
Journal of Computing and Information Technology - CIT 22, 2014, 3, 159–169
doi:10.2498/cit.1002361

159

Frequent Pattern-growth Algorithm on
Multi-core CPU and GPU Processors

Khedija Arour1 and Amani Belkahla2

1 Computer Science Department, National Institute of Applied Sciences and Technology, Tunis, Tunisia
2 Computer Science Department, Faculty of Sciences of Tunis, Tunisia

Discovering association rules that identify relationships
among sets of items is an important problem in data
mining. It’s a two steps process, the first step finds all
frequent itemsets and the second one constructs associ-
ation rules from these frequent sets. Finding frequent
itemsets is computationally the most expensive step in
association rules discovery algorithms. Utilizing parallel
architectures has been a viable means for improving FIM
algorithms performance. We present two FP-growth
implementations that take advantage of multi-core pro-
cessors and utilize new generation Graphic Processing
Units (GPU).

Keywords: association rule mining, frequent itemset
mining, GPU computing, parallel computing, GPGPU

1. Introduction

Frequent Itemset Mining (FIM) also known as
Frequent Pattern Mining is one of the most pop-
ular problems in data mining, which consists
of discovering frequently co-occurred itemsets
and then generating rules used in many decision
support applications. Frequent sets play an es-
sential role in many data mining tasks that try
to find interesting patterns from databases.

A FIM algorithm scans the database and finds
itemsets that occur in the transaction frequently
then a user-specified threshold. The challenges
in frequent itemsets mining derive from a large
size of a search space, which corresponds, in the
worst case, to the power of the set of items. To
quickly explore a large dataset through a FIM
tool, analysts ask for new techniques to improve
algorithm performance, by taking advantage of
the evolutions in parallel computing.

Thus, to exploit this opportunities, there is a
need for a new generation of FIM algorithms,

able to exploit the parallelism on multi and
many-core architectures by exploiting the per-
formance of microprocessors, that has been
steadily improved and theGeneral-Purpose com-
puting generation paradigm on Graphic Pro-
cessing Units (GPGPU).
With the emergency of the GPU as a hard-
ware accelerator for various non-graphics appli-
cations and GPGPU programming frameworks
that greatly reduce the complexity of GPGPU
computing, developers must carefully design
their algorithms in order to take full advan-
tages of the GPU’s massively multi-threaded
SIMD (Single Instruction, Multiple Data) ar-
chitecture. Previous works have taken advan-
tage of the massive computation power of the
new architecture by accelerating database oper-
ations [30, 31, 32], approximate stream mining
of quantiles and frequencies [29], MapReduce
[33] and k-means clustering [34].
In the best knowledge, there has been little work
that focuses on accelerating FIM algorithms on
the GPU, even though parallel FIM has been
studied on simultaneous multi threading (SMT)
processors [36], shared memory systems [37],
and, most recently, multi-core CPUs [8].
The key issue for studying FIM problems on
modern processors is how to fully exploit the
performance of the multi-core CPU and fully
utilize the GPU architectural features.

To improve the performance of the FIM algo-
rithm, we take one of the most known algo-
rithms, FP-growth [1], as our baseline and iden-
tify the optimizations to make FIM efficient on
modern processors. However, previous study
shows that the pointer-based nature of the FP-
tree is not cache friendly and requires costly

160 Frequent Pattern-growth Algorithm on Multi-core CPU and GPU Processors

dereferences, which prevents it from achiev-
ing satisfying performance on a modern pro-
cessor. This structure still underutilizes the
modern system due to poor data locality and
insufficient parallelism expression. To alleviate
these problems, we improve the cache perfor-
mance through the FP-array (Frequent Pattern
array) structure [8], proposed by Li and al. This
structure not only reduces the cache misses for
single-core processor, but alleviates also the off-
chip memory accesses and improves the scala-
bility of the multi-core processor.

The remainder of the paper is organized as fol-
lows. Section 2 introduces the related works.
We present FP-growth in Section 3. Section 4
develops the insufficiencies of pointer based
structure on modern processors. We present
FP-array structure and details of our two imple-
mentations in Section 5. Detailed experimental
evaluations are given in Section 6. Finally, we
offer conclusion and future works in Section 7.

2. Related Works

Several algorithms have been proposed in the
literature to overcome the scalability (size of
databases) and run-time performance of se-
quential algorithms. Apriori [10] is one of the
most popular applications for enumerating fre-
quent itemsets.

Many other FIM algorithms are proposed such
as DHP [9], DIC [19], Eclat [18] and Partition
[20] but they are I/O insufficient and suffer from
multi-scan problem. Salvatore et al. proposed
kDCI [21] (Direct Count and Intersect) and
ParDCI [22] but it requires at least 3 datasets
scan. FP-growth [1] proposed by Han et al.
consists of creating a compressed FP-tree struc-
ture for mining a complete set of frequent item-
sets without candidate generation. This struc-
ture is significantly smaller than the original
database, but its pointer based nature requires
costly dereferences and is not cache friendly,
which prevents it from achieving a good perfor-
mance on modern processors.

For more improving the cache performance,
Ghoting and al. [23] proposed a cache con-
scious FP-tree (CC-tree), a reorganization of
the original FP-tree by allocating the nodes in
sequential memory space and a tiling strategy
for temporal locality. This structure yields a

better cache performance than FP-growth, but
it still experiences cache misses when travers-
ing the CC-tree due to its tree structure. Razs
presented nonordfp [24] which implements FP-
growth without rebuilding the projected FP-tree
recursively to improve the cache performance.
Li et al. proposed an FP-growth implementa-
tion [8] based on two techniques: a cache con-
scious FP-array and a lock free parallelization
enhancement to improve data locality perfor-
mance and make use of the benefits from hard-
ware and software prefetching.

For performance improvement of this algorithm,
most researchers [2, 5, 7, 8, 3, 4] have been
made for parallelizing FP-growth. Pramudiono
and Kitsuregawa [2] reported results for parallel
FP-growth algorithm on shared nothing cluster
environment. In [7], Li et al. proposed a Par-
allel FP-growth that shard a large-scale mining
task into independent parallel tasks. Osmar et
al. presented a MLFPT (MultipleLocal FPtree)
approach [3] that consists of two main stages:
the first stage is the construction of a parallel
FP-tree for each processor and the second stage
is mining these data structures much like the
FP-growth algorithm.

In [5], Manaskasemsak et al. presented a paral-
lel version of FI-growth algorithm [6] that par-
allelizes the association rule mining process by
employing a data parallelism technique on a PC
cluster.

Researchers have also studied FIM algorithms
on new-generation graphics processing units
(GPUs), regarded as massively multi-threaded
many-core processors. Different from multi-
core CPUs, the cores on the GPU are virtual-
ized, and GPU threads are executed in SIMD
(Single Instruction, Multiple Data) and man-
aged by the hardware. Such a design simplifies
GPU programming and improves program scal-
ability and portability. Nevertheless, it makes
the implementation of algorithms with complex
control flows a challenging task on the GPU,
even though the GPU has an order of magni-
tude computation capability as well as memory
bandwidth higher than a multi-core CPU.

Taking advantage of the massive computation
power and the high memory bandwidth of the
GPU, there have been some studies that focus
on studying the GPU acceleration for FIM al-
gorithms.

Frequent Pattern-growth Algorithm on Multi-core CPU and GPU Processors 161

GPGPU for FIM algorithms was for the first
time addressed in [25], where Luo et al. pre-
sented two GPU-based implementations of the
well known Apriori algorithm, that takes ad-
vantage of the GPU’s massively multi-threaded
SIMD (Single instruction, multiple data) archi-
tecture. Both implementations employ a bitmap
data structure to exploit the GPU’s SIMD par-
allelism. One implementation runs entirely on
the GPU, since the other employs both the CPU
and the GPU for processing. Another Apriori
based FIM algorithm for GPU is presented in
[26], GPApriori, which includes a set of fine-
grained parallel data structures and algorithms
design to achieve premising degree of speed up
on modern GPU.

A different approach is proposed in [28] by
Teodoro and al. based on the Tree Projection
algorithm described in [35]. Nonetheless, Tree
Projection is not a state of the art algorithm for
FIM, as it is outperformed by FP-growth [1]. In
[27], Orlando and Silvestri proposed gpuDCI, a
parallel algorithm inspired by DCI [19] that ex-
ploits GPUs to efficiently mine frequent item-
sets. In [39], Zhang and al. proposed an
improved data-parallel algorithm derived from
the EquivalentClass Expansion (Eclat) method.
After candidate generation on the CPU, the al-
gorithm counts the support values of each can-
didate on GPU by vertical list intersection.

As our optimizations are presented in the con-
text of FP-growth algorithm, we will give, in the
next section, a description of this algorithm. We
will then illustrate the optimization introduced
in this algorithm for better implementation on
modern processors. As current FP-tree based
algorithms still under-utilize these systems due
to poor data locality and insufficient parallelism
expression, we propose a compact data structure
(FP-array: Frequent pattern array) to make use
of the benefits from multi-core and graphic ar-
chitectures. Our contributions will be described
in the following sections.

3. FP-growth Algorithm

FP-growth method proposed by Han et al. is
a depth-first algorithm based on data structure
called FP-tree (Frequent Pattern tree). The FP-
tree is a projected dataset, which provides a
compact representation of the original database.

Each node of the tree stores an item label and
a count, representing the number of the trans-
actions which contain all the items in the path
from the root node to the current node.

For constructing the FP-tree, FP-growth re-
quires two database scans when mining all fre-
quent itemsets. The first scan of the database de-
rives a list of the 1-itemsets, denoted as F, sorted
by item’s support in descending order. In the
second scan, the FP-tree is constructed, a com-
pressed representation of the original database.
For each transaction, its frequent items were
inserted into the FP-tree with item’s support de-
scending order. A new order is generated when
the node with the appropriate label is not found;
otherwise, the count of the existing nodes is
increased.

Once the FP-tree has been constructed, the fre-
quent itemsets mining can be performed. For
each item in the FP-tree, FP-growth finds all
frequent items in the conditional pattern base,
it recursively constructs a new FP-tree for this
conditional pattern base when it has at least two
frequent items. By concatenating each 1-item
with the frequent itemsets generated from con-
ditional FP-trees, all of the frequent itemsets are
discovered within the FP-tree.

4. Synthesis

Current pointer-based algorithms still under-
utilize modern processors due to the irregular
nature of this structure, its poor data locality
and insufficient parallelism expression. To al-
leviate this problem, exploit the thread level par-
allelism and take advantage from the advanced
characteristics of the graphic processor, we pro-
pose FP-array structure proposed by Li et al.
[8], which efficiently improves the data locality
performance.

FP-array is a data reorganization of the pointer
based tree, FP-tree, which has poor cache uti-
lization, mainly for these reasons. First, each
node in FP-tree has a total of 5 elements: an
item label, a count, a nodelink pointer, a parent
pointer and a list of child pointers. Thus, for
traversing FP-tree, only two fields in FP-tree
node are required; the item label and the parent
pointer. This significantly degrades cache line
utilization. Second, a node and each associated
child node may not be contiguous in memory

162 Frequent Pattern-growth Algorithm on Multi-core CPU and GPU Processors

due to the way that FP-tree is built. Third, two
nodes with the same item label cannot reside
in the same cache line due to the pointer based
data structure in nodelink. The next node with
the same item label can be represented in other
cache line due to the lack of temporal locality.
Transforming FP-tree into a compact and con-
tiguous data structure can efficiently improve
data locality performance.

5. Design and Implementations

In this section, we present our CPU and GPU
implementations based on FP-array structure,
presented in [8], which significantly improves
the cache performance. This structure uses two
simple static data structures; item array and
node array, which can efficiently improve data
locality performance and permit to exploit a lot
of data parallelism.

The two tables are allocated in contiguousmem-
ory space. The item array works essentially as
a replication of the FP-tree. The node array
permits to record the occurrences of frequent
items figured in item array. This structure is or-
ganized as an array list. Each list is associated
with one frequent item and each element in node
array corresponds to a node in FP-tree, which
has three fields; the begin position of an item in
the item array, reference count and transaction
size.

5.1. Construction of FP-tree and FP-array

To construct FP-array, we have made some
changes to the original process proposed by Li
and al. In [8], to build FP-array, authors tra-
verse FP-tree in depth-first order, copy the item
in each node to the item array sequentially and
then create array lists which record the occur-
rences of the frequent items in the item array.
In our approach called FP-growth+, FP-array
is created in parallel while building FP-tree as
described in algorithm 1.

The root of the tree is created and labelled as
null. The scan of the first transaction in the
database leads to create the first branch in the
tree and the corresponding nodes in node array.
While inserting a node n in FP-tree, a label item
of n is inserted in item array and a new node

is inserted in node array. For the second trans-
action, if its item list shares a common prefix
with the existing path in FP-tree, the count of
each node along the prefix is incremented by 1
and a new node is created and linked as a child
of the last node in the prefix. For each item in
the common prefix, its label item is inserted in
item array if the transaction doesn’t appear in
this structure. The count of the corresponding
items, which appear in the common prefix, is
incremented by 1 and a new node is created for
the rest of items in the transaction. Figure 1
illustrates the difference between the two meth-
ods.

Frequent Pattern-growth Algorithm on Multi-core CPU and GPU Processors 163

a) The proposed method

b) Li and al.’s method

Figure 1. The difference between Li and al. method and
our proposed method to construct FP-array.

The scan of the first transaction (f,c,a,m,p) in
the database leads to the construction of the
first node branch in FP-tree and its correspond-
ing nodes in FP-array: the process starts from
node f, the first child node of the root. The la-
bel item of the node f, created and labeled into
FP-tree, is inserted in item array and its corre-
sponding node (0, 1, 0) is inserted then in node
array. The rest of the first branch in FP-tree
(c:1), (a:1), (m:1), (p:1) and its corresponding
members (1, 1, 1), (2, 1, 2), (3, 1, 3), (4, 1, 4)
are then inserted in node array. For the second
transaction (f,c,a,b,m), since its frequent items
share a common prefix (f,c,a) with the existing
path, the count of each item in FP-tree, which
appears in the common prefix, is incremented
by 1 and the corresponding node arraymembers
are updated. A new node (b:1) is then created
and linked as a child node of (a:2), its label item
is inserted in item array and a new node (7, 1, 3)
in node array. Another node (m:1), new child

node of (b:1), is also created in FP-tree, its label
item and corresponding node (8, 1, 4) are then
inserted respectively in item array and node ar-
ray.

This method eliminates redundancy in item ar-
ray construction, which can decrease the mem-
ory consumption and improve the cache perfor-
mance.

5.2. CPU Parallel Implementation

We describe in this section the FP-growth im-
plementation for multi-core processor.

The proposed solution employs transaction pro-
cessing parallelism, which divides the transac-
tions among different CPU threads to be in-
serted in FP-tree, then in FP-array structure.
Processing the transactions in parallel may need
to update the same node in FP-tree and the same
cell in node array.

This problem may be solved by creating critical
section to avoid threads to update nodes con-
currently. Our solution is to create a critical
section associated with a level tree, thus only a
thread can update a node in FP-tree and node
array. This approach is simple and inexpensive
in terms of overhead. It imposes barriers among
threads accessing different nodes.

5.3. GPU Frequent Itemsets Discovering

The FP-growth is one of the most important
FIM algorithms, which makes it an interesting
candidate for GPU acceleration.

In this section, we describe gpuFP-growth+, a
parallel algorithm based on FP-growth that ex-
ploits the performance of the graphic processor
to mine frequent itemsets. The basic idea be-
hind our algorithm is to start computation on
CPU, count frequent 1-itemsets and build item
array and node array, which records the occur-
rences of frequent 1-itemsets in the item array.
The array lists, which are associated with fre-
quent 1-itemsets, are maintained by the host,
however item array is moved to the GPU global
memory. Figure 2 shows how the FP-growth+
is executed on CPU and GPU.

164 Frequent Pattern-growth Algorithm on Multi-core CPU and GPU Processors

Figure 2. Process of FP-growth+ on GPU.

The proposed parallelization of the Generate-
FreqItemsets procedure is implemented as a
GPU kernel, that processes the array lists in
the FP-array, using OpenCL [40]. Since array
lists are organized in lines, one dimension in-
dex space is enough. Before launching the GPU
GenerateFreqItemsets kernel, the host program
defines the kernel’s context and manages its ex-
ecution. The largest possible contiguous block
of free memory on the GPU is allocated to store
generated new structures and results. When the
kernel is submitted for execution, the CPU host
defines the computation domain, while each in-
dependent element of execution in this domain
is a work-item (or thread). During the proce-
dure, each array list in node array is delivered
to global memory on GPU and is stored using
a vector as shown in Figure 3. The work-items
are organized into independent work-groups (or
blocks), where each work-item executes con-
currently within a single compute unit. Work-
items into a work-group work on the same array

list to generate frequent sets corresponding to a
giving item. Each work-item is in charge of a
portion of the array list, in such way that threads
having the consecutive indexes work on consec-
utive parts of the array list. New frequent sets
are generated by intersecting the old sets with
the common prefix in the top of the stack. New
projected node array, represented by a set of
array lists, and item array corresponding to a
given array list are then generated and stored
using a vector. An auxiliary index is created
to identify the beginning of each array list into
the new projected node array where it is stored.
The algorithm expands repeatedly the allocated
index space by traversing the array list and con-
structing the new projected node array and item
array structures. The process is repeated until
the projected node array created is empty.

Afterwards, the generated sets are written back
to global memory and then copied back to CPU
memory. The array lists are deallocated by the

Figure 3. Array lists representation on GPU.

Frequent Pattern-growth Algorithm on Multi-core CPU and GPU Processors 165

program in order to exploit the memory space
to store the new projected node array and item
array structures corresponding to the next array
list in the original node array maintained by the
host.

6. Experimental Evaluation

In this section, we evaluate the performance of
our implementations. We used several real and
synthetic data to compare the execution time of
these implementations based on FP-growth al-
gorithm with various thresholds. The datasets
are downloaded from the Frequent Itemset Min-
ing Implementation repository. Table 1 summa-
rizes the characteristics of these datasets with
different number of items, the number of trans-
actions and the average transaction length in
each dataset.

Dataset #Transactions #Items
Average

transaction
length

T40I10D100K 100000 1000 40
RETAIL 88162 16470 13

KOSARAK 990000 1530 5
CONNECT 67775 130 43

CHESS 3196 76 37

Table 1. Database characteristics.

All of the following tests were run on a dual 2.1
GHz Intel Core i3 processor with ATI Radeon
GPU and 4 gigabytes of main memory, running
on Windows7. The source code was written and
compiled using the Visual Studio 2008. The
version of OpenCL is 1.1. The running times
of different implementations on the test datasets
are displayed in Figures 4 and 5.

6.1. FP-growth+ on Multi-core Processor

This section analyzes the FP-growth+ on multi-
core system. For more improving the perfor-
mance of this implementation,weusedFP-array
data structure.

The code is analyzed using the Intel Vtune Am-
plifier1, which collects profiling information
with hardware-based event sampling. In our
case, we consider the CPI ratio (Clock Per In-
struction), used as a cumulative performance
metric to determine if the execution on a multi-
core processor is efficient and how it can be
improved further. High values of CPI indicate
that the code performs sub-optimally, which can
be caused by execution stalls due to branch mis-
predictions, cachemisses, and other undesirable
effects.

The result of analysis of our code is showed in
Table 2. We compared the performance charac-
teristics of the pointer based FP-growth and our
implementation based on FP-array data struc-
ture in terms of CPI.

Dataset FP-growth FP-growth+

T40I10D100K 3 1.5
CONNECT 3 1
KOSARAK 2 1.5

CHESS 1.5 1
RETAIL 2 1.5

Table 2. Cache performance: CPI metric.

From Table 2, it is evident that we achieve a sig-
nificant performance improvement due to trans-
forming FP-tree to the compact data structure
FP-array. This result shows that FP-array is
a cache friendly structure. It removes point-
ers and stores all data sequentially in memory,
which improves the cache locality performance.
On the other hand, FP-tree based FP-growth
employs a pointer based tree structure. These
irregular data references will break the data spa-
tial locality.

In this section, we compare also the parallel
execution time between our proposed FP-array
based FP-growth, FP-growth+, and the origi-
nal implementation of the same algorithm. In
Figure 4, we present the multi-core CPU im-
plementation speedup over the sequential CPU
version for the datasets Retail, T40I10D100K,
Kosarak and Chess as the support is varied.
For the datasets, the proposed solution achieved
good scalability while increasing the number of
threads.

1 http://software.intel.com/en-us/intel-vtune-amplifier-xe

166 Frequent Pattern-growth Algorithm on Multi-core CPU and GPU Processors

a) Retail

b) T40I10D100K

c) Chess

d) Kosarak

Figure 4. FP-growth+ on multi-core processor.

6.2. FP-growth+ on GPU

The FP-growth implementation to GPU is eval-
uated in this section. Firstly, Table 3 and Fig-
ure 5 present the proposed GPU based FP-
growth speedup over the sequential CPU ver-
sion as the support is varied. Table 3 and
Figure 5 show the absolute execution times
for each processor and the datasets Retail and
T40I10D100K.

Dataset
Minsup

(%)
Time
(CPU)

Time
(GPU) Speed up

RETAIL 0.9 4.6 0.26 17.7
1.1 1.75 0.2 8.75
1.7 0.35 0.04 8.75
2.7 0.15 0.03 5

T40I10D100K 15 1.6 0.05 32
16 0.94 0.03 31.3
18 0.19 0.02 9.5

Table 3. Speed up on multi-core processor vs. GPU.

a) Retail

b) T40I10D100K

Figure 5. FP-growth+ on GPU.

Frequent Pattern-growth Algorithm on Multi-core CPU and GPU Processors 167

These results show that our proposed GPU-
based FP-growth is much more efficient when
compared to the CPU-based version, and is
also capable of scaling up the support decreases.
Our experiments show that the GPU achi-
eved speedup over the sequential FP-growth
of 17x and 32x respectively for Retail and
T40I10D100K datasets.

Although gains of the GPU version of FP-
growth over the CPU-based version still high
as the support decreases. Figure 5 shows that
the GPU relative performance is high as the
support decreases for Retail and T40I10D100K
datasets. This behavior is due to the increasing
of occupancy on GPU.

7. Conclusion and Future Works

In this paper, we show that the existing fre-
quent itemset mining implementations like FP-
growth are still under-utilized on modern pro-
cessors due to poor data locality performance
and low thread level parallelism. We used
FP-array structure to resolve this problem and
improve the data locality performance. We
presented also a multi-core and a GPU-based
implementation of FP-growth algorithm, and
also a detailed analysis of algorithm’s perfor-
mance on this modern processor. The experi-
mentations showed that our proposed solution
achieved good scalability while increasing the
number of threads. Our GPU-based implemen-
tation of the FP-growth algorithm, on the other
hand, outperformed the CPU implementation in
up to 32x when compared to the sequential ver-
sion. As future work, we intend to evaluate the
performance of our proposed GPU implemen-
tation of FP-growth with less support threshold
and to compare the results with the results of
other authors.

References

[1] H. JIAWEI, P. JIAN, Y. YIWEN, Mining frequent pat-
terns without candidate generation. In Proceedings
of the 2000 ACM SIGMOD International Confer-
ence on Management of Data, (2000) Dallas, Texas,
USA, pp. 1–12.

[2] I. PRAMUDIONO, M. KITSUREGAWA, Parallel FP-
growth on PC Cluster. In Proceedings of the 7th
Pacific-Asia Conference on Advances in Knowledge

Discovery and Data Mining, PAKDD’03, (2003)
Seoul, Korea, pp. 467–473. http://dl.acm.org/
citation.cfm?id=1760894.1760956

[3] O. R. ZAIANE, M. EL-HAJJ, P. LU, Fast parallel
association rules mining without candidacy gener-
ation. Proceedings of the 2001 IEEE International
Conference on Data Mining, (2001).

[4] A. JAVED, A. KHOKHAR, Frequent pattern mining
on message passing multiprocessor systems. Dis-
tributed and Parallel Databases, 16(3) (2004),
321–334.,

[5] B. MANASKASEMSAK, N. BENJAMAS, A. RUNG-
SAWANG, A. SURARERKS, P. UTHAYOPAS, Parallel
association rule mining based on FI-growth algo-
rithm. Parallel and Distributed Systems, Interna-
tional Conference on, 1 (2007), 1–8.
http://doi.ieeecomputersociety.org/
10.1109/ICPADS.2007.4447743.

[6] K. AMPHAWAN, A. SURARERKS, An approach of
frequent item tree for association generation. In
Proceedings of Artificial Intelligence and Soft Com-
puting, (2005).

[7] H. LI, Y. WANG, D. ZHANG, M. ZHANG, E. Y.
CHANG, Parallel Fp-growth for Query Recommen-
dation.Proceedings of the 2008ACM Conference on
Recommender Systems, (2008) Lausanne, Switzer-
land, pp. 107–114.

[8] E. LI, L. LIU, Optimization of Frequent Itemset
Mining on Multiple-Core Processor. Proceedings of
the 33rd International Conference on Very Large
Data Bases, (2007) University of Vienna, Austria,
pp. 23–27.

[9] J. S. PARK, M.-S. CHEN, P. S. YU, An effective
hash-based algorithm for mining association rules.
In Proceedings of the 1995 ACM SIGMOD Interna-
tional Conference on Management of Data, (1995),
pp. 175–186.

[10] R. AGRAWAL, R. SRIKANT, Fast algorithms for min-
ing association rules. Proceedings of the 20th In-
ternational Conference on Very Large Data Bases,
(1994).

[11] R. AGRAWAL, T. IMIELIŃSKI, A. SWAMI, Mining As-
sociation Rules Between Sets of Items in Large
Databases. SIGMOD Rec., 22(2) (1993), 207–216.
http://doi.acm.org/10.1145/170036.170072

[12] S. BRIN, R. MOTWANI, C. SILVERSTEIN, Generaliz-
ing association rules to correlations. Proceedings of
the 1997 ACM SIGMOD international conference
on Management of data, (1997), pp. 265–276.

[13] C. SILVERSTEIN, S. BRIN, R. MOTWANI, J. ULLMAN,
Scalable Techniques for Mining Causal Structures.
Data Min. Knowl. Discov., 4(2-3) (2000), 163–192.
http://dx.doi.org/10.1023/A:1009891813863

[14] R. AGRAWAL, R. SRIKANT, Mining Sequential Pat-
terns. Proceedings of the Eleventh International
Conference on Data Engineering, ICDE ’95,
(1995), pp. 3–14. http://dl.acm.org/
citation.cfm?id=645480.655281

168 Frequent Pattern-growth Algorithm on Multi-core CPU and GPU Processors

[15] H. MANNILA, H. TOIVONEN, A. INKERI VERKAMO,
Discovery of Frequent Episodes in Event Sequences.
Data Min. Knowl. Discov., 1(3) (1997), 259–289.
http://dx.doi.org/10.1023/A:1009748302351

[16] J. HAN, Efficient Mining of Partial Periodic Patterns
in Time Series Database. Proceedings of the 15th In-
ternational Conference on Data Engineering, ICDE
’99, (1999), pp. 106. http://dl.acm.org/
citation.cfm?id=846218.847205

[17] G. DONG, J. LI, Efficient Mining of Emerg-
ing Patterns: Discovering Trends and Dif-
ferences. In Proceedings of the Fifth ACM
SIGKDD International Conference on Know-
ledge Discovery and Data Mining, KDD ’99,
(1999) San Diego, California, USA, pp. 43–52.
http://doi.acm.org/10.1145/312129.
312191

[18] M. J. ZAKI, S. PARTHASARATHY, M. OGIHARA, W.
LI, New Algorithms for Fast Discovery of Associ-
ation Rules. In Proceedings of the 3rd Intl. Conf.
on Knowledge Discovery and Data Mining, (1997),
pp. 283–286.
http://www.aaai.org/Library/KDD/1997/
kdd97-060.php

[19] S. BRIN, R. MOTWANI, C. SILVERSTEIN, Beyond
Market Baskets: Generalizing Association Rules to
Correlations. SIGMOD Rec., 26(2) (1997), 265–
276.
http://doi.acm.org/10.1145/253262.253327

[20] A. SAVASERE, E. ASHOKANSKI, S. B. NAVATHE, An
EfficientAlgorithm for MiningAssociation Rules in
LargeDatabases. InProceedings of the 21th Interna-
tional Conference on Very Large Data Bases, VLDB
’95, (1995), pp. 432–444. http://dl.acm.org/
citation.cfm?id=645921.673300

[21] S. ORLANDO, C. LUCCHESE, P. PALMERINI, R.
PEREGO, F. SILVESTRI, kDCI: a Multi-Strategy Al-
gorithm for Mining Frequent Sets. In Proceedings
of the Workshop on Frequent Itemset Mining Im-
plementations, ICDM 2003, (2003), Melbourne,
Florida, USA. http://SunSITE.Informatik.
RWTH-Aachen.de/Publications/CEUR-WS//
Vol-90/palmerini.pdf

[22] S. ORLANDO, P. PALMERINI, R. PEREGO, F. SIL-
VESTRI, An efficient parallel and distributed al-
gorithm for counting frequent sets. In Proceedings
of VECPAR, (2002).

[23] A. GHOTING, G. BUEHRER, S. PARTHASARATHY, D.
KIM, A. D. NGUYEN, Y.-K. CHEN, P. DUBEY, Cache-
conscious Frequent Pattern Mining on a Modern
Processor. In VLDB (K. BÖHM, C. S. JENSEN, L. M.
HAAS, M. L. KERSTEN, P.-A. LARSON, B. C. OOI,
Eds.), (2005) pp. 577–588. ACM.

[24] B.RÁCZ, nonordfp: An FP-growth variationwithout
rebuilding the FP-tree. In FIMI, CEUR Workshop
Proceedings, (R. J. BAYARDO, B. GOETHALS, M.
J. ZAKI, Eds.), (2004). http://sunsite.info-
rmatik.rwth-aachen.de/Publications/
CEUR-WS/Vol-126/racz.pdf

[25] W. FANG, M. LU, X. XIAO, B. HE, Q. LUO, Fre-
quent itemset mining on graphics processors. In
Proceedings of the Fifth International Workshop
on Data Management on New Hardware, DaMoN
2009, (2009) Providence, Rhode Island, USA, pp.
34–42.

[26] F. ZHANG, Y. ZHANG, J. D. BAKOS, GPApriori:
GPU-Accelerated Frequent Itemset Mining. In Pro-
ceedings of the 2011 IEEE InternationalConference
on Cluster Computing (CLUSTER), (2011) Austin,
TX, USA, pp. 590–594.

[27] C. SILVESTRI, S. ORLANDO, gpuDCI: Exploiting
GPUs in Frequent Itemset Mining. In Proceedings
of the 20th Euromicro International Conference
on Parallel, Distributed and Network-Based Pro-
cessing, PDP 2012, (2012) Munich, Germany pp.
416–425.

[28] G. TEODORO, N. MARIANO, W. MEIRA JR., R. FER-
REIRA, Tree Projection-Based Frequent Itemset
Mining on Multicore CPUs and GPUs. 22nd In-
ternational Symposium on Computer Architecture
and High Performance Computing, SBAC-PAD,
(2010) Petropolis, Brazil, pp. 47–54.

[29] N. K. GOVINDARAJU, N. RAGHUVANSHI, D.
MANOCHA, Fast and Approximate Stream Min-
ing of Quantiles and Frequencies Using Graphics
Processors. In Proceedings of the ACM SIGMOD
International Conference on Management of Data,
(2005) Baltimore, Maryland, USA, pp. 611–622.

[30] N. GOVINDARAJU, J. GRAY, R. KUMAR, D.
MANOCHA, GPUTeraSort: high performancegraph-
ics co-processor sorting for large database manage-
ment. In Proceedings of the 2006 ACM SIGMOD
international conference on Management of data,
SIGMOD ’06, (2006) Chicago, IL, USA, pp. 325–
336.

[31] N. K. GOVINDARAJU, B. LLOYD, W. WANG, M. C.
LIN, D. MANOCHA, Fast Computation of Database
Operations using Graphics Processors. Proceedings
of the ACM SIGMOD International Conference on
Management of Data, (2004) Paris, France, pp.
215–226.

[32] B. HE, K. YANG, R. FANG, M. LU, N. K. GOVIN-
DARAJU, Q. LUO, P. V. SANDER, Relational joins on
graphics processors. Proceedings of the ACM SIG-
MOD International Conference on Management
of Data, SIGMOD 2008, (2008) Vancouver, BC,
Canada, pp. 511–524.

[33] B. HE, W. FANG, Q. LUO, N. K. GOVINDARAJU, T.
WANG, Mars: a MapReduce framework on graph-
ics processors. 17th International Conference on
Parallel Architecture and Compilation Techniques
(PACT 2008), (2008) Toronto, Ontario, Canada, pp.
260–269.

[34] S. CHE, M. BOYER, J. MENG, D. TARJAN, J. W.
SHEAFFER, K. SKADRON, A performance study of
general-purposeapplications on graphics processors
using CUDA. J. Parallel Distrib. Comput., 68(10)
(2008), 11.

Frequent Pattern-growth Algorithm on Multi-core CPU and GPU Processors 169

[35] R. C. AGARWAL, C. C. AGGARWAL, V. V. V. PRASAD,
A Tree Projection Algorithm for Generation of
Frequent Item Sets. J. Parallel Distrib. Comput.,
6K1(3) (2001), 350–371.

[36] A. GHOTING, G. BUEHRER, S. PARTHASARATHY, D.
KIM, A. D. NGUYEN, Y.-K. CHEN, P. DUBEY, Cache-
conscious Frequent Pattern Mining on a Modern
Processor. Proceedings of the 31st International
Conference on Very Large Data Bases, (2005)
Trondheim, Norway, pp. 577–588.

[37] M. J. ZAKI, Y. GUO, R. GROSSMAN, Parallel Data
Mining for Association Rules on Shared-memory
Systems. Knowledge and Information Systems,
(1998).

[38] J. TOMPSON, K. SCHLACHTER, An Introduction to
the OpenCL Programming Model, 2012.

[39] F. ZHANG, Y. ZHANG, J. D. BAKOS, Accelerating fre-
quent itemset mining on graphics processing units.
The Journal of Supercomputing, 66(1) (2013), 94–
117. http://dx.doi.org/10.1007/s11227-
013-0887-x

[40] J. TOMPSON, K. SCHLACHTER, An Introduction to
the OpenCL Programming Model, 2012.

Received: February, 2014
Revised: June, 2014

Accepted: July, 2014

Contact addresses:

Khedija Arour
Computer Science Department

National Institute of Applied Sciences and Technology
1080 Tunis

Tunisia
e-mail: khedija.arour@issatm.rnu.tn

Amani Belkahla
Computer Science Department

Faculty of Sciences of Tunis
1060 Tunis

Tunisia
e-mail: amani.belkahla@gmail.com

KHEDIJA AROUR received his Engineering diploma and Ph.D. degree
from the Department of Computer Science of the Science Faculty of
Tunis, Tunisia in 1992 and 1996, respectively. She is currently an
assistant professor in the Department of Computer Science and Math-
ematics at National Institute of Science and Applied Technology of
Tunis, Tunisia, Carthage University. Dr. Arour’s research interests are
mainly in haute performance data mining and large scale information
retrieval systems.

AMANI BELKAHLA received his Master in Applied Informatics from the
Faculty of Economics and Management Management of Nabeul and Re-
search Master in Computer Science from the Department of Computer
Science of the Science Faculty of Tunis, Tunisia in 2014. Belkahla’s
research interests are mainly in haute performance data mining under
multicores and GPU processors.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.3
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /Unknown

 /CreateJDFFile false
 /Description <<
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000500044004600200064006f007400e900730020006400270075006e00650020007200e90073006f006c007500740069006f006e002000e9006c0065007600e9006500200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200061006d00e9006c0069006f007200e90065002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /JPN <FEFF3053306e8a2d5b9a306f30019ad889e350cf5ea6753b50cf3092542b308000200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e0020006d00690074002000650069006e006500720020006800f60068006500720065006e002000420069006c0064006100750066006c00f600730075006e0067002c00200075006d002000650069006e0065002000760065007200620065007300730065007200740065002000420069006c0064007100750061006c0069007400e400740020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d00610020007200650073006f006c007500e700e3006f00200064006500200069006d006100670065006d0020007300750070006500720069006f0072002000700061007200610020006f006200740065007200200075006d00610020007100750061006c0069006400610064006500200064006500200069006d0070007200650073007300e3006f0020006d0065006c0068006f0072002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e0030002000650020007300750070006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f8006a006500720065002000620069006c006c00650064006f0070006c00f80073006e0069006e006700200066006f00720020006100740020006600e50020006200650064007200650020007500640073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e0020006d00650074002000650065006e00200068006f0067006500720065002000610066006200650065006c00640069006e00670073007200650073006f006c007500740069006500200076006f006f0072002000650065006e0020006200650074006500720065002000610066006400720075006b006b00770061006c00690074006500690074002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006e0020006d00610079006f00720020007200650073006f006c00750063006900f3006e00200064006500200069006d006100670065006e00200070006100720061002000610075006d0065006e0074006100720020006c0061002000630061006c006900640061006400200061006c00200069006d007000720069006d00690072002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f0069006400610061006e0020006c0075006f006400610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e002000740075006c006f0073007400750073006c00610061007400750020006f006e0020006b006f0072006b006500610020006a00610020006b007500760061006e0020007400610072006b006b007500750073002000730075007500720069002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a00610020004100630072006f006200610074002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000500044004600200063006f006e00200075006e00610020007200690073006f006c0075007a0069006f006e00650020006d0061006700670069006f00720065002000700065007200200075006e00610020007100750061006c0069007400e00020006400690020007300740061006d007000610020006d00690067006c0069006f00720065002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f80079006500720065002000620069006c00640065006f00700070006c00f80073006e0069006e006700200066006f00720020006200650064007200650020007500740073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e00740020006d006500640020006800f6006700720065002000620069006c0064007500700070006c00f60073006e0069006e00670020006f006300680020006400e40072006d006500640020006600e50020006200e400740074007200650020007500740073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 /GRE <FEFF03A703C103B703C303B903BC03BF03C003BF03B903AE03C303C403B5002003B103C503C403AD03C2002003C403B903C2002003C103C503B803BC03AF03C303B503B903C2002003B303B903B1002003BD03B1002003B403B703BC03B903BF03C503C103B303AE03C303B503C403B5002003AD03B303B303C103B103C603B10020005000440046002003BC03B5002003C503C803B703BB03CC03C403B503C103B7002003B103BD03AC03BB03C503C303B7002003B503B903BA03CC03BD03C903BD002003B303B903B1002003B203B503BB03C403B903C903BC03AD03BD03B7002003C003BF03B903CC03C403B703C403B1002003B503BA03C403CD03C003C903C303B703C2002E0020039C03C003BF03C103B503AF03C403B5002003BD03B1002003B103BD03BF03AF03BE03B503C403B5002003C403B1002003AD03B303B303C103B103C603B10020005000440046002003BC03AD03C303C9002003C403BF03C50020004100630072006F006200610074002003BA03B103B9002000520065006100640065007200200035002E0030002003BA03B103B9002003BC03B503C403B103B303B503BD03AD03C303C403B503C103C903BD002003B503BA03B403CC03C303B503C903BD002E>
 /ARA <FEFF06270633062A062E062F0645002006470630064700200627064406360648062706280637002006440625064606340627062100200648062B06270626064200200050004400460020062806230639064406490020062F06420629002006440644063506480631062900200645064600200623062C06440020062A062D0633064A06460020062C0648062F062900200627064406370628062706390629002E0020064A064506430646002006440648062B06270626064200200050004400460020062306460020064A062A064500200641062A062D064706270020064506390020004100630072006F0062006100740020064800520065006100640065007200200035002E003000200648062706440623062D062F062B002E>
 /CZE <FEFF005400610074006F0020006E006100730074006100760065006E00ED00200070006F0075017E0069006A007400650020006B0020007600790074007600E101590065006E00ED00200064006F006B0075006D0065006E0074016F0020005000440046002000730020007600790161016100ED006D00200072006F007A006C006901610065006E00ED006D0020006F006200720061007A016F002C002000610062007900730074006500200064006F007300E10068006C00690020007600790161016100ED0020006B00760061006C0069007400790020007400690073006B0075002E00200044006F006B0075006D0065006E007400790020005000440046002000620075006400650020006D006F017E006E00E90020006F007400650076015900ED007400200076002000700072006F006700720061006D0065006300680020004100630072006F00620061007400200061002000520065006100640065007200200035002E0030002000610020006E006F0076011B006A016100ED00630068002E>
 /HUN <FEFF0045007A0065006B006B0065006C0020006100200062006500E1006C006C00ED007400E10073006F006B006B0061006C00200068006F007A0068006100740020006C00E9007400720065002000610020006A006F006200620020006E0079006F006D00740061007400E1007300690020006D0069006E0151007300E90067002000E9007200640065006B00E900620065006E0020006D00610067006100730061006200620020006B00E9007000660065006C0062006F006E007400E1007300FA002000500044004600200064006F006B0075006D0065006E00740075006D006F006B00610074002E00200041002000500044004600200064006F006B0075006D0065006E00740075006D006F006B00200061007A0020004100630072006F006200610074002000E9007300200061002000520065006100640065007200200035002E0030002C00200069006C006C00650074007600650020006B00E9007301510062006200690020007600650072007A006900F3006900760061006C0020006E00790069007400680061007400F3006B0020006D00650067002E>
 /POL <FEFF0055017C0079006A0020007400790063006800200075007300740061007700690065014400200064006F002000740077006F0072007A0065006E0069006100200064006F006B0075006D0065006E007400F3007700200050004400460020007A002000770079017C0073007A010500200072006F007A0064007A00690065006C0063007A006F015B0063006901050020006F006200720061007A006B00F30077002C0020007A0061007000650077006E00690061006A0105006301050020006C006500700073007A01050020006A0061006B006F015B0107002000770079006400720075006B00F30077002E00200044006F006B0075006D0065006E0074007900200050004400460020006D006F0067010500200062007901070020006F007400770069006500720061006E00650020007A006100200070006F006D006F00630105002000700072006F006700720061006D00F300770020004100630072006F0062006100740020006F00720061007A002000520065006100640065007200200035002E00300020006C007500620020006E006F00770073007A007900630068002E>
 /RUS <FEFF04180441043F043E043B044C04370443043904420435002004340430043D043D044B04350020043F043004400430043C043504420440044B00200434043B044F00200441043E043704340430043D0438044F0020005000440046002D0434043E043A0443043C0435043D0442043E04320020044100200431043E043B0435043500200432044B0441043E043A0438043C00200440043004370440043504480435043D04380435043C00200441002004460435043B044C044E0020043F043E043B044304470435043D0438044F0020043B04430447044804350433043E0020043A04300447043504410442043204300020043F04350447043004420438002E0020005000440046002D0434043E043A0443043C0435043D0442044B0020043E0442043A0440044B04320430044E04420441044F002004320020043F04400438043B043E04360435043D0438044F04450020004100630072006F00620061007400200438002000520065006100640065007200200035002E003000200028043800200431043E043B043504350020043F043E04370434043D04380445002004320435044004410438044F04450029002E>
 /TUR <FEFF004400610068006100200069007900690020006200610073006B01310020006B0061006C006900740065007300690020006900E70069006E002000640061006800610020007900FC006B00730065006B0020006700F6007200FC006E007400FC002000E700F6007A00FC006E00FC0072006C00FC011F00FC006E0065002000730061006800690070002000500044004600200064006F007300790061006C0061007201310020006F006C0075015F007400750072006D0061006B00200061006D0061006301310079006C006100200062007500200061007900610072006C0061007201310020006B0075006C006C0061006E0131006E002E002000500044004600200064006F007300790061006C0061007201310020004100630072006F006200610074002000520065006100640065007200200035002E003000200076006500200073006F006E00720061007301310020007300FC007200FC006D006C0065007200690079006C00650020006100E70131006C006100620069006C00690072002E>
 /HEB (Use these settings to create PDF documents with higher image resolution for improved printing quality. The PDF documents can be opened with Acrobat and Reader 5.0 and later.)
 /ENU (Use these settings to create PDF documents with higher image resolution for improved printing quality. The PDF documents can be opened with Acrobat and Reader 5.0 and later.)
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [666.142 926.929]
>> setpagedevice

