
Journal of Computing and Information Technology - CIT 18, 2010, 2, 159–165
doi:10.2498/cit.1001812

159

Java Method Calls
in the Hierarchy – Uncovering
Yet another Inheritance Foible

E. Nasseri and S. Counsell
School of information Systems, Computing and Mathematics, Brunel University, Uxbridge, United Kingdom

This paper describes an empirical investigation into
method calls between classes at each level of the inher-
itance hierarchy in four, Java open source systems. We
distinguish between method calls made to super classes
in the hierarchy and external method calls made outside
the line of super classes to the root. The premise on
which the research rests is that classes should predomi-
nantly make use of super class functionality (as theory
suggests) and relatively infrequent use of functionality
outside those super classes. Results revealed that the
most method calls were made to the methods of the
classes where the majority of functionality resided (at
shallow hierarchical levels) and not necessarily to the
super classes of a class. The evidence presented therefore
implies that developers are not using inheritance in the
spirit originally intended and lends weight to the growing
belief that OO inheritance has more practical foibles than
theoretically stated advantages.

Keywords: method calls, inheritance, OO, empirical

1. Introduction

Exploring the evolution of inheritance hierar-
chy in a system can provide valuable insights
into a system’s dynamics from an inheritance
perspective. Indeed, previous studies of inher-
itance have provided evidence of the ineffec-
tiveness of inheritance beyond a certain level
(Basili et al. 1996; Bieman and Zhao 1995;
Cartwright and Shepperd 2000; Chidamber et
al. 1999; Daly et al. 1996). In this paper, we
investigate inheritance from a method call per-
spective and its impact in four, Java open source
systems. The main research question that we
explore is: to what extent do classes take ad-
vantage of super class functionality offered (i.e.,
the subclass-super class relationships inherent
in every inheritance hierarchy)when invoking

the functionality of other classes? The main
motivation for the study in this paper arises
from the dearth of empirical studies into how
classes within an inheritance hierarchy inter-
act and how that interaction might evolve as a
system itself evolves (Capiluppi 2004; Lehman
1978; Lehman 1997). While we can view sys-
tem evolution at a class level relatively easily
(and view systems themselves as a collection of
connected black boxes), any such study hides
the lower-level granularity of functionality, ac-
tivity and extent of coupling (Briand et al. 1999)
that classes have across a hierarchy rather than
up and down it. Results from our analysis of the
four systems demonstrated that most method
calls were made to the methods of the class
where the functionality resided and not neces-
sarily, as we might expect from a hierarchical
inheritance structure, to the super classes of a
class.

Thework in this paper extends and builds on ear-
lier work by the same authors where the evolu-
tion of class fields for the same four systems was
examined (Nasseri and Counsell 2009; Nasseri
et al. 2008). In Nasseri and Counsell (Nasseri
and Counsell 2009), inconsistent and irregular
patterns of field additions were noted as sys-
tems evolved, suggesting that field usage (i.e.,
their addition, deletion and movement) played
a crucial role is OO system evolution; we ex-
tend that theme in this paper. The remainder
of the paper is organized as follows. Section 2
describes the design of the empirical study in-
cluding characteristics of the four systems, data
collected and methodology used for the study.
Section 3 presents data analysis on a system-by-
system basis. In Section 4, we present relevant

160 Java Method Calls in the Hierarchy – Uncovering Yet another Inheritance Foible

literature that also casts doubt on the benefits
of inheritance before we conclude and point to
further work (Section 5).

2. Empirical Study Design

2.1. The Four Open-source Systems

For our study, we used a set of four, Java open-
source systems chosen and downloaded from
the systems available at www.sourceforge.net.
The systems in ascending order of number of
versions were as follows.

a) HSQLDB: a relational database engine im-
plemented in Java. This system comprised 6
versions. HSQLDB consisted of 56 classes
and 972methods in version 1 and 358 classes
and 3827 methods in version 6 (latest ver-
sion).

b) JasperReports: a business intelligence and
reporting system. This system comprised
12 versions. JasperReports contained 818
classes and 8201 methods in version 1 and
1098 classes and 10736 methods in version
12 (latest version).

c) SwingWT: an implementation of the Java
Swing and AWT APIs. This system con-
tained 22 versions. SwingWT contained 50
classes and 378 methods in version 1 and
620 classes and 6956 methods in version 22
(latest version).

d) Tyrant: a graphical fantasy adventure game.
45 versions of this system were studied.
Tyrant contained 122 classes and 982 meth-
ods in version 1 and ended with 273 classes
and 2374 methods in version 45 (latest ver-
sion).

2.2. Data Collected

We used the JHawk tool (JHawk) to extract the
following three OO metrics (Lorenz and Kidd
1994) and refer to the figure in Appendix A
where appropriate to aid our explanation.

1) Depth in the Inheritance Tree of a class
(DIT): this metric measures the number of
ancestors of a class including class Object
(Chidamber and Kemerer 1994). The DIT
value for a class inheriting from only Ob-
ject is assumed to be one. Henceforward,

we refer to a class at a relatively shallow
DIT level to mean one that is close to the
root (i.e., class Object); equally, a relatively
deep DIT level refers to a class further away
from the root.

2) Calls to methods in the hierarchy (HIER):
the HIER metric measures the number of
method calls made to any super class in the
hierarchy (JHawk). In the figure in Ap-
pendixA,MethodY inClassBcallsMethodX
defined in its super class (ClassA) and is thus
a contributor to the HIER metric.

3) Number of External methods calls (EXT):
the EXT metric measures the number of
method calls in a class to methods of other
classes (JHawk) and excludes HIER calls.
In the figure in Appendix A, MethodY in
ClassB calls MethodZ in ClassC not in the
same class hierarchy.

The basis of the research presented in this paper
is to determine the extent to which classes in an
inheritance hierarchy use functionality in their
super classes (HIER) rather than that outside the
line of classes to the root. OO guidelines would
suggest that classes should predominantly use
the specialised functionality of the super class-
subclass relationship, not relationships between
classes across the hierarchy.

3. Version Analysis

To investigate the research question, we ex-
plored the specific features of each system in
the latest available version to establish how the
values of EXT and HIER compared. We chose
the latest version in each case, since differences
between these two metrics were likely to be
more pronounced as a system aged (and invari-
ably decayed too). We consider each of the four
systems in turn.

3.1. HSQLDB

Table 1 shows the numerical values of HIER
and EXT at each DIT level for HSQLDB. The
table format (after column 1 and for each DIT
level) is as follows:

(1)Frequency and percentage of classes.

(2)Frequency and percentage of HIER (HIER).

Java Method Calls in the Hierarchy – Uncovering Yet another Inheritance Foible 161

(3)Frequency and percentage of EXT (EXT).

(4)Average number of HIER at each DIT level
(HIER value divided by number of classes).

(5)Average number of EXT at each DIT level
(EXTvalue divided by the number of classes).

DIT Classes HIER EXT Ave. Ave.
HIER EXT

1 279 0 7050 0 25.27
(77.93%) (74.52%)

2 68 104 2012 1.53 29.59
(18.99%) (91.23%) (21.27%)

3 11 10 399 0.92 36.27
(3.07%) (8.77%) (4.22%)

Table 1. HIER, EXT and DIT (HSQLDB).

From Table 1, the majority of HIER (91.23%)
exists at DIT level 2. The average HIER at DIT
2 is also greater than that of DIT 3; the num-
ber of EXT at DIT 1 is significantly higher than
that of DIT 2 and 3. The average EXT at DIT
3, on the other hand, is significantly higher than
that of EXT at DIT 1 and 2. We would expect
classes at shallower levels of the hierarchy (i.e.,
DIT 1) to be more coupled to classes outside
the hierarchy than classes at deeper levels since
they ‘inherit’ relatively less potential function-
ality than classes at those deeper levels; unlike
the former, the latter are able to take advan-
tage of the functionality offered by their super
classes.

Clearly, the HSQLDB does not conform to the
model of how we would expect classes to be-
have and neither too our research premise.

3.2. JasperReports

Table 2 shows the same numerical values for
the final version of JasperReports in the same
format of Table 1. The maximum number of
HIER (60.52%) exists at DIT 2 and, to a less
extent, DIT 3. However, on average, the highest
number of HIER (HIER/Classes) exists at DIT
3. We also see that DIT 4 and 5 contain zero
HIER. The majority of EXT (56.92%) is found
at DIT 1. (DIT 4 is where the minimum number
of EXT is found.)

DIT Classes HIER EXT Ave. Ave.
HIER EXT

1 761 0 10383 0 13.64
(69.31%) (56.92%)

2 258 305 6468 1.18 25.07
(23.50%) (60.52%) (35.46%)

3 65 199 1334 3.06 20.52
(5.92%) (39.48%) (7.31%)

4 10 0 5 0 0.5
(0.91%) (0.003%)

5 4 0 51 0 12.75
(0.36%) (0.28%)

Table 2. HIER, EXT and DIT (JasperReports).

The average EXT however, shows a different
trend. On average, classes at DIT 2 and 3, re-
spectively contain the highest EXT. In common
with the HSQLDB system, we see a pattern of
classes that should use functionality offered by
super classes opting to use that of external (to
the hierarchy) classes.

3.3. SwingWT

DIT Classes HIER EXT Ave. Ave.
HIER EXT

1 429 0 2096 0 4.89
(69.19%) (34.59%)

2 99 85 956 0.87 9.66
(15.97%) (24.50%) (15.78%)

3 24 22 304 0.92 12.67
(3.87%) (6.34%) (5.02%)

4 25 34 890 1.36 35.6
(4.03%) (9.80%) (14.69%)

5 28 112 1289 4 46.04
(4.52%) (32.28%) (21.27%)

6 11 85 455 7.73 41.36
(1.77%) (24.50%) (7.51%)

7 4 9 70 2.25 17.5
(0.65%) (2.59%) (1.16%)

Table 3. HIER, EXT and DIT (SwingWT).

162 Java Method Calls in the Hierarchy – Uncovering Yet another Inheritance Foible

Table 3 shows the values of HIER and EXT for
the final version of the SwingWT system. De-
spite the fact that the majority of classes reside
at shallower DIT levels, the maximum number
of HIER is from classes at DIT 5. It is notable
that 28 classes (4.52% of all classes) account
for 112 (32.28%) of HIER and 1289 (21.27%)
of EXT in the system.

We also see that the majority of EXT is found
at DIT 1; however, when taking into account
the number of classes, DIT 5, 6 and 4, respec-
tively are where the majority of EXT exists.
On average, classes at deeper DIT levels have
higher coupling, given by HIER and EXT, than
classes at shallower levels. While we might
have expected the majority of EXT values to
occur at shallower levels of the hierarchy from
a practical perspective (i.e., DIT 1 and 2), the
evidence from the three systems examined so
far suggests that this is not always the case. It is
worrying that there is such a relatively high level
of communication across the inheritance hierar-
chy. From a maintenance perspective, having to
comprehend large disparate sections of classes
dotted around the hierarchy is likely to be more
time-consuming, error-prone and the cause of
further faults on the part of the developer (Ar-
isholm and Briand 2006; Arisholm et al. 2007).

3.4. Tyrant

Table 4 shows the numerical values of HIER
and EXT for the final version of Tyrant. From
Table 4, the majority of HIER (55.13%) exists
at DIT 2. The average HIER also exhibits a
similar trend. We also see a strong tendency
to higher average EXT at shallower DIT levels
and the trend seems to be downwards as the DIT
increases. It would seem that in the case of the

DIT Classes HIER EXT Ave. Ave.
HIER EXT

1 142 0 4321 0 30.43
(50.01%) (64.79%)

2 49 43 1167 0.88 23.82
(17.95%) (55.13%) (17.50%)

3 82 35 1181 0.43 14.40
(30.04%) (44.87%) (17.71%)

Table 4. HIER, EXT and DIT (Tyrant).

Tyrant system, there is some evidence of classes
behaving in accordance with theory.

3.5. Coupling Profile

As a further guide to the composition of classes
in the four systems, Table 5 shows how method
calls are distributed in each of the final versions
of the four systems. The column format of Table
5 (after column 1 for systems) is as follows:

1) Number and the percentage of classes con-
taining both HIER and EXT (HIER&EXT).

2) Number and percentage of classes contain-
ing neither HIER nor EXT (NONE).

3) Number and percentage of classes contain-
ing only HIER.

4) Number and the percentage of classes con-
taining only EXT.

From Table 5, we see that the majority of classes
contain at least one EXT. It is interesting that
from all four systems, we find zero classes
containing only HIER. Also remarkable from
Table 5 is the large number of classes (286)
in SwingWT containing zero HIER and EXT.
SwingWT is a GUI application which has a
maximumof 7 levels ofDIT. Scrutiny of the data
revealed that 6407 method calls (bothHIER and
EXT) were spread across just 334 classes of the
620 in total in the latest version. On average,
each class therefore made 19.18 method calls.
In comparison to the remaining three systems
(HSQLDB: 30.92, JasperReports: 22.75 and
Tyrant 26.25). SwingWT contained the mini-
mum number of method calls per class.

System HIER&EXT NONE HIER EXT

HSQLDB 55 48 0 255
(15.36%) (13.41%) (0%) (71.23%)

JasperReports 85 274 0 739
(7.74%) (24.95%) (0%) (67.30%)

SwingWT 115 286 0 219
(18.55%) (46.13%) (0%) (35.32%)

Tyrant 31 16 0 226
(11.36%) (5.86%) (0%) (82.78%)

Table 5. The HIER and EXT data in the four systems
(latest versions).

Java Method Calls in the Hierarchy – Uncovering Yet another Inheritance Foible 163

From a coupling perspective, this may sound
encouraging, but from a design perspective,
method calls are not evenly spread across all
parts of the system (46.13%of classes contained
zero HIER and EXT). This latter result confirms
previous findings (Nasseri and Counsell 2008;
Nasseri andCounsell 2009) that Swing has been
poorly built and consistently shows features in-
dicating that the system is decaying; it may also
have been significantly patched up.

In the next section, we provide evidence to sup-
port the view that inheritance is not as straight-
forward a concept as theory might suggest. We
draw on past empirical studies to demonstrate
that inheritance is used sparingly at deep levels
and that maintenance of systems at those lev-
els could be problematic. The study we have
presented supports the general view that inher-
itance is not being used appropriately and there
may be many motives and explanations for how
and why coupling evolves as it does.

4. Supporting Evidence

An experiment in which subjects were timed
performing maintenance tasks on OO systems
of varying levels of inheritance was undertaken
by Daly et al. (Daly et al. 1996). Systems with
3 levels of inheritance (DIT 3) were found to
be easier to modify than systems with no in-
heritance. Systems with 5 levels of inheritance
were, however, shown to take longer to mod-
ify than the systems without inheritance. The
same experiment was replicated by Harrison et
al. (Harrison et al. 1998) who found that flat
systems (i.e. containing no inheritance) were
easier to modify than systems containing three
or five levels of inheritance. (Larger systems
were equally difficult to understand whether or
not they contained inheritance.)

Prechelt et al. (Prechelt et al. 2003) found that it
took longer to maintain a program with deeper
levels of inheritance than a program containing
fewer inheritance features. In the study pre-
sented, we found very little activity below DIT
level 3 and other studies seem to provide in-
sights into why that might be the case. Indeed,
a study of 19C++ systems byBieman andZhao
(Bieman and Zhao 1995) found that only 37%
of these systems had a median class inheritance
depth greater than 1. Cartwright and Shep-
perd (Cartwright and Shepperd 2000) collected

a subset of metrics from a large telecommu-
nications system comprising 133,000 lines of
C++ and found a positive correlation between
the DIT and number of user-reported problems,
casting doubt on the use of inheritance for fault
prevention. Wood et al. (Wood et al. 1999)
suggests that inheritance should be used only
when necessary and obvious and, even then,
with care. The results herein provide one rea-
son why this might be the case. In Chidamber
et al. (Chidamber et al. 1998), three industrial
OO systems were empirically investigated, and,
again, none showed significant use of inheri-
tance. They also reported relatively little use
of inheritance in the system they analyzed. Fi-
nally, Basili et al. (Basili et al. 1996) the results
of an empirical study of the C&K metrics are
presented. The metrics are used as predictors of
fault-prone classes. Data from eight medium-
sized management systems, developed in C++
was collected. An experimental hypothesis sug-
gested that a class located deep in the inher-
itance hierarchy was more fault-prone than a
class higher up in the hierarchy (at a shallower
level); this hypothesis was found to be sup-
ported with statistical significance. Far from
aiding maintenance, use of inheritance had the
opposite effect. We would go as far as to say
that Java method calls and their measurement
(taken together with the results herein) repre-
sent the uncovering of ‘yet another inheritance
foible’.

5. Conclusions and Future Work

In this paper, we have presented an empirical
analysis of four, Java open-source systems from
a method call perspective. We distinguished
between number of method calls made within
the hierarchy (HIER) and number of external
method calls (EXT) in classes of the studied
systems. The JHawk tool was used to extract
the HIER and EXT from final versions of the
same four systems. The question we posed was:
do classes take advantage of super class func-
tionality offered (i.e., the subclass-super class
relationships inherent in every inheritance hier-
archy) when invoking the functionality of other
classes and to what extent? Evidence suggests
that the majority of method calls (both HIER
and EXT) are made to the methods of classes
where the majority of functionality exists, ir-
respective of the position of classes within the

164 Java Method Calls in the Hierarchy – Uncovering Yet another Inheritance Foible

hierarchy. In other words, super class relation-
ships and the use of super class functionality by
sub classes is systematically undermined. Only
one of the four systems showed signs of the
opposite.

The results may be of interest to software devel-
opers/practitioners as to how classes in a system
interact and how that might change as a sys-
tem evolves. We view the patterns observed as
quite worrying for effective maintenance. Fu-
ture work will focus on the analysis of systems
from a refactoring perspective to see if that has
any influence on the coupling of a system as it
evolves (Fowler 1999; Nasseri et al. 2008).

References

[1] E. ARISHOLM, L. C. BRIAND, Predicting fault-prone
components in a Java legacy system. Presented in
Proceedings of ACM/IEEE International Sympo-
sium on Empirical Software Engineering, (2006)
Rio de Janeiro, Brazil.

[2] E. ARISHOLM, L.C. BRIAND, M.J. FUGLERUD, Data
mining techniques for building fault-proneness
models in telecom Java software. Simula Research
Laboratory Reports, 2007.

[3] V. BASILI, L. C. BRIAND, W. MELO, A validation
of object-oriented design metrics as quality indica-
tors. IEEE Transactions on Software Engineering,
22(10), 751–761, 1996.

[4] J. BIEMAN, J. ZHAO, Reuse through inheritance: A
quantitative study of C++ software. Presented in
Proceedings of ACM Symposiumon Software Reuse,
Seattle, USA, 1995.

[5] L. C. BRIAND, J. DALY, J. WUST, A unified frame-
work for coupling measurement in object-oriented
systems. IEEE Transactions on Software Engineer-
ing, 25(1), 91–121, 1999.

[6] A. CAPILUPPI, M. MORISIO, J. RAMIL, Structural
evolution of an open source system: A case study.
Presented in Proceedings of the International Work-
shop on Program Comprehension, Bari, Italy, 2004.

[7] M. CARTWRIGHT, M. SHEPPERD, An empirical in-
vestigation of an OO system. IEEE Transactions on
Software Engineering, 26(8), 786–796, 2000.

[8] S. R. CHIDAMBER, S. DARCY, C. KEMERER, Man-
agerial use of metrics for object-oriented software:
an exploratory analysis. IEEE Transactions on Soft-
ware Engineering, 24(8), 629–639, 1998.

[9] S. R. CHIDAMBER, C. F. KEMERER, A metrics suite
for object oriented design. IEEE Transactions on
Software Engineering, 20(6), 467–493, 1994.

[10] J. DALY, A. BROOKS, J. MILLER, M. ROPER, M.
WOOD, Evaluating inheritance depth on the main-
tainability of object-oriented software. Empirical
Software Engineering: an International Journal,
1(2), 109–132, 1996.

[11] M. FOWLER, Refactoring: Improving the design of
existing code. Addison-Wesley, NJ, USA, 1999.

[12] R. HARRISON, S. COUNSELL, R. NITHI, Experimen-
tal assessment of the effect of inheritance on the
maintainability of OO systems. Presented in Pro-
ceedings of Empirical Assessment in Software En-
gineering, Keele, UK, 1998.

[13] JHAWK tool:
(http://www.virtualmachinery.com/
jhawkprod.html).

[14] M. LEHMAN, Programs, cities, students, limits to
growth? In: Programming Methodology, (D.
GRIES Ed.), pp. 42–62, Springer Verlag, 1978.

[15] M. LEHMAN, J. RAMIL, P. WERNICK, D. PERRY, W.
TURSKI, Metrics and laws of software evolution –
the nineties view. Presented in Proceedings of IEEE
International Symposium on Software Metrics, Al-
bequerque, USA, 1997.

[16] M. LORENZ, J. KIDD, Object-orientedMetrics. Pren-
tice Hall New Jersey, 1994.

[17] E. NASSERI, S. COUNSELL, System evolution at the
attribute level: an empirical study of three Java OSS
and their refactorings. Presented in Proceedings of
32ndInternational Conference on Information Tech-
nology Interfaces, Cavtat, Croatia, 2009.

[18] E. NASSERI, S. COUNSELL, Inheritance, ‘warnings’
and potential refactorings: an empirical study. Pre-
sented in Proceedings of the 3rdInternational Con-
ference on Software Engineering Advances, Sliema,
Malta, 2008.

[19] E. NASSERI, S. COUNSELL, An empirical study of
Java system evolution at the method level. Presented
in Proceedings of the IEEE International Confer-
ence on Software Engineering, Research, Man-
agement and Applications, Hainan Island, China,
2009.

[20] E. NASSERI, S. COUNSELL, M. SHEPPERD, An em-
pirical study of evolution of inheritance in Java
OSS. Presented in Proceedings of the Australian
Software Engineering Conference, Perth, Australia,
2008.

[21] L. PRECHELT, B. UNGER, M. PHILIPPSEN, W. TICHY,
A controlled experiment on inheritance depth as a
cost factor for codemaintenance. Journal of Systems
and Software, 65(2), 115–126, 2003.

[22] M. WOOD, J. DALY, J. MILLER, M. ROPER, Multi-
method research: An empirical investigation of
object-oriented technology. Journal of Systems and
Software, 48(1), 13–26, 1999.

Java Method Calls in the Hierarchy – Uncovering Yet another Inheritance Foible 165

Appendix A: Method calls inside and across
the inheritance hierarchy

Received: March, 2010
Accepted: April, 2010

Contact addresses:

Emal Nasseri
School of information Systems, Computing and Mathematics

Brunel University, Uxbridge
Middlesex, UB8 3PH, UK

e-mail: emal.nasseri@brunel.ac.uk

Steve Counsell
School of information Systems, Computing and Mathematics

Brunel University, Uxbridge
Middlesex, UB8 3PH, UK

e-mail: steve.counsell@brunel.ac.uk

EMAL NASSERI is currently a Research Associate at the University of
Wolverhampton and interfaces with industry on a Knowledge Transfer
Partnership. Emal received his PhD in 2009 from Brunel University
exploring facets of Java inheritance hierarchies. His other research in-
terests focus on the use of Java open-source software and the collection
of data from these systems.

STEVE COUNSELL is currently a Senior Lecturer in the Department of
Computing and Information Systems at Brunel University. His re-
search interests are in software engineering and, in particular, the em-
pirical study of software engineering facets such has refactoring and
re-engineering. He also has a strong interest in software metrics and in
data quality. He is also investigator on a two currently running funded
software engineering research projects, both of which have strong in-
dustrial ties.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (ColorMatch RGB)
 /CalCMYKProfile (Photoshop 5 Default CMYK)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.3
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /CMYK
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [623.622 870.236]
>> setpagedevice

