
Journal of Computing and Information Technology - CIT 19, 2011, 4, 275–283
doi:10.2498/cit.1002023

275

Solving the Class Responsibility
Assignment Problem
Using Metaheuristic Approach

Goran Glavaš and Krešimir Fertalj
Faculty of Electrical Engineering and Computing, University of Zagreb, Croatia

Assigning responsibilities to classes is among first and
arguably most important steps when creating object-
oriented software design. This step depends greatly on
human judgment and experience. In this paper our objec-
tive is to automatize assigning responsibilities to classes
using metaheuristic optimization algorithms. Four differ-
ent algorithms (simple genetic algorithm, hill climbing,
simulated annealing and particle swarm optimization),
using class coupling and cohesion metrics, were imple-
mented and their results are compared. Implemented
algorithms take semantically annotated responsibility
dependency graph as input. This paper describes respon-
sibility dependency graph, implemented algorithms and
used coupling and cohesion metrics in detail. Paper also
reports on a performed case study. Ultimately, based
on results obtained from all implemented algorithms,
conclusions on search landscape of class responsibility
assignment problem are drawn.

Keywords: class responsibility assignment, genetic algo-
rithm, hill climbing, simulated annealing, particle swarm
optimization

1. Introduction

Obtaining good software design in general is a
difficult task and creating object-oriented (OO)
software design is a very complex process that
includes several steps. Initial steps include rec-
ognizing key abstraction in problem domain
(i.e. class candidates) and assigning respon-
sibilities of a system to them [3]. Initial de-
sign, with responsibilities assigned to classes,
serves as basis for applying more advanced
OO mechanisms like inheritance, interfaces, ab-
stract classes etc. Having responsibilities as-
signed and fine-tuning mechanisms like inter-
faces and inheritance applied experienced de-
signer could, finally, add design patterns and

possibly architectural styles to further improve
design. However, poor assignment of responsi-
bilities to classes cannot be fixed by inheritance
or design patterns. Admittedly, there are well-
described methodologies created to help recog-
nize responsibilities of a system [13] as well as
assign them to classes [6], but all of them rely
on human reasoning.

In this paper we address class responsibility as-
signment as a search problem, making it fit for
application of metaheuristic (MH) algorithms.
Our objective is to compare different MH algo-
rithms and investigate how suitable they are for
solving class responsibility assignment prob-
lem. We use responsibility dependency graph
(RDG) as a starting point for design creation
opposed to much more often used approach
of improving existing assignment of respon-
sibilities to classes (i.e. OO design refactor-
ing). Our work primarily focuses on domain
model classes and assigning responsibilities on
a higher level of abstraction.

Our work includes implementation of four dif-
ferent search algorithms: genetic algorithm
(GA), hill climbing (HC), simulated annealing
(SA) and particle swarm optimization (PSO).
All algorithms use same class coupling and
cohesion metrics in order to find optimal or
near-optimal solution to class responsibility as-
signment problem. Implementation of several
different MH algorithms (with different search
characteristics) and comparing their results on a
case study offers insight to the nature of search
landscape.

The rest of the paper is structured as follows.
Section 2 describes related work. Section 3 pro-

276 Solving the Class Responsibility Assignment Problem Using Metaheuristic Approach

vides details on our representation of the prob-
lem, semantically annotated RDG and cohesion
and coupling metrics used for evaluation. In
Section 4 we describe all four implemented MH
algorithms. Case study and performance results
MH algorithms are provided in Section 5. Dis-
cussion of results and conclusions are drawn in
Section 6.

2. Related Work

During the last decade there has been a signifi-
cant tendency to formulate software engineering
problems as search problems,making them suit-
able for metaheuristic search algorithms appli-
cation. Large variety of problems, throughout
all phases of software engineering project’s life-
cycle, have been formulated and dealt with as
search problems [8, 10]. However, the amount
of search-related work in the subfield of soft-
ware architecture and design has been signifi-
cantly lower than in other subfields (like test-
ing and maintenance) of software engineering
[11]. Also, most of the work considering design
and architecture can be categorized as software
maintenance or re-engineering [17]. There has
been very little work reported on metaheuristic
design synthesis from requirements.

In [18] genetic algorithm with fairly complex
chromosome, encoding is used to synthesize
object-oriented architecture of a system based
on requirements given in the form of responsi-
bility dependency graph. We follow this idea
of RDG being an input for MH algorithms, but
we expand RDG with semantic annotations. We
argue that these annotations are not domain spe-
cific and therefore our approach can be applied
in general. However, work in [18] is among
the first focused on generating design from re-
quirements and not refactoring existing design.
Authors in [4] focus on class responsibility as-
signment problem and try to solve it usingmulti-
objective genetic algorithm. Existing design is
used as input and GA tries to improve the design
considering different class cohesion and cou-
pling metrics. Opposite to [18] and similar to
[4], our approach focuses solely on class respon-
sibility assignment problem, but we concentrate
on creating initial OO design from requirements
rather than refactoring existing design.

Most of the work in the field of search-based
software design generation and refactoring im-

plement solely genetic algorithms (or some sim-
ilar evolutionary techniques) without providing
argumentation on the choice of MH method
[1, 4, 18]. In [14] authors report that HC out-
performs GA on the problem of software mod-
ule clustering. We notice significant similari-
ties between software module clustering prob-
lem and class responsibility assignment prob-
lem. Hence, we implement four different search
techniques and argue that simple GA is not the
best choice for class responsibility assignment
problem.

3. Class Responsibility Assignment
as Search Problem

In order to make problem suitable for appli-
cation of search-based optimisation algorithms,
there are only two prerequisites required [11]:

1. The choice of the representation (i.e. encod-
ing) of the problem

2. The definition of the fitness function.

We chose the simplest and most obvious way to
represent the candidate solution (i.e. encoding).
Each responsibility of a system is represented
by one gene in the chromosome. Chromosomes
are simply arrays of integer values where the
position of the gene in the chromosome denotes
the responsibility of a system and the gene’s in-
teger value denotes the class the responsibility
is assigned to. Though simple, this encoding
ensures that there are no empty classes in the
design and that every responsibility is assigned
to exactly one class. The choice of fitness func-
tion was, however, much less obvious. There
are very few (if any)OOmetrics that can be seen
as standard and are generally accepted [17]. We
chose multi-objective optimization, normaliz-
ing and combining three different coupling and
cohesionmeasurements into a single aggregated
fitness function.

3.1. Semantically Annotated
Responsibility Dependency Graph

Similar to [18], we use responsibility depen-
dency graph as input for MH algorithms. But
instead of encoding dependencies into the chro-
mosome, we use separate dependency matrix,
keeping the chromosome structure as simple
as possible. Semantically, we differentiate two

Solving the Class Responsibility Assignment Problem Using Metaheuristic Approach 277

types of responsibilities: data (DR) and func-
tional (FR). These relate to attributes and meth-
ods of a class respectively, but on a higher level
of abstraction (e.g. one functional responsibil-
ity might be implemented as several methods
in the implementation phase). In order to pro-
vide more data for MH algorithms to work on
helping them find better solutions, we further
annotate RDG. Let us first define our notation
that will be used throughout the rest of the pa-
per. Let R be the set of all responsibilities, FR
set of functional and DR set of data responsi-
bilities in RDG. Let D be the set of all depen-
dencies in RDG. Let C be the set of classes the
responsibilities are assigned to, c being a single
class. R(c), FR(c), DR(c) then represent all
responsibilities, functional responsibilities and
data responsibilities assigned to a class c re-
spectively. We introduce six different types of
dependencies between responsibilities, giving
each type different coupling significance. Data
dependency (DD(f r, dr) | f r ∈ FR∧ dr ∈ DR)
is a dependency between a functional responsi-
bility and data responsibility (meaning function
uses data). Dependencies between two func-
tional responsibilities can be of four different
types:

1. simple call dependency
(SCD(f r1, f r2) | f r1, f r2 ∈ FR) – source
function simply initiates destination func-
tion.

2. parametrized call dependency
(PCD(f r1, f r2) | f r1, f r2 ∈ FR) – source
function initiates destination function and
sends required data.

3. simple call waiting for result
(SCR(f r1, f r2) | f r1, f r2 ∈ FR) – source
function initiates destination function and
uses the result of its execution.

4. parametrized call waiting for result
(PCR(f r1, f r2) | f r1, f r2 ∈ FR) – source
function initiates destination function send-
ing required data and then uses the result of
its execution.

Sometimes good object oriented design means
putting together (i.e. in the same class) seman-
tically related responsibilities, though there are
no direct dependencies between them. This im-
proves understandability of the design, but it
also degrades both cohesion and coupling as-
pects of the design. Conceptual dependency
(CD(dr1, dr2) | dr1, dr2 ∈ FR) was introduced
in order to express such semantically related

data responsibilities. Each dependency type has
the value of unit coupling assigned to it. Unit
coupling of a dependency (uc(d) | d ∈ D) is
a measure of coupling that single dependency
introduces to the design. Unit coupling of two
responsibilities is defined as follows:

uc(r1, r2) =

{
uc(d(r1, r2)) if d(r1, r2) ∈ D

0 otherwise
(1)

All of the described semantic annotations of a
responsibility dependency graph serve as fine-
tuning mechanisms for better assignment of re-
sponsibilities to classes.

3.2. Fitness Measurement

There are many different coupling and cohe-
sion measures [5, 7]. Our approach is also
driven by coupling and cohesionmetrics, but we
also introduce measurement for assignment of
conceptually (semantically) related responsibil-
ities. Three measures that we use (modulariza-
tion quality, positive cohesion of methods and
conceptual data cohesion) are explained in de-
tail. Aggregated fitness function was designed
as a linear combination of these individual mea-
sures.

Modularization quality (MQ) was first intro-
duced in [9] for module clustering problem. It
consists both of coupling and cohesion mea-
sures called inter-connectivity (coupling) and
intra-connectivity (cohesion). Acknowledging
significant similarities between module cluster-
ing problem and class responsibility assignment
problem we use adjustedMQ. For a class c intra-
connectivity is defined as follows:

A(c) =

∑
r∈R(c)

∑
s∈R(c)

uc(r, s)

ucaverage|R (c) |2
(2)

For classes c1 and c2 inter-connectivity is de-
fined as follows:

E (c1, c2) =

∑
r∈R(c1)

∑
s∈R(c2)

uc (r, s)

2ucaverage|R (c1) ||R (c2) | (3)

Modularization quality is defined as difference
between scaled averaged value of intra-connectivity

278 Solving the Class Responsibility Assignment Problem Using Metaheuristic Approach

over all classes and scaled averaged value of
inter-connectivity over all pairs of classes:

MQ = a1

|C|∑
i=1

A(ci)

|C| − a2

|C|−1∑
i=1

|C|∑
j=i+1

E
(
ci, cj

)
(|C|

2

)
(4)

where a1 and a2 are scaling factors for express-
ing relative influence of cohesion and coupling
respectively. The value of MQ is increased by
increasing cohesion and lowering coupling of
the design.

Positive cohesion of methods (PCOM) was in-
spired both by lack of cohesion of methods
(LCOM) [7] and tight class cohesion (TCC)
[5] measures. PCOM can be thought of as in-
verse of LCOM. While LCOM punishes solu-
tionswheremethods of the same class do not use
same class attributes, PCOM rewards solutions
where functional responsibilities of the same
class are dependent on the same data respon-
sibilities of the class. Similar to TCC, PCOM
of a class is defined as the percentage of pairs
of functional responsibilities of the class with
common usage of data responsibilities of the
class. Let us define common data responsibility
set for two functional responsibilities f r1 and
f r2 of the same class c:

CDR (c, f r1, f r2) = {dr ∈ DR(c) |
d(f r1, dr) ∈ D ∧ d(f r2, dr) ∈ D}

Positive cohesion of methods for a pair of func-
tional responsibilities of the same class is de-
fined as follows:

pcom(c, f r1, f r2)

=
{

1 if |CDR (c, f r1, f r2) | > 0
0 otherwise (5)

Positive cohesion of methods for a class is then
defined as follows:

Pcom(c) =

∑
fr1∈FR(c)

∑
fr2∈FR(c)

pcom(c, f r1, f r2)

(FR(c)
2

)
(6)

PCOM of a solution design is then averaged
value of Pcom values for all classes.

As described earlier, in the semantically anno-
tated RDG there may exist special conceptual
dependency between two data responsibilities

expressing that they semantically relate (i.e.
both are part of the same real world abstraction).
We introduce conceptual data cohesion (CDC)
as a measure that rewards solutionswhich group
conceptually dependent data responsibilities to-
gether (i.e. in the same class). We define con-
ceptual connection between data responsibili-
ties as a transitive relation: if responsibility A
is conceptually connected to responsibility B
and responsibility B is conceptually connected
to responsibility C, then A is also conceptually
connected to C, but with a lower weight value
assigned to that dependency since connection is
not direct. Conceptual data cohesion for a class
c is defined as follows:

Cdc(c) =

∑
dr1∈DR(c)

∑
dr2∈DR(c)

cdc(c, dr1, dr2)

(DR(c)
2

)
(7)

where cdc(dr1, dr2) has value 1 if dr1 and dr2
are directly connected, value 0 if there is no con-
nection (not even transitive) between dr1 and
dr2 and value between 0 and 1 (proportional to
distance) if dr1 and dr2 are remotely concep-
tually connected. CDC of a solution design is
then averaged value of Cdc values for all classes
in the solution.

4. Implementation

In order to compare performance and applica-
bility of different MH algorithms on the class
responsibility assignment problem, we created
the Class Responsibility Deployer (CRD) tool.
CRD provides support for drawing semantically
annotated RDG, executing MH algorithms and
presenting best found solution vector in the form
of class diagram. Here we describe four imple-
mented MH algorithms in more detail. Perfor-
mance results of each implemented algorithm
are given in Section 5. We chose to create our
own implementations of aforementioned algo-
rithms rather than use existing frameworks.

4.1. Genetic Algorithm

Valid changes in the solution vector consist
of moving responsibilities between classes (i.e.
changing integer values of genes in the chromo-
somes). We implemented both extreme possi-
bilities for crossover operator: 1-point crossover

Solving the Class Responsibility Assignment Problem Using Metaheuristic Approach 279

and uniform crossover. We used roulette wheel
as selection operator. The most obvious mu-
tation, considering our encoding of candidate
solutions, was to randomly reassign responsibil-
ities to different classes. All classes had equal
probability of responsibility being reassigned
to them. Mutation was applied on a gene level.
Mutation rate was experimented with.

Our choice of the population size was propor-
tional to the size of the search landscape. We
set population size to be 4 times number of
responsibilities in the RDG. Two special case
chromosomes - having only one class and each
having responsibility in its own class were al-
ways added in the initial population. GA per-
formed better with 1-point crossover than with
uniform crossover. Considering mutation, GA
performed best with gene-level mutation proba-
bility of 1/(length) where length is the number
of genes in chromosome. GA also performed
better with elitism supported.

4.2. Hill Climbing

Hill climbing starts from a randomly chosen
chromosome. In every iteration of the algorithm
the neighbourhood of the current chromosome
is searched in order to find fitter solution. Defi-
nition of search neighbourhood is problem spe-
cific. We define neighbourhood of a chromo-
some as all chromosomes that are exactly “one
mutation away” (i.e. compared to current solu-
tion, exactly one responsibility is assigned to a
different class). We implemented two main ap-
proaches for choosing the fitter neighbour: next
ascent hill climbing where the first fitter neigh-
bour is selected and steepest ascent hill climbing
where entire neighbourhood is examined and
the neighbour solution that gives the greatest in-
crease in fitness is selected. Hill climbing ends
when there is no fitter neighbour in the neigh-
bourhood. The biggest shortcoming of the hill
climbing is that it finishes in the local optimum
closest to the random initial point. This can
be resolved by repeatedly restarting the algo-
rithm at different starting points. This is called
multiple-ascent hill climbing (MAHC). We im-
plemented both next ascent MAHC and steepest
ascent MAHC. Next ascent MAHC had, natu-
rally, significantly lower execution time, but it
was also able to find fitter solutions than steep-
est ascent MAHC.

4.3. Simulated Annealing

Simulated annealing algorithm is similar to hill
climbing but it allows less fit neighbour to be
selected for next iteration. This way, simu-
lated annealing reduces the possibility of end-
ing in the closest local optimum of the start-
ing point. The probability of accepting less fit
neighbour is bigger in the earlier iterations of
algorithm (traversing through search landscape
more freely) and decreases progressively. It is
also inversely proportional with the decrease in
fitness that neighbour presents compared to the
current solution. Probability of accepting less
fit neighbour is defined as follows:

p = e
fn−f c

T (8)

4.4. Particle Swarm Optimization

Particle swarm optimization (PSO) algorithm
was inspired by social behaviour of some ani-
mal species (e.g. flock of birds). Every speci-
men (particle) in the group (flock, herd, pack,
. . .) can benefit from the discoveries and previ-
ous experience of all other members during the
search for the food [12].

PSO algorithm starts with a population of par-
ticles where each particle’s initial position is a
random solution in the search landscape. In
each iteration of the algorithm every particle
changes its position based on both cognitive and
social influence. Cognitive influence is deter-
mined by the best solution found by particle
itself. Social influence is determined by the
best solution found by all particles in the neigh-
bourhood. The definition of neighbourhood is
problem specific.

We adjusted general PSO algorithm to fit our en-
coding of class responsibility assignment prob-
lem. In every iteration each particle changes
its current solution according to its own best
found solution and best found solution of all
particles in its neighbourhood. Two probabil-
ities are calculated and applied on gene level:
local probability is the probability of accepting
gene’s value from the particle’s best solution;
global probability is the probability of accept-
ing gene’s value from the best solution of the
entire neighbourhood. Local probability is pro-
portional to cognitive coefficient and difference
in fitness between particle’s best found solution

280 Solving the Class Responsibility Assignment Problem Using Metaheuristic Approach

and particle’s current solution. Global proba-
bility is proportional to social coefficient and
difference in fitness between neighbourhood’s
best found solution and particle’s current so-
lution. In case that both gene values (parti-
cle’s best solution gene value and neighbour-
hood’s best solution gene value) are accepted,
the applied value gets chosen according to the
ratio of cognitive coefficient and social coeffi-
cient. We implemented two different versions
of the algorithm regarding definition of neigh-
bourhood. Global neighbourhood PSO defines
entire swarm as one neighbourhood. Local
neighbourhood PSO defines neighbourhood of
a particle to be only a smaller part of the en-
tire swarm. Global neighbourhood PSO dis-
played faster convergence, but often led to non-
satisfactory local optimum. Local neighbour-
hood PSO with neighbourhood size of 5-10%
of swarm’s overall size generally resulted with

significantly better solutions. PSO algorithm
achieved best results with cognitive coefficient
value of 0.8 and social coefficient value of 0.2.

5. Case Study

The objective of the case study was to deter-
mine up to what level are implemented MH al-
gorithms able to recognize main abstractions
in problem domain (i.e. class candidates) and
assign responsibilities to them. Case study
also served to evaluate how relevant chosen fit-
ness measures are for good OO design. Com-
pletely objective analysis of the results would,
however, require optimal reference model for
comparison. The optimality of OO design is
very hard (if possible at all) to define, hence
all the different (and often contradictory) ex-
isting evaluation metrics. But our goal was

Figure 1. ATM Simulator reference model

Solving the Class Responsibility Assignment Problem Using Metaheuristic Approach 281

not set to formalize optimal OO design, but
to investigate whether MH algorithms can pro-
duce design close to what human judgment
would consider satisfactory. Therefore, our ref-
erence model was known, human created satis-
factory design. Comparing best-fitted solutions
considering chosen metrics to reference model
can then serve to evaluate how appropriate the
choice of metrics was as well.

In order to increase objectivity of our approach,
it was necessary to choose a domain model in-
dependent of our research. We selected ATM
Simulation domain model [2] since it comes
with recognized responsibilities and dependen-
cies from which we can form RDG. However,
we considered entire ATM Simulation model to
be too large for initial case study, so we selected
logical subset of responsibilities and adequate
subdesign for reference model (Figure 1). Our
reference model contained 8 classes having 44
responsibilities (20 data and 24 functional) as-
signed to them.

In order to keep generality, maximal possible
number of classes in the solution has to be

equal to number of responsibilitieswhichmakes
the size of search space considerably large –
4444. To confirm that search problem is not triv-
ial and search space is considerably large, we
performed random search of 500000 iterations
along with four implemented MH algorithms.

All four algorithms performed better than ran-
dom search (i.e., passed the “sanity check”).
MAHC and MASA managed to find signifi-
cantly better solutions than PSO. Simple GA
performed worst. MAHC and MASA were able
to recognize main abstractions (i.e. classes) and
assign most of the responsibilities “correctly”
(Figure 2). PSO recognized some of the ab-
stractions, while GA was able to group some
dependent responsibilities together, but hardly
recognized classes from the reference model.
Table 1 describes best found solution for each
algorithm (including random search): fitness,
total number of classes, number of recognized
classes, number of correctly assigned responsi-
bilities and number of incorrect assignments.
By human judgment, solutions produced by

Figure 2. The best design generated by MH algorithm

282 Solving the Class Responsibility Assignment Problem Using Metaheuristic Approach

MAHC and MASA that had better fitness were
also recognized as closer to satisfactory design.
This indicates that metrics constructing aggre-
gate fitness function were well selected. Still,
fitness of reference design (1.77) is slightly
smaller than fitness of best designs produced
by MASA and MAHC. However, human judg-
ment evaluates reference design to be slightly
better than those solutions. This means there
is room for further improvement of selected fit-
ness metrics.Correlation between good fitness
and close to satisfactory design was increased
when intra-connectivity component of MQ was
reduced, i.e. a1 � a2 in (4). This is under-
standable since both other measures (PCOM
and CDC) target cohesion as well, so cohesion
was initially over-expressed by aggregated fit-
ness function.

Algorithm Fitness Number of
classes

Classes
recognized

Correct
assignments

GA 0.87 28 3 6

MAHC 1.83 9 7 41

MASA 1.85 10 8 38

PSO 1.34 15 5 12

Rand. S. 0.50 26 1 2

Table 1. Performance results of algorithms

6. Discussion

In the discussion, we focus on analyzing the
search landscape of class responsibility assign-
ment problem. Conclusions drawn regarding
the nature of search landscape provide an ex-
planation of results produced by implemented
metaheuristic algorithms. Let us observe fitness
of a chromosome as aggregation of fitnesses of
individual genes. Fitness of a single gene in
our encoding depends not only on the value of
that particular gene, but also on values of all
genes that represent dependent responsibilities
(i.e. fitness contribution of responsibility r be-
ing assigned to class c is determined by assign-
ment of all responsibilities dependent on r and
of all responsibilities r is dependent on). An
NK landscape is a function defined on encod-
ings of fixed length and is characterized by two
parameters: n for the overall number of genes
and k for the neighborhood size. For each gene,
k neighbour genes influence its fitness contri-
bution [16]. There has been research showing

that with increasing k, crossover-based algo-
rithms are outperformed by mutation-based al-
gorithms [15]. Though the neighbourhood size
k is not constant for all genes, search landscape
of class responsibility assignment can be con-
sidered close to NK-landscape problem. This
explainswhy simple crossover-basedGA is out-
performed by mutation-based algorithms like
HC and SA. Furthermore, HC and SA were
executed in multi-ascent manner, escaping its
local nature to some extent. This is also the rea-
son why GA with uniform crossover performed
evenworse thanGAwith single-point crossover.
There are, however, reports of more robust GAs
performing better than hill climbers on a wide
variety of NK-landscape problems [16]. Such
GAs should also be applied to class responsibil-
ity assignment problem. PSO also recombines
genes from two chromosomes (best individual
solution and best global solution), but it is more
mutation-based thanGA, thus performing better
than GA, but worse than MAHC and MASA.

Regarding evaluationmetrics, our research leads
to a conclusion that solely coupling and cohe-
sion metrics are not enough to produce sound
designs. One of important characteristics of
good OO design is understandability. However,
to produce designs that are human understand-
able, some semantics must be provided as in-
put as well. We introduced conceptual depen-
dencies as a way to mark semantically related
concepts. Admittedly, this can be considered
designing itself. Though often considered in
related work, we find usage of MQ for class re-
sponsibility assignment problem doubtful since
we obtained better designs minimizing influ-
ence of its cohesion component. It is very hard
to point out, and even harder to formalize in the
form of measurements, all aspects of good OO
design. All this implicates that partially auto-
mated creation of OO design is a much more
likely approach than fully automated one.

7. Conclusion and Future Work

This paper presented automated approach to
creating initial OO design from scratch, using
metaheuristic search optimization algorithms to
identify classes and assign responsibilities to
them. Our case study showed that some meta-
heuristic algorithms are capable of producing
designs very close to what human judgment
would consider satisfactory. We believe that

Solving the Class Responsibility Assignment Problem Using Metaheuristic Approach 283

good designs can hardly be obtained in an auto-
mated way, using only structural measures and
that some semantics must be provided as input
too. Next steps in our research will further ex-
plore appropriate measures reflecting good OO
design, but will also focus on applying more
advanced features of OO design, such as inheri-
tance, abstract classes and interfaces using MH
algorithms.

References

[1] M. AMOUI, S. MIRARAB, S. ANSARI AND C. LUCAS,
A genetic algorithm approach to design evolution
using design pattern transformation, International
Journal of Information Technology and Intelligent
Computing, vol. 1, no. 1, pp. 235–245, 2006.

[2] R. BJORK, An example of Object-oriented Design:
An ATM Simulation, Department of Mathematics
and Computer Science, Gordon University,
http://www.math-cs.gordon.edu/courses/
cs211/ATMExample/, 2004.

[3] G. BOOCH, R. MAKSIMCHUK, M. ENGLE, B. YOUNG,
J. CONALLEN AND K. HOUSTON, Object-oriented
analysis and design with applications, Addison-
Wesley Professional, 2007.

[4] M.BOWMAN, L. C. BRIAND AND Y. LABICHE, Multi-
objective genetic algorithm to support class respon-
sibility assignment, Software Maintenance, 2007.
ICSM 2007. IEEE International Conference on.
IEEE, pp. 124–133, 2007.

[5] L. C. BRIAND, J. W. DALY AND J. WÜST, A unified
framework for cohesion measurement in object-
oriented systems, Empirical Software Engineering,
Springer, vol. 3, no. 1, pp. 65–117, 1998.

[6] B. BRUEGGE AND A. H. DUTOIT, Object-oriented
software engineering, Prentice Hall, 2000, vol. 553.

[7] S. R. CHIDAMBER AND C. F. KEMERER, A metrics
suite for object oriented design, Software Engi-
neering, IEEE Transactions on, vol. 20, no. 6, pp.
476–493, 1994.

[8] J. CLARKE, J. J. DOLADO, M. HARMAN, R. HI-
ERONS, B. JONES, M. LUMKIN, B. MITCHELL, S.
MANCORIDIS, K. REES, M. ROPER ET AL., Reformu-
lating software engineering as a search problem,
Software, IEE Proceedings-, IET, 2003, vol. 150,
no. 3, pp. 161–175.

[9] D. DOVAL, S. MANCORIDIS AND B. S. MITCHELL,
Automatic clustering of software systems using a
genetic algorithm, Software Technology and En-
gineering Practice, 1999. STEP’99. Proceedings,
IEEE, 1999, pp. 73–81.

[10] M. HARMAN, The current state and future of search
based software engineering, 2007 Future of Soft-
ware Engineering, IEEE Computer Society, 2007,
pp. 342–357.

[11] M. HARMAN, S. A. MANSOURI AND Y. ZHANG,
Search based software engineering: A compre-
hensive analysis and review of trends techniques
and applications, Department of Computer Science,
Kingòs College London, Tech. Rep. TR-09-03, 2009.

[12] J. KENNEDY AND R. EBERHART, Particle swarm op-
timization, Neural Networks, 1995. Proceedings.,
IEEE InternationalConference on, IEEE, 1995, vol.
4, pp. 1942–1948.

[13] C. LARMAN AND P. KRUCHTEN, Applying UML and
patterns, Prentice Hall PTR, 2002.

[14] B. S. MITCHELL AND S. MANCORIDIS, On the auto-
matic modularization of software systems using the
Bunch tool, IEEE Transactions on Software Engi-
neering, Published by the IEEE Computer Society,
2006, pp. 193–208.

[15] P. MERZ AND B. FREISLEBEN, On the effectiveness
of evolutionary search in high-dimensional NK-
landscapes, Evolutionary Computation Proceed-
ings, 1998. IEEE World Congress on Computa-
tional Intelligence., The 1998 IEEE International
Conference on, IEEE, 1998, pp. 741–745.

[16] M. PELIKAN, Analysis of estimation of distribution
algorithms and genetic algorithms on NK land-
scapes, Proceedings of the 10th annual conference
on Genetic and evolutionary computation, ACM,
2008, pp. 1033–1040.

[17] O. RÄIHÄ, A survey on search-based software de-
sign, Computer Science Review, Elsevier, 2010.

[18] O. RÄIHÄ, Applying genetic algorithms in software
architecture design, University of Tampere Depart-
ment of Computer Sciences, Citeseer, 2008.

Received: June, 2011
Accepted: November, 2011

Contact addresses:

Goran Glavaš
Faculty of Electrical Engineering and Computing

University of Zagreb
Zagreb, Croatia

e-mail: goran.glavas@fer.hr

Krešimir Fertalj
Faculty of Electrical Engineering and Computing

University of Zagreb
Zagreb, Croatia

e-mail: kresimir.fertalj@fer.hr

GORAN GLAVAŠ is a PhD student at the Department of Electronics,
Microelectronics, Computer and Intelligent Systems at the Faculty of
Electrical Engineering and Computing, University of Zagreb. He grad-
uated and received his B.Sc. and M.Sc. degrees in computing from the
same institution. His professional and scientific interest is in intelligent
software systems, especially in natural language processing and search
optimization algorithms.

KREŠIMIR FERTALJ is a full professor at the Department of Applied
Computing at the Faculty of Electrical Engineering and Computing,
University of Zagreb. His professional and scientific interest is in
computer-aided software engineering, complex information systems
and in project management. He has written over a hundred scientific
and professional publications and participated in conferences locally
and abroad. Fertalj is member of ACM, IEEE, PMI, and of Croatian
Academy of Engineering.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.3
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /Unknown

 /CreateJDFFile false
 /Description <<
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000500044004600200064006f007400e900730020006400270075006e00650020007200e90073006f006c007500740069006f006e002000e9006c0065007600e9006500200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200061006d00e9006c0069006f007200e90065002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /JPN <FEFF3053306e8a2d5b9a306f30019ad889e350cf5ea6753b50cf3092542b308000200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e0020006d00690074002000650069006e006500720020006800f60068006500720065006e002000420069006c0064006100750066006c00f600730075006e0067002c00200075006d002000650069006e0065002000760065007200620065007300730065007200740065002000420069006c0064007100750061006c0069007400e400740020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d00610020007200650073006f006c007500e700e3006f00200064006500200069006d006100670065006d0020007300750070006500720069006f0072002000700061007200610020006f006200740065007200200075006d00610020007100750061006c0069006400610064006500200064006500200069006d0070007200650073007300e3006f0020006d0065006c0068006f0072002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e0030002000650020007300750070006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f8006a006500720065002000620069006c006c00650064006f0070006c00f80073006e0069006e006700200066006f00720020006100740020006600e50020006200650064007200650020007500640073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e0020006d00650074002000650065006e00200068006f0067006500720065002000610066006200650065006c00640069006e00670073007200650073006f006c007500740069006500200076006f006f0072002000650065006e0020006200650074006500720065002000610066006400720075006b006b00770061006c00690074006500690074002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006e0020006d00610079006f00720020007200650073006f006c00750063006900f3006e00200064006500200069006d006100670065006e00200070006100720061002000610075006d0065006e0074006100720020006c0061002000630061006c006900640061006400200061006c00200069006d007000720069006d00690072002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f0069006400610061006e0020006c0075006f006400610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e002000740075006c006f0073007400750073006c00610061007400750020006f006e0020006b006f0072006b006500610020006a00610020006b007500760061006e0020007400610072006b006b007500750073002000730075007500720069002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a00610020004100630072006f006200610074002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000500044004600200063006f006e00200075006e00610020007200690073006f006c0075007a0069006f006e00650020006d0061006700670069006f00720065002000700065007200200075006e00610020007100750061006c0069007400e00020006400690020007300740061006d007000610020006d00690067006c0069006f00720065002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f80079006500720065002000620069006c00640065006f00700070006c00f80073006e0069006e006700200066006f00720020006200650064007200650020007500740073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e00740020006d006500640020006800f6006700720065002000620069006c0064007500700070006c00f60073006e0069006e00670020006f006300680020006400e40072006d006500640020006600e50020006200e400740074007200650020007500740073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 /GRE <FEFF03A703C103B703C303B903BC03BF03C003BF03B903AE03C303C403B5002003B103C503C403AD03C2002003C403B903C2002003C103C503B803BC03AF03C303B503B903C2002003B303B903B1002003BD03B1002003B403B703BC03B903BF03C503C103B303AE03C303B503C403B5002003AD03B303B303C103B103C603B10020005000440046002003BC03B5002003C503C803B703BB03CC03C403B503C103B7002003B103BD03AC03BB03C503C303B7002003B503B903BA03CC03BD03C903BD002003B303B903B1002003B203B503BB03C403B903C903BC03AD03BD03B7002003C003BF03B903CC03C403B703C403B1002003B503BA03C403CD03C003C903C303B703C2002E0020039C03C003BF03C103B503AF03C403B5002003BD03B1002003B103BD03BF03AF03BE03B503C403B5002003C403B1002003AD03B303B303C103B103C603B10020005000440046002003BC03AD03C303C9002003C403BF03C50020004100630072006F006200610074002003BA03B103B9002000520065006100640065007200200035002E0030002003BA03B103B9002003BC03B503C403B103B303B503BD03AD03C303C403B503C103C903BD002003B503BA03B403CC03C303B503C903BD002E>
 /ARA <FEFF06270633062A062E062F0645002006470630064700200627064406360648062706280637002006440625064606340627062100200648062B06270626064200200050004400460020062806230639064406490020062F06420629002006440644063506480631062900200645064600200623062C06440020062A062D0633064A06460020062C0648062F062900200627064406370628062706390629002E0020064A064506430646002006440648062B06270626064200200050004400460020062306460020064A062A064500200641062A062D064706270020064506390020004100630072006F0062006100740020064800520065006100640065007200200035002E003000200648062706440623062D062F062B002E>
 /CZE <FEFF005400610074006F0020006E006100730074006100760065006E00ED00200070006F0075017E0069006A007400650020006B0020007600790074007600E101590065006E00ED00200064006F006B0075006D0065006E0074016F0020005000440046002000730020007600790161016100ED006D00200072006F007A006C006901610065006E00ED006D0020006F006200720061007A016F002C002000610062007900730074006500200064006F007300E10068006C00690020007600790161016100ED0020006B00760061006C0069007400790020007400690073006B0075002E00200044006F006B0075006D0065006E007400790020005000440046002000620075006400650020006D006F017E006E00E90020006F007400650076015900ED007400200076002000700072006F006700720061006D0065006300680020004100630072006F00620061007400200061002000520065006100640065007200200035002E0030002000610020006E006F0076011B006A016100ED00630068002E>
 /HUN <FEFF0045007A0065006B006B0065006C0020006100200062006500E1006C006C00ED007400E10073006F006B006B0061006C00200068006F007A0068006100740020006C00E9007400720065002000610020006A006F006200620020006E0079006F006D00740061007400E1007300690020006D0069006E0151007300E90067002000E9007200640065006B00E900620065006E0020006D00610067006100730061006200620020006B00E9007000660065006C0062006F006E007400E1007300FA002000500044004600200064006F006B0075006D0065006E00740075006D006F006B00610074002E00200041002000500044004600200064006F006B0075006D0065006E00740075006D006F006B00200061007A0020004100630072006F006200610074002000E9007300200061002000520065006100640065007200200035002E0030002C00200069006C006C00650074007600650020006B00E9007301510062006200690020007600650072007A006900F3006900760061006C0020006E00790069007400680061007400F3006B0020006D00650067002E>
 /POL <FEFF0055017C0079006A0020007400790063006800200075007300740061007700690065014400200064006F002000740077006F0072007A0065006E0069006100200064006F006B0075006D0065006E007400F3007700200050004400460020007A002000770079017C0073007A010500200072006F007A0064007A00690065006C0063007A006F015B0063006901050020006F006200720061007A006B00F30077002C0020007A0061007000650077006E00690061006A0105006301050020006C006500700073007A01050020006A0061006B006F015B0107002000770079006400720075006B00F30077002E00200044006F006B0075006D0065006E0074007900200050004400460020006D006F0067010500200062007901070020006F007400770069006500720061006E00650020007A006100200070006F006D006F00630105002000700072006F006700720061006D00F300770020004100630072006F0062006100740020006F00720061007A002000520065006100640065007200200035002E00300020006C007500620020006E006F00770073007A007900630068002E>
 /RUS <FEFF04180441043F043E043B044C04370443043904420435002004340430043D043D044B04350020043F043004400430043C043504420440044B00200434043B044F00200441043E043704340430043D0438044F0020005000440046002D0434043E043A0443043C0435043D0442043E04320020044100200431043E043B0435043500200432044B0441043E043A0438043C00200440043004370440043504480435043D04380435043C00200441002004460435043B044C044E0020043F043E043B044304470435043D0438044F0020043B04430447044804350433043E0020043A04300447043504410442043204300020043F04350447043004420438002E0020005000440046002D0434043E043A0443043C0435043D0442044B0020043E0442043A0440044B04320430044E04420441044F002004320020043F04400438043B043E04360435043D0438044F04450020004100630072006F00620061007400200438002000520065006100640065007200200035002E003000200028043800200431043E043B043504350020043F043E04370434043D04380445002004320435044004410438044F04450029002E>
 /TUR <FEFF004400610068006100200069007900690020006200610073006B01310020006B0061006C006900740065007300690020006900E70069006E002000640061006800610020007900FC006B00730065006B0020006700F6007200FC006E007400FC002000E700F6007A00FC006E00FC0072006C00FC011F00FC006E0065002000730061006800690070002000500044004600200064006F007300790061006C0061007201310020006F006C0075015F007400750072006D0061006B00200061006D0061006301310079006C006100200062007500200061007900610072006C0061007201310020006B0075006C006C0061006E0131006E002E002000500044004600200064006F007300790061006C0061007201310020004100630072006F006200610074002000520065006100640065007200200035002E003000200076006500200073006F006E00720061007301310020007300FC007200FC006D006C0065007200690079006C00650020006100E70131006C006100620069006C00690072002E>
 /HEB (Use these settings to create PDF documents with higher image resolution for improved printing quality. The PDF documents can be opened with Acrobat and Reader 5.0 and later.)
 /ENU (Use these settings to create PDF documents with higher image resolution for improved printing quality. The PDF documents can be opened with Acrobat and Reader 5.0 and later.)
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [666.142 926.929]
>> setpagedevice

