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Damir Poleš1 and Leo Budin2

1 Eurocontrol Experimental Centre, Brétigny sur Orge, France
2 Faculty of Electrical Engineering and Computing, University of Zagreb, Croatia

This paper proposes two scheduling approaches, one-
level and two-level scheduling, for synchronous periodic
real-time task sets based on the Imprecise Computation
Model. The imperative of real-time systems is a reaction
on an event within a limited amount of time. Sometimes
the available time and resources are not enough for the
computations to complete within the deadlines, but still
enough to produce approximate results. The Imprecise
Computation Model is motivated by this idea, which
gives the flexibility to trade off precision for timeliness.
In this model a task is logically decomposed into a
mandatory and optional subtask. Only the mandatory
subtask is required to complete by its deadline, while
the optional subtask may be left unfinished. Usually,
different scheduling policies are used for the scheduling
of mandatory and optional subtasks. For both proposed
approaches the earliest deadline first and rate monotonic
scheduling algorithms are used for the scheduling of
mandatory subtasks, whereas the optional subtasks are
scheduled in a way that the total weighted error is
minimized. The basic idea of one-level scheduling is to
extend the mandatory execution times, while in two-level
scheduling the mandatory and optional subtasks are
separately scheduled. The single preemptive processor
model is assumed.

Keywords: ImpreciseComputationModel, real-time sys-
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1. Introduction

The correctness of many systems and devices
in our society depends not only on the logical
correctness of results they produce, but also on
the time at which they are produced. These
real-time systems play an important role and
they have been included in the wide range of
applications from nuclear power plants, rail-
way systems, air traffic control, military and

health monitoring systems to telecommunica-
tion networks, multimedia systems, monitor-
ing systems, virtual realty and computer games.
Since computers are more often used in our ev-
eryday activities, real-time systemswill bemore
important. Scheduling is concerned with the al-
location of scarce resources and it is a central
activity of a real-time system with the objective
to meet specified time constraints. For some
real-time systems, all specified timing require-
ments must be met (hard real-time systems) and
a failure to do so may lead to catastrophic con-
sequences, whereas for others some specified
timing requirements may be missed (soft real-
time systems).
This paper presents the result of an analysis
of the multi-level scheduling approach for dy-
namic real time systems with flexible timing
requirements. In particular, it proposes one and
two-level scheduling approaches for the Impre-
cise Computation Model. The imperative is to
establish the theoretical lower bound for the to-
tal weighted error for both approaches as the
most complex error case. This directly leads to
the lower bound for the total error and the upper
bound for the processor utilization.

Usually, real-time systems are modeled as sets
of real-time tasks, τ = {T1, T2, . . . , Tn}, which
are characterized by a set of parameters in-
cluding timing requirements that must be met.
Scheduling algorithms are used in real-time sys-
tems to ensure that each task meets all con-
straints. A scheduling algorithm is used to cre-
ate a schedule, S, according to which the tasks
will be executed at each time instant by a real-
time operating system. A feasible schedule is a
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schedule in which all tasks meet timing and all
other specified constrains.

Sometimes, it is not possible to create a feasible
schedule, i.e. it is not possible for all tasks to
meet their timing constraints. But, there still
may be enough resources to produce approxi-
mate results. The generation of partial results
using less time and resources is the basis of
Imprecise Computation Model. In the Impre-
cise Computation Model ([3], [4], [6], [8], [9])
each task Ti is logically decomposed into two
subtasks: mandatory subtask Mi and optional
subtask Oi. Only the mandatory subtask of
each task is required to be completed by the
task’s deadline in order to produce a minimum
quality, but still acceptable, result. The op-
tional subtask does not have to be completed (if
there is no available processor’s time). Simi-
larly, a schedule is defined to be feasible in the
Imprecise ComputationModel when all manda-
tory subtasksmeet timing and all other specified
constraints.

The task set used in the analysis consists of a
set of n independent, preemptable tasks, TS =
{T1, T2, . . . , Tn}. TaskTi is characterized by the
quintuple Ti = (ri, di, mi, oi, pi) where ri, di, mi,
oi and pi denote the task’s ready time, relative
deadline, mandatory subtask’s execution time,
optional subtask’s execution time and the task’s
period, respectively. The task’s total execution
time is defined as ei = mi + oi. Appropriate
mandatory M and optional O subtask sets con-
sist of n independent, preemtable tasks, M =
{M1, M2, . . . , Mn} and O = {O1, O2, . . . , On}.
Task Mi is characterized by the quadruple Mi =
(ri, di, mi, pi) and Oi by Oi = (ri, di, oi, pi).
Each task Ti, Mi and Oi generates an infi-
nite number of jobs Tij, Mij, Oij, j > 0, with
rij = ri + (j − 1)pi and dij = di + (j − 1)pi.
The task set, TS, is assumed to be synchronous.
A task set is said to be synchronous if all ready
times are zeros, otherwise a task set is asyn-
chronous. This implies that all ready times in
our analysis are assumed to be equal to zero,
ri = 0. The tasks’ deadlines are assumed to
be equal to tasks’ periods di = pi. Without
loss of generality, integer values for all tasks’
parameters are assumed [1]. The synchronism
of task set and integer parameters facilitate the
analysis which, in this case, can be performed
on the limited time period which is equal to
hyperperiod H, the least common multiplier of
all periods in TS, H = lcm(p1, . . . , pn). The
single preemptive processor system is assumed

and the context switching times are neglected.
The processor utilization, U(TS), of task set TS

is defined as U(TS) =
n∑

i=1

ei

pi
.

2. Total Weighted Error

Since the Imprecise Computation Model gives
the opportunity to trade-off between the result
quality of computations and computation tim-
ing requirements, a lot of different metrics have
been introduced in order to validate the trade-
off and set objectives. Accordingly, a lot of
different definitions of errors that correspond to
different measures, objectives and applications
have been proposed in the literature, e.g. the
total weighted error ([6], [4]), the normalized
error [8], the maximum normalized error [8],
the maximum weighted error [4], the fraction of
discarded work [3], number of tardy tasks [6].
It is clear that the error which will be analyzed
and objectives that will be optimized depend
on an application. Further in this paper, only
the total weighted error and its minimization is
considered.

In general, the problem of minimizing the total
weighted error may be transformed to the min-
imizing the total weighted tardiness [2] or to a
minimum-cost-maximum-flow problem [4]. In
the paper, the total weighted error is analyzed
for the synchronous periodic task sets with re-
spect to the earliest deadline first (EDF) and rate
monotonic (RM) scheduling algorithms used
for scheduling of the mandatory subtask sets.

Let S be a feasible schedule for task set TS, and
αij(Ti, S) denote the amount of processing time
assigned for the execution of the jth job of task
Ti in schedule S. The amount of discarded work
[3], the error, of the jth job of task Ti is defined to
be ε(Tij, S) = ei − αij(Ti, S). For synchronous
periodic task set TS and feasible schedule S, the
error of task Ti in hyperperiod H is defined as
follows:

ε(Ti, S, H) =
ni∑

j=1

ε(Tij, S); ni =
H
pi

; (1)

where ni is the number of jobs of task Ti oc-
curred in hyperperiod H. Finally, the total
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weighted error for task set TS and feasible
schedule S in hyperperiod H is defined as:

ε = ε(TS, S, H) =
n∑

i=1

wiε(Ti, S, H); (2)

where wi is the weight of error of task Ti. For
task set TS it is assumed w1 ≥ . . . ≥ wn. The
weight of error determinates the importance of
the task. As the weight of error is higher the
importance of the task is higher. In case of the
total error, all weights are the same.

3. Scheduling

The scheduling of task set TS is based on the us-
age of the EDF and RM scheduling algorithms
for the scheduling of mandatory subtask set. It
is assumed that the mandatory subtask set M
is schedulable by EDF and RM. Taking into
account optional task set parameters, it is obvi-
ous that the same scheduling algorithms for the
optional subtask set at the same time or level
cannot be applied.

Let a scheduling of Imprecise ComputationMo-
del in which a scheduler is not able to consider
the mandatory subtask set and the optional sub-
task set separately, i.e. a scheduler applies the
same scheduling policy for all tasks in a task
set, be called one-level scheduling. On the
other side, let a scheduling in which a sched-
uler is able to consider the mandatory subtask
set and the optional subtask set separately, i.e.
a scheduler applies separate, possibly different,
scheduling policies for mandatory and optional
subtask sets, be called two-level scheduling.

In the paper, both approaches are analyzed. In
the first approach, the use of one-level schedul-
ing is assumed. The idea is to extend manda-
tory execution times of all mandatory subtasks
in TS as much as possible in a way that the
total weighted error of TS is minimized. The
result of extension is task set M′ which consists
of mandatory subtask set only and should be
scheduled making use of EDF or RM.

In the second approach, the use of two-level
scheduling is assumed and a schedulermust pro-
duce schedules on two levels. On the high level
the mandatory subtask set is scheduled while on
the low level the optional subtask set is sched-
uled. The high level has to ensure processor

time and its assignment to the low level. The
low level has to ensure the execution of optional
subtask set in a way that the total weighted error
of TS is minimized.

3.1. One-level scheduling

One-level scheduling approach is based on the
creation of a new mandatory subtask set M′ that
extends mandatory execution times in compar-
ison to M. The optional sub-task set, O, is not
directly scheduled. It is included in the schedule
of new mandatory sub-task set, M′. The exten-
sion of mandatory subtask set M is done in a
way that the total weighted error is minimized.
Finally, the schedules S1 and S2 ofM′, generated
using EDF and RM, are used for scheduling task
set TS. The extending process may be divided
in the following steps:

• determination of the maximum extension,
extMAX, of mandatory execution times;

• determination of the extension for each man-
datory subtask Mi, exti, in a way that the total
weighted error is minimized.

The process starts from M and results is the new
task set M′, M′ = {M′

1, M
′
2, . . . , M

′
n}, M′

i =
(ri, di, m′

i, pi), ri = 0, di = pi, m′
i = mi + exti,

0 ≤ exti, ∀i.

The maximum amount of time that can be as-
signed for the extension of mandatory subtasks
during hyperperiod H, extMAX, depends on a
scheduling algorithm used. extMAX must ensure
the schedulability of M′.
In the case of the EDF scheduling algorithm the
maximum total extension time is defined as:

extMAX,EDF = (1 − U(M))H, (3)

where U(M) is the utilization of mandatory sub-
task set M. The value of extMAX,EDF guarantees
the utilization of M′ to be less or equal to 1,
U(M′) ≤ 1, which implies the schedulability of
M′ [5].

In the case of the RM scheduling algorithm, the
maximum total extension time is defined as:

extMAX,RM = (URM,n − U(M))H, (4)

where URM,n is the least upper bound to pro-
cessor utilization for a set of n tasks with fixed
priorities, URM,n = n(21/n − 1) [5]. Similar as
for EDF, the value of extMAX,RM guarantees the
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utilization of M′ to be less or equal to URM,n,
U(M′) ≤ n(21/n − 1) = URM,n, which implies
the schedulability of M′ [5]. It is obvious that
the sum of all extensions must be less or equal
to extMAX , regardless of the algorithm used:

n∑
i=1

niexti ≤ extMAX. (5)

The objective to minimize the total weighted er-
ror of TS in resulting schedule S′ of M′ derives
the conditions for the determination of manda-
tory execution time extensions for all tasks,
whether EDF or RM is used.

Taking into account that ε(Tij, S) = oi− exti, ∀j
from (1) and (2), we have:

ε(TS, S, H) =
n∑

i=1

winioi −
n∑

i=1

winiexti (6)

where ni is the number of jobs of subtask M′
i (or

Mi) occurred in hyperperiod H. The minimiza-
tion of total weighted error implies the maxi-
mization of the second member of the right side
hand in (6):

min(ε(TS, S, H)) ⇒ max
n∑

i=1

winiexti. (7)

From (5) and (7), it follows that this problem of
determination of extensions can be reduced to
the bounded knapsack problem (BKP) for both
scheduling algorithms, EDF and RM.

In BKP a knapsack with weight capacity b and
n items, j = 1, . . . , n, with utility values cj and
weights aj is given. The quantities of items, xj,
have to be calculated with limited total weight
of the knapsack, b, and the upper bounds, bj,
maximizing the value of the knapsack’s con-
tent. BKP can be formulated as [2]:

max
n∑

j=1

cjxj, subject to
n∑

j=1

ajxj ≤ b, (8)

0 ≤ xj ≤ bj, j = 1, . . . , n, xj integer.

Assuming that all weights, aj, all utility values,
cj, and all upper bounds, bj, are positive integers,
the determination of extensions problem can be
reduced to BKP with following parameters:

cj = wknk, aj = nk, xj = extk, bj = ok, (9)

b = extMAX, j = 1, . . . , n, k = 1, . . . , n,

assuming that the tasks are reordered accord-
ing to c1/a1 ≥ . . . ≥ cn/an. Since c1/a1 ≥
. . . ≥ cn/an implies w1 ≥ . . . ≥ wn, which
is one of the assumptions, the reordering is not
needed, j = k. This order is requested in order
to apply a branch-and-bound algorithm, Algo-
rithm 1, which is proposed for the calculation
of an optimal solution of BKP problem. Al-
gorithm 1 is a modified version of Algorithm
Branch-and-Bound Knapsack for the knapsack
problem, described in [2]. The modification is
done in order to limit the extensions to optional
execution times. In Figure 1 a detailed descrip-
tion of Algorithm 1 is given.

L := 0; k := 0;
REPEAT

FOR j := k + 1 TO n DO

xj := min

(⌊(
b −

j−1∑
i=1

aixi

)
/aj

⌋
, oj

)
;

ENDFOR

IF
n∑

i=1
cixi > L THEN

L :=
n∑

i=1
cixi; x∗ := x;

ENDIF
l := n − 1;
WHILE l > 0 DO

Determine the largest 1 ≤ k ≤ l with xk > 0,
if does not exist stop;
xk = xk − 1;

IF
k∑

i=1
cixi +

ck+1

ak+1
(b −

k∑
i=1

aixi) < L + 1 THEN

l := k − 1;
ELSE

EXIT (WHILE);
ENDIF

ENDWHILE
UNTIL l = 0;

Figure 1. Algoritm 1.

The result of Algoritm 1 is an optimal so-
lution, x∗, for BKP, i.e. a set of extensions
(ext1, . . . , extn). For the EDF and RM schedul-
ing algorithms the optimal solutions (exten-
sions) x∗EDF and x∗RM are generated using
extMAX,EDF and extMAX,RM, respectively. So-
lutions x∗EDF and x∗RM are used for the creation of
M′ for both scheduling algorithms (M′

EDF, M
′
RM).

M′
EDF and M′

RM are scheduled using EDF and
RM instead of scheduling TS. The resulting
schedules keep the schedulability of M and min-
imize the total weighted error of TS in both
cases. They are used for scheduling of TS for
the EDF and RM scheduling algorithms.
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3.2. Two-level scheduling

As mentioned, in this approach task set TS is
scheduled on two levels. On the high level,
mandatory subset M is scheduled and proces-
sor time for optional subtask set O has to be
ensured. This is done by adding a new manda-
tory subtask Mn+1 to M and as the result a new
mandatory subtask set M′ is created. M′ must
not harm the schedulability of M and the ex-
ecution time of Mn+1 is assigned to optional
subtask set O. The maximum possible execu-
tion time for Mn+1 should be determined, the
time intervals assigned to Mn+1 should be de-
termined and optional subtask set O should be
scheduled over found time intervals in a way
that the total weighted error is minimized. This
should be done for the EDF and RM scheduling
algorithms.

Theorem 1. Let τ be a synchronous periodic
task set, τ = {T1, . . . , Tn}, Ti = (ri, di, ei, pi),
n, i ∈ N, i ≤ n, pi, ei ∈ N, 1 < p1 ≤ . . . ≤ pn,
di = pi, ri = 0, schedulable by EDF and RM
with the utilization less than 1, U(τ) < 1. There
exists synchronous periodic task set τ ′, τ ′ = τ∪
{Tn+1}; Tn+1 = (en+1, pn+1), which is schedu-
lable by EDF and RM with the utilization equal
to 1, U(τ ′) = 1, where pn+1 = lcm(p1, . . . , pn)
and en+1 = (1 − U(τ))lcm(p1, . . . , pn).

Proof: Let’s define task Tn+1 = (rn+1, dn+1,
en+1, pn+1), where rn+1 = 0, pn+1 = H, dn+1 =
pn+1 and en+1 = (1−U(τ))H. It is obvious that
task set τ ′, τ ′ = τ ∪ {Tn+1}, is a synchronous
periodic task set with U(τ ′) = 1 and the hyper-
period equal to H, H = lcm(p1, . . . , pn). Task
set τ ′ exists with U(τ ′) = 1 and therefore it is
schedulable by EDF. Let S and S′ be the sched-
ules of task sets τ and τ ′ produced by RM. Both
schedules are repeated by H and it is sufficient
to analyze the behaviour during H. Task Tn+1
has the lowest priority in τ ′ under RM during H.
The lowest priority of task Tn+1 in τ ′ guarantees
the same execution intervals of tasks T1, . . . , Tn
in S′ as in S during H. This implies that each
of tasks T1, . . . , Tn meets its deadline and that
the idle intervals in S can be assigned for the
execution of Tn+1 in S′. The amount of time
of all idle intervals in S is equal (1 − U(τ))H
which is equal to en+1 during H. This confirms
that task Tn+1 meets its deadline and proves the
schedulability of task set τ ′ under RM. �

According to Theorem 1 we have M′ = M ∪
{Mn+1}, rn+1 = 0, pn+1 = H, mn+1 = (1 −
U(M))H, on+1 = 0, dn+1 = pn+1, where H
is the hyperperiod of M. Resulting subtask set
M′ is schedulable by EDF and RM with the uti-
lization equal to 1, i.e. the maximum possible
execution time is assigned to Mn+1.

In order to minimize the total weighted error
the processor availability for mandatory subtask
Mn+1, has to be determined. Let’s define a busy
period ([1], [7]) as an interval of time in which
the processor is never idle. This implies that
the processor availability for mandatory sub-
task Mn+1, is equal to the idle periods of the
schedule of mandatory subtask set M.

Theorem2. Let S1 and S2 are feasible schedules
for task set τ defined in Theorem 1 generated
by the EDF and RM scheduling algorithms, re-
spectively. Both schedules have the same busy
periods.

Proof: Let’s assume that S1 and S2 do not have
the same busy periods and I, I = [t1, t2), be the
first time interval during which an idle period is
present in one schedule (Si) and a busy period
in the other schedule (Sj). This implies that the
amount of time assigned for the execution of
the task set is the same in Si and Sj until t1. In
Si each started task’ job successfully finished
its execution (i.e. all deadlines are met) by t1,
while in Sj there is at least one ready job that
has to finish its execution. There are two pos-
sibilities in Sj at t1: the execution of a task that
just became ready at t1 and the execution of a
task that became ready before t1. In the first
case it is obvious that the task sets scheduled
by Si and Sj are not the same, the task sets do
not have the same periods. In the second case
in Si all deadlines are met until t1 while this is
not the case for Sj. Since the same amount of
time is assigned to the task set execution in both
schedules until t1 this implies that the execution
times are not the same and, further, that the task
sets scheduled by Si and Sj are not the same.
This is against the hypothesis. If I is an idle
period in one schedule it must be an idle period
in another schedule. �

According to Theorem 2 the same algorithm for
the determination of idle periods may be ap-
plied for feasible schedules generated by EDF
and RM. For finding the start and end points of
each idle period, [Si, Ei), Si, Ei, i ∈ N, Si < Ei,
for a feasible schedule of a task set generated



398 Imprecise Computation Model, Synchronous Periodic Real-time Task Sets and Total Weighted Error

by EDF and RM Algorithm 2 is proposed. A
detailed description of Algorithm 2 is given in
Figure 2.

j := 1;
E0 := 0;
ri := 0; i ≤ n
REPEAT

Sj,0 := 1;
k := 0;
REPEAT

k := k + 1;

Sj,k :=
n∑

i=1

⌈
max(Sj,k−1 − ri, 0)

pi

⌉
mi;

res = min(((Ej−1 + Sj,k) mod pi));
IF (Sj,k = Sj,k−1) and (res = 0)

Sj,k := Sj,k + 1;
ENDIF

UNTIL (Sj,k = Sj,k−1);
Sj := Sj,k + Ej−1;

Ej := H − max
i=1,..,n

(⌊
H − Sj

pi

⌋
pi

)
;

FOR i := 1 TO n DO

ri := (H − Ej) −
⌊

H − Ej

pi

⌋
pi;

ENDFOR
j := j + 1;

UNTIL Ej = H;

Figure 2. Algorithm 2, an iterative algorithm for finding
the idle intervals.

As the result of applying Algorithm 2 on M, the
available time intervals for scheduling optional
subtask O are provided, TI = {[S1, E1), . . . ,
[Sl, El)}, l ∈ N. Note that precedence con-
straints between the mandatory and optional
subtasks are already included in TI, i.e. there
is no need for ready optional tasks to wait with
the execution.

Finally, optional subtask set O should be sched-
uled minimizing the total weighted error of task
set TS. This is done by making use of Al-
gorithm WNTU [4]. Algorithm WNTU mini-
mizes the total weighted error. It was devel-
oped for an aperiodic task set which implies
that the optional subtask set O needs to be trans-
lated into aperiodic task set ATS over observed
time interval, H. This is done by consider-
ing each task’s job as a separate task over H.
As the result we have aperiodic task set ATS =
{O1,1, . . . , O1,n1, O2,1, . . . , O2,n2, . . . , On,1, . . . ,
On,nn}, Oi,j is the task that corresponds to the
jth job of the ith subtask; Oij(rij, dij, eij), rij =

(j − 1)pi, dij = jpi, eij = oij, ni =
H
pi

. WNTU

algorithm supposes different weights, i.e. w1 >
· · · > wk. If task set ATS contains more than
one task with the same weight, the grouping is
needed. All tasks with the same weights form
a subset of tasks with the same weights. There
are k subsets (k ≤ n) each of which contains all
jobs of the tasks with the same weight. Let TSSi
be a subset which contains all tasks with weight
wi and Vj the jth busy period block. In addi-
tion, let SC be an empty schedule and ET be an
empty set. A detailed description of Algorithm
WNTU is given in Figure 3.

SC = ∅, ET = ∅;
FOR j := 1 TO k DO

SCj := Algorithm NTU for ET ∪ TSSj;

Begin (Adjustment Step)
Let there be q blocks in SC: Vi = [vi−1, vi],

1 ≤ i ≤ q.
FOR i := 1 TO q DO

IF Vi is a task block in SC, THEN
Let task l be executed within Vi in SC.
Let N(l) (resp. Nj(l)) be the number of
time units job l has executed in SC (resp.
SCj) from the beginning until time vi.
IF N(l) > Nj(l), THEN

assign (N(l) − Nj(l)) more time
units to task l within Vi in SCj, by
replacing any task, except task l,
that was originally assigned within
Vi.

ENDIF
ENDIF

ENDFOR
End

SC′
j := SCj.

Set the execution time of each task in TSSj to be the
number of nontardy units in SC′

j .
ET := ET ∪ TSSj
SC := Algorithm NTU for ET.

ENDFOR

Figure 3. Algorithm WNTU.

In this case AlgoritmWNTU makes use of mod-
ifiedAlgorithmNTU.AlgorithmNTU [4] had to
be modified in order to take into account avail-
able processor intervals TI. Algorithm NTU
schedules an aperiodic task set in decreasing
order of tasks’ ready times which implies the
reordering of a task set that should be sche-
duled. Same as for Algorithm NTU, the modi-
fied version uses m× l matrix SM to represent a
schedule. SM(i, j) contains the number of time
units task Ti is scheduled in the jth idle period,
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[Sj, Ej). A detailed description of Algorithm
NTU is given in Figure 4. l is the number of
idle periods and m is the number of tasks to be
scheduled.

li := Ei − Si; i ≤ l
FOR i = 1, . . . , m DO

Find min(p)|Sp > ri;
Find max(q)|Eq ≤ di;
IF p ≤ q

FOR j = q, . . . , p DO
δ := min(lj, ei);
SM(i, j) := δ ; lj := lj − δ ; ei := ei − δ ;

ENDFOR
ENDIF

ENDFOR

Figure 4. Modified Algorithm NTU.

At the end of Algorithm WNTU, the schedule
of subtask set O which minimizes the total
weighted error of TS is provided. This schedule
is used together with schedules of M′ generated
by EDF and RM.

4. Conclusion

In this paper, the analysis of Imprecise Compu-
tation Model for synchronous periodic task sets
is provided. The analysis is based on the use of
the EDF and RM scheduling algorithms for the
mandatory subtask sets and the minimization
of total weighted error. The scheduling of the
optional subtask set is affected by the minimiza-
tion of total weighted error. Two different ap-
proaches are proposed, one-level and two-level
scheduling approach. The results are the opti-
mal schedules with respect to the total weighted
error, whether the EDF or RM scheduling algo-
rithm is used for the scheduling of mandatory
subtask set.

In one-level scheduling approach, the manda-
tory subtask set is transformed into the new
mandatory subtask set extending the mandatory
execution times as much as possible in order to
minimize the total weighted error. The schedul-
ing is done for the new mandatory subtask set
instead of the original task set on one level us-
ing EDF and RM. This approach has simpler
implementation, but the flexibility of Imprecise
Computation Model is lost. The lower total
weighted error is achieved for the EDF schedul-
ing algorithm because of its higher least upper

bound to processor utilization with respect to
RM.

For two-level scheduling, the scheduling ofman-
datory subtask set is done on one level using
EDF and RM while the scheduling of optional
subtask set is done on a separate level minimiz-
ing the total weighted error. This approach has
more complex implementation, but the flexibil-
ity is kept and the time isolation between the
mandatory and the optional sets is obtained.
The same total weighted error is achieved for
the EDF andRM scheduling algorithms because
they generate same idle intervals.

In comparison with two-level scheduling, a lo-
wer total weighted error is expected for one-
level scheduling due to the uniform distribution
of job extensions. An interesting application
case is the minimization of total error where the
weight of error of each task is the same. The
result is the maximum processor utilization for
the given task sets.

The lowest total weighted error boundary for
both scheduling approaches is established, but
there are still a lot of different, open questions
such as the comparison of two different schedul-
ing approaches, the time complexity, the im-
provements of existing algorithms, the usage of
new algorithms and possible application areas.
The findings in the paper are expected to be
the theoretical basis for all open questions and
improvements in the future.
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