJ, USA

e-mail: gwang@njit.edu

XIAOYUAN LIANG started the Ph.D. studies in Computer Science De-
partment at the New Jersey Institute of Technology in 2013. He received
his Bachelor Degree in Information Security from the Department of
Computer Science and Engineering at Harbin Institute of Technology,
China, in 2013. His research interest includes wireless networks, intel-
ligent transportation and mobile applications.

JIE TIAN received the B.S. degree in computer science from the Tian-
jin University, Tianjin, China, in 2005, the M.S. degree in computer
science from the Nankai University, Tianjin, China, in 2008 and the
Ph.D. degree from the Department of Computer Science at New Jersey
Institute of Technology, USA, in 2015. He joined Audible Inc. as a
software development engineer in 2015. His research interest includes
wireless networks, ad hoc/sensor network and mobile computing.

XIAONING DING is an Assistant Professor of computer science at the
New Jersey Institute of Technology. His interests are in the area of ex-
perimental computer systems, such as distributed systems, cloud com-
puting, storage systems, and databsase systems. He earned his Ph.D.
degree in computer science and engineering from the Ohio State Uni-
versity in 2010. He may be reached at xiaoning.ding@njit.edu.

DR. GUILING WANG received the B.S. degree in software from the
Nankai University, Tianjin, China, and the Ph.D. degree in computer
science and engineering with a minor in statistics from the Pennsylvania
State University, State College, PA, USA, in 2006. After that, she joined
the New Jersey Institute of Technology (NJIT), Newark, NJ, USA. She
is currently an Associate Professor with tenure at NJIT. Her research
area includes mobile computing, intelligent transportation and wireless
sensor networks.

