
Journal of Computing and Information Technology - CIT 17, 2009, 2, 195–202
doi:10.2498/cit.1001212

195

A Software Architecture
Framework for Home Service Robots

Mohamed T. Kimour1, Ammar Bessam2 and Rachid Boudour1
1 Department of Computer Science, University of Badji Mokhtar-Annaba, Algeria
2 Department of Computer Science, University of Jijel, Algeria

Over the last years, home service robots have a wide
range of potential applications, such as home security,
patient caring, cleaning, etc. When developing robot
software, one of the main challenges is to build the
software architectural model. Software architecture is
used throughout the software life-cycle for supporting
analysis, guiding development, and acting as a roadmap
for designers and implementers. Though many software
architectures for robotic systems have been defined, none
of them have reached all its objectives due to the great
variability among systems behaviors, and still lack of
systematic techniques to derive the robot software archi-
tecture from its requirements model. In this paper, we
present a generic architectural model for home service
robots, allowing for software architecture design, and
preserving a continuous architectural view all along the
development cycle. While avoiding the predominant
decomposition problems, our approach allows for inte-
gration of the architectural components in a systematic
and comprehensive way for efficient maintainability and
reusability.

Keywords: home service robots, software architecture,
embedded systems, separation of concerns

1. Introduction

Nowadays, robots are used extensively in indus-
trial environments to perform repetitive, danger-
ous, unpleasant, and hard works, and are more
and more entering everyday life as toys and ser-
vice robots [1].
Robots are complex systems whose complexity
is continuously increasing as more and more in-
telligence (decisional and operational autonomi-
es, human-machine interaction, robots cooper-
ation, etc.) is embedded into their controllers
[2].
In the last decade, both academic and industrial
teams have been conducting intensive research

on the emerging field of home service robots [3].
Home Service Robots (HSRs) are individually
designed to perform tasks in a specific environ-
ment for working with, or assisting humans and
must be able to perform services semi- or fully
automatically [4]. A number of commercialized
service robots have recently been introduced,
such as vacuum cleaning robots, home security
robots, entertainment robots, guide robots, etc.
[5,6,7].
Due to the increasing complexity of these robots,
the design of their embedded software is a dif-
ficult task. The complexity mainly depends,
on the mechanical portion of the robot that the
controller has to deal with. These two aspects
of a robot, its mechanical aspect (including its
sensors and actuators) and its control logic are
intrinsically interdependent.

Robots are embedded systems, complex and re-
active, where the new way of building their con-
trol software is centered on the design of the
software architecture as a combination of soft-
ware entities, allowing for reuse and reasoning
about system properties before its implementa-
tion [6,8]. Software architecture is represented
by an architecture description language, high-
lighting various system properties allowing for
analyzing and evaluating trade-offs among al-
ternative solutions [9].
For HSRs, architectures form the backbone of
complete robotic systems. A good choice of
architecture allows for facilitating the specifica-
tion, implementation and validation of robotic
systems.

Though many software architectures have been
defined for developing control software for ro-
bots as embedded systems, and reuse common

196 A Software Architecture Framework for Home Service Robots

components, none of them have reached all its
objectives, especially for HSRs, due to the great
variability among systems behaviors [10].

It is still a challenging problem to develop the
robot software architecture by carefully taking
into account user needs and requirements, im-
plement robot application components based on
the architecture, and integrate these components
in a systematic and comprehensive way [3].

Many robotics controllers software inspired by
Component-based Software engineering, have
been developed [4,3,11,12,13,14,15]. Some ap-
proaches are devoted to specific robotic sys-
tems; others propose common frameworkswhich
cover a broad range of mechanisms and mis-
sions, each of them with their specific features
and requirements. However, none of them have
addressed the problem of the predominant de-
composition and important aspects inherent to
technology evolution.

Designing the software architecture is one of the
most challenging issues for the development of
the robots [3]. Specifically, HSRs need to add
or update services frequently, according to the
changing needs of users. Among others, this
reason leads to integrating technology-oriented
components to benefit from their advantages in
reusability, upgradeability and cost.

Thus, it becomes more important to develop
reusable software control for the HSRs. Such a
software control has to not only exhibit modu-
larity and scalability, but to support generalized
software architecture allowing rapid develop-
ments, decreased cost and increased usability.

In this paper, we present a generic architecture
model for home service robots facilitating the
software architecture design, which would rely
on a continuous refinement of application mod-
els, with system elements preserving a continu-
ous architectural view all along the design cycle.

The main idea of our approach is based on an
appropriate component categorization leading
to efficient separation of concerns. Separation
of concerns is the primary means of splitting
an artifact into parts in order to make it more
manageable and comprehensible [16,17].

The proposed generic software architecture is
composed of three layers, each of which is di-
vided into three sub-layers. Also, shared data
and crosscutting concerns are orthogonal to all

the layers and sub-layers. This orthogonal-
ity constitutes the main difference between the
most notable software architectures for robotic
systems, especially those proposed for indus-
trial robotic arms and our architectural frame-
work. Furthermore, our approach is distin-
guished by at least two fundamental character-
istics:

Firstly, while separating between data flow and
control flow, it advocates modeling the robot
arm function at the mechanism and I/O layers.
At the mechanism layer, a software component
communicates not only with components at the
I/O layer, but also with the higher level ones for
e.g. coordinated actions, thus improving the ef-
ficiency of the global architecture and following
recent trends in the embedded systems design
community. It would be useful to correctly de-
fine specific requirements, especially the timing
constraints and safety concerns. From the users
and programmers point of view, this facilitates
accessibility to them with different domain(s)
of expertise.

Secondly, our approach supports the modeling
of crosscutting concerns, called Non-functional
Requirements (NFRs). NFRs are concerns on
qualities and constraints of the system (such as
security, usability, safety, etc.) that cannot be
effectively described and modularized using the
concept of composition of high cohesion func-
tional modules.

The rest of the paper is organized as follows:
Section 2 summarizes the home service robot
domain and characterizes it. Based on a sep-
aration of concerns principles, Section 3 de-
scribes the proposed component categorization
for HSRs. This component categorization is
used in Section 4 to present our software archi-
tecture framework for HSRs. Finally, in Section
5, conclusion and the future directions of our re-
search are outlined.

2. Home Service Robots

HSRs are robotic systems that can be used
for real useful work around the home to make
our lives more convenient and entertaining [3].
They aim to increase the quality of human life
in a wide range of application areas. They are
designed for providing various services to hu-
man user such as: home security, patient caring,

A Software Architecture Framework for Home Service Robots 197

cleaning, etc. In addition to providing assis-
tance to the elderly, it can further be envisaged
that such robotic appliances will be of general
utility to humans in their homes [18]. The role
of robots in aiding the disabled and elderly is
becoming very important with growing health
care cost and the increase of the elderly popu-
lation.

HSR applications integrate robots and humans
both in a common workspace and in the exe-
cution of the same work tasks. Such tasks are
involved when a person needs help in the same
living environment and for the same application,
such as eating, drinking, washing, shaving, etc.

Examples of HSR tasks include a direct inter-
action with humans as well as control of dif-

Figure 1. Example of home service robot components.

HSRs work directly with people, thus placing a
central importance on making interactions be-
tween people and machines as natural as possi-
ble. The scenario of house keeping and home
care robot assistants focuses on the employment
of HSRs in everyday domestic settings.

HSRs should have a high robustness and be able
to be operated by a disabled user which means a
semi-automatic operation using different types
of user interface devices for operation in un-
structured environment.

Themechanical design ofHSRs should consider
different specifications compared to those used
in industrial applications. Examples of differ-
ences are: payload in the lower range, low total
weight of the robot and high payload/weight
ratio, low life duty cycle and low acceleration
and velocity performance.

On the other hand, control Software for HSRs,
differs from other software applications inmany

ferent equipment through push buttons, such
as computers, copy machines, turn on/turn off
lights, functions in the kitchen, etc. In addition
to fetch-and-carry duties, this includes services
such as setting the table or performing basic
cleaning, leading to the capability of HSRs to
move through various rooms of the home with-
out colliding with furniture or people.

Among other services, a HSR can recognize
voice commands from a user via microphones
the robot is equipped with, and can synthesize
voices for services. A user can call a robot’s
predefined name, to let the robot recognize the
call while the robot knows the direction to move
to the user. This service analyzes audio data and
is based on speech recognition to recognize the
command from the user (see Figure 1).

ways. Foremost are the needs to achieve high-
level, complex goals, the need to interact with a
complex, often unstructured environment,while
ensuring the system’s own dynamics, the need
to handle noise and uncertainty, and the need to
be reactive to unexpected changes. These needs
influence theways howHSRs are designed, how
they operate, and how they are validated.

Furthermore, there is a need to have capabilities
and functions made specific to the service tasks.
This leads tomore complex applications that are
required to achieve multiple tasks in reactively
and concurrently manner, while satisfying strin-
gent safety requirements.

A control software architecture for such sys-
tems, should provide HSR software designers
with means to analyze a given software archi-
tecture with respect to system properties, early
in the design process.

198 A Software Architecture Framework for Home Service Robots

It becomesmore important to followarchitecture-
based development to build HSRs in reasonable
project time, while evolving in accordance with
quickly changing market demands, and satis-
fying required quality attributes such as safety,
human-robot interaction, power consumption,
chemical compatibility, price, life time, and
ease of use.

Modularity and flexibility allow among others,
for decreasing cost, increasing usability, and in-
tegrating not only technical aspects, but also
user interactions. Scalability and upgradeabil-
ity permits to cope with technological advances
that continually offer new devices for commu-
nication, localization, computing, etc.

3. Component Categorization

Overall HSR complexity can be reduced by
decomposing it into smaller components with
well-defined abstraction levels and interfaces
between them.

Usually, robot architectures are determined thro-
ugh hierarchical decomposition, where modu-
lar components are themselves built with other
modules. This type of decomposition can lead
to more modular systems, which has a positive
impact on the performance, maintainability and
evolution. However, such decomposition is a
difficult task and requires systematic technique
to do it.

We believe that a characterization of the appli-
cation domain can go a long way in making the
hierarchical decomposition easier and seamless.
It is the starting point to define the functional
and quality requirements that guide the archi-
tecture design.

To this end, we define an HSR categorization
by applying separation of concerns principles.
Separation of concerns is a viable principle for
reducing complexity and increasing reusability
and upgradeability.

Indeed, physically, a HSR consists of mechani-
cal, electrical, and sometimes hydraulic compo-
nents (e.g., links, drive trains, induction motors,
hydraulic actuators, encoders), often controlled
by embedded software running on a central pro-
cessing unit, or a dedicated digital signal pro-
cessor [19].

A crucial part in the robot control is the model
of its mechanical structure, providing the ki-
netic and dynamical states of the robot, which
is vital to control functionality such as trajectory
generation and loop control [1]. Moreover, be-
havior of HSR is context-dependent in the sense
that it reacts to the environment change and new
system status by supervising the outside world
and controlling its parameter values.

We thus categorize HSR components according
to a combination of layered architecture, where
each layer exhibits specific behavior character-
istics and constraints, on one hand, and four
separations of concerns principles on the other.

3.1. Separating Control from Data
Components

Separating the control aspect, which consists of
control components, from the data aspect, we
could separate data flows from control flows,
thus making it possible to visualize and analyze
behaviors of the system. As a consequence,
addition/removal of components becomes eas-
ier because responsibilities of each component
become clear.

A control component is defined to encapsu-
late state-dependent computation that generates
commands to be addressed to actuators. A con-
trol component may use information from data
and/or algorithmic components.

A data component is a persistent container that
encapsulates a state (knowledge) and a behav-
ior. Data component is used to describe a robot’s
knowledge of its environment, its mission and
its concrete entities, such as those relating to the
robot’s mechanical elements (vehicle, manipu-
lator, etc.) or elements of its environment.

In the architecture description language view, a
data component consists of a set of provided
ports that allow other components to obtain
some of its static physical properties (wheel di-
ameter, frame width, etc.) and set or obtain its
dynamical properties (velocity and orientation
of wheels, etc.).

3.2. Algorithmic Components

Home service robots consist of various com-
ponents (e.g. vision recognizer, speech recog-
nizer, and actuator) to provide services to a user.

A Software Architecture Framework for Home Service Robots 199

A component of this type encapsulates specific
computation that describes how to compute a
set of outputs based on a given set of inputs.
Usually, it prepares some specific computations
to a control component. The domain is charac-
terized by various types of control algorithms,
from very simple reactive actions to extremely
complex algorithms and navigation strategies,
depending on the applications. Moreover, as a
decomposition principle, we isolate the compu-
tation related to a technology that is character-
ized by a relatively fast evolution of the more
stable one.

3.3. Interface Components

To do its functionalities, HSR has various sen-
sors and actuators, as output peripherals such as
information display devices, speaker for speech
generation, etc. The actuators model the sim-
plest active elements, for example a motor for
left and right wheels. A remote user can control
the robot using a PDA.

The sensor interface components are compo-
nents that provide the information required for
controlling a given active element, for example,
the encoder and switch limits associated to a
given joint. Sensors detect events, which are
notified to higher-level control or coordination
components. An actuator interface component
receives commands generated by a control com-
ponent, and concerns actuators that belong to
the set of physical elements controlled by such

control component. An interface component is
defined to encapsulate external interaction pat-
terns of the robot by means of its sensors and
actuators or other I/O drivers.

3.4. Coordination Components

The coordination responsibility, among differ-
ent services in a group of related control com-
ponents, is assigned to a special component
called coordination component which controls
global behavior of such a component’s group.
This component is responsible for any activity
dispatching or component selection to perform
some tasks.

4. Layered Architecture

As shown above, the domain is characterized
by high degree of specialization and, therefore,
a great variability of functionality and physical
characteristics. We note that the presence of
hard real-time requirements and safety is usu-
ally a main concern. However, requirements
nature and characteristics differ from sensors
and actuators to vehicle control or manipula-
tors. This is why a layering approach would
be useful to correctly define these requirements,
especially the timing constraints and safety con-
cerns. From the users and programmers point

Figure 2. Layered HSR architecture.

200 A Software Architecture Framework for Home Service Robots

of view, the specification of a robotic applica-
tion must be modular, structured and accessible
to users with different domain of expertise.

Therefore, while avoiding the predominant de-
composition problem, we introduce architec-
tural layers and organize the above mentioned
components into these layers (see Figure 2).
Indeed, in an HSR, at the lowest level, we can
find the actuators and sensors. At a higher level
we find the controllers for simple actuators (for
example a motor controller). At the next higher
level, we find the controllers for groups of ac-
tuators (for example a motion card capable of
controlling the joints of a mechanism) and so
on. Many of these components can be found
in the market, either as hardware devices and
control cards or software packages for a given
platform. We identify four layers of granularity
at which the components can be defined:

• I/O layer: A component at this layer is of in-
terface type. It abstracts the characteristics
of I/O drivers that supervise and control the
outside world, such as sensors and actuators.
The sensors are components that provide the
information required for controlling a given
active element, for example, the encoder and
switch limits associated to a given joint. Ac-
tuators model the simplest active elements,
for example a motor.

• Mechanism layer: A component at this layer
models the control over the actuators and
the collection of data from sensors. For ex-
ample, there will be mechanism component
defined for controlling the joints of a given
mechanism. This component is a compos-
ite one that may contain control, data, and
algorithmic sub-components.

Usually, a mechanism component needs to ac-
complish hard real-time requirements and, there-
fore, it is generally implemented in hardware.
When it is implemented in software, it serves to
impose severe real-time requirements.

• Functional unit layer: a component at this
layer abstracts a homogenous functionality
of entities that are related together.

To determine the functional unit components,
the decomposition of the application is guided
by the structure inherent in the application, in
accordance with the proven architecture prin-
ciple of “form follows function”. A control
component at this layer, defines control over
a whole functional area (vehicle, manipulator,
etc), which is defined by special constraints or
homogeneous characteristics.

Besides control components, other components
of type data and/or algorithmic, may be de-
fined. For instance, the speeds of the motors
are sensed using shaft encoders (interface com-
ponent) and fed back to the embedded controller
for computation of control signal (algorithmic
or control component) to the DC motor (inter-
face component) every 10 to 50milliseconds us-
ing the proportional-integral control algorithm.
The embedded controller component also mon-
itors the robot environment using four infrared
proximity sensors and switches (interface com-
ponents).

Moreover, we may define at this layer, a co-
ordinator component for managing an aggre-
gation of mechanism components and coordi-
nating their actions according to the command
and information that it receives, as well as the
coordination strategy that it comprises.

Figure 3. Simple example of a functional unit component.

A Software Architecture Framework for Home Service Robots 201

This coordination strategy is an interchangeable
part of that component. For example, the Coor-
dinationStrategy of a given manipulator could
be a given solution for its inverse kinematics, the
coordinator strategy for a given vehicle could be
a given navigation strategy, etc.

Figure 3 depicts an example of functional unit
component, which contains two sub-components:
a robotVehicle component having “data” as type
and a vehicleControlLaw component having “al-
gorithmic” as type.

• Robot central control layer: A component at
this layer, models the control over a whole
robot. For example, a robot composed of a
vehicle with an arm and several interchange-
able tools. This component is an aggregation
of functional unit components and a global
coordinator that generates the commands for
these functional unit components and coor-
dinates their actions, according to the or-
der and the information that it receives and
the coordination strategy that it comprises.
Such strategy is an interchangeable part of
the robot component. Also, the robot cen-
tral component may be a container for three
types of components: data, coordination,
and algorithmic ones.

In addition, because usually there may be be-
havior and states that crosscut several entities,
we model them as components of a separate
layer, with possible interaction with compo-
nents of the other layers. To this end, we define
two other layers that are orthogonal to the afore-
mentioned ones, as follows:

• Non-functional requirements layer: Our
main goal is to preserve the reusability of
entities and improve the comprehensibility,
maintainability, evolution, etc. of the sys-
tem. To do this, we keep “clean” the func-
tionality of the software components com-
posing a system, by separating the proper-
ties induced by the environment in which
software entities are being used, such as the
response time or security aspects. Those
properties are called non-functional require-
ments (NFRs) that are related to crosscutting
concerns [17,20].

• Shared data components: There may be
common data to be used by components
at different layers. To this end, we define
a shared data component as a wrapper of

data structure classes that provide acquisi-
tion, transformation, and storage of data.

A shared data component encapsulates states
and behavior, which represent an abstract view
of a physical entity. An internal state machine
may be attached to a component at this layer to
represent the behavior aspect.

Access to the states should be done through
public interfaces. Components from other lay-
ers can query any state of such component type
at any time. This allows for local state estima-
tion based on information available within the
shared data component, or provides resource us-
age prediction in response to queries from the
components of other layers.

5. Conclusion

We have presented an approach that focuses on
the definition of a generic component frame-
work for the building of architectural compo-
nents that can be reused in different home ser-
vice robotic systems, and identifying software
components based on the separation of concerns
principle and interchangeable aspect inherent to
the degree of technology evolution.

Developed for the domain of home service ro-
bots, the proposed generic architecture is de-
fined according to various dimensions as lay-
ers representing different levels of computa-
tion. It avoids the predominant decomposition
problems by flexibly combining a layered de-
composition of the system with views and as-
pects. In particular, we have demonstrated how
functional decomposition and non-functional
ones can be combined systematically. Future
work will concern the development of a soft-
ware engineering environment based on our ap-
proach and the investigation of other categories
of robotic systems.

References

[1] R. HÖPLER, P. J. MOSTERMAN, Model-integrated
Computing in Robot Control Synthesize Real-time
Embedded Code. In proc. of IEEE Intl Conf. on
Control Applications, CCA’01, 2001.

[2] D. BRUGALI, P. SALVANESCHI, Stable Aspects in
Robot Software Development. International Jour-
nal of Advanced Robotic Systems, Vol. 3, No. 1, pp.
017–022, 2006.

202 A Software Architecture Framework for Home Service Robots

[3] M. KIM, S. KIM, M.-T. CHOI, M. KIM, H. GOMAA,
UML-based Service Robot Software Development:
A Case Study. ICSE, pp. 534–543. 2006.

[4] T. VALLIUS, J. RÖNING, A Telepresence Robot Sys-
tem Realized by Embedded Object Concept. Proc.
Intelligent Robots and Computer Vision XXIV: Al-
gorithms, Techniques, and Active Vision, October
3-4, Boston, Massachusetts, 2006.

[5] R. D. SCHRAFT, Mechatronics and Robotics for
Service Applications. In IEEE Robotics and Au-
tomation Magazine, No. 4, pp. 31–35, December
1994.

[6] T. ROFER, A. LANKENAU, R. MORATZ, Ser-
vice Robotics-applications and Safety Issues in
an Emerging Market, Workshop W20, proc.
ECAI2000, Berlin, 2000.

[7] B. YOU ET AL., Development of a Home Service
Robot ‘ISSAC’. Proc. of the 1994 IEEE/RSJ Int.
Conf. on Intelligent Robots and Systems, Las Vegas,
Nevada, pp. 2630–2635, 2003.

[8] D. GARLAN, Formal Modeling and Analysis of Soft-
ware Architectures. Formal Methods for Software
Architectures. M. Bernado, P. Inverardi (Eds.). Lec-
ture Notes in Computer Science 2804. Springer.
Berlin, Germany, pp. 1–24, 2003.

[9] N. MEDVIDOVIC, R. N. TAYLOR, A Classification
and Comparison Framework for Software Architec-
ture Description Languages. IEEE Transactions on
Software Engineering, 26(1), pp. 70–93, January
2000.

[10] A. BROOKS, T. KAUPP, A. MAKARENKO, S.
WILLIAMS, A. OREBÄCK, Towards Component-
based Robotics. Proceedings IEEE/RSJ Int. Conf.
on Intelligent Robots and Systems (IROS), Canada,
2005.

[11] M. KIM, J. LEE, K. CH. KANG, Y. HONG, S. BANG,
Reengineering Software Architecture of Home Ser-
vice Robots: A Case Study. International Journal
of Advanced Robotic Systems, Vol. 3, No. 1 ISSN
1729-8806, pp. 017-022, 2006.

[12] R. PASSAMA, D. ANDREU, COSARC: Component-
based Software Architecture of Robot Controllers.
In 1st National Workshop on Control Architecture
of Robots: software approaches and issues, Mont-
pellier, 2006.

[13] M. J. BAKARI, K. M. ZIED, D. W. SEWARD, Devel-
opment of a Multi-arm Mobile Robot for Nuclear
Decommissioning Tasks. International Journal of
Advanced Robotic Systems, Vol. 4, No. 4, 2007.

[14] F. KANEHIRO, H. HIRUKAWA, S. KAJITA, OpenHRP:
Open Architecture Humanoid Robotics Plat-
form. International Journal of Robotics Research,
23(2):155–165, 2004.

[15] B. ÁLVAREZ, A. IBORRA, J. A. PASTOR, C.
FERNÁNDEZ, Software Architecture for Develop-
ment of Mechatronic Systems: Service Robots.
Dedicated Systems Magazine, 04, 2001.

[16] D. L. PARNAS, On the Criteria to be Used in Com-
posing Systems into Modules, Communications of
the ACM 15, 12, 1053–1058, 1972.

[17] P. OSSHER, H. HARRISON, W. SUTTON, N Degrees
of Separation: Multi-dimensional Separation of
Concerns. Proc. of the 21st Intl Conf. on Software
Engineering, Los Angeles, 107–119, 1999.

[18] M. ZOBEL, J. DENZLER, B. HEIGL, E. NÖTH, D.
PAULUS, J. SCHMIDT, G. STEMMER, MOBSY: Inte-
gration of Vision and Dialogue in Service Robots.
Machine Vision and Applications, 1(14), pp. 26–34,
2003.

[19] M.-P. ROYER, A Qualitative Study of In-
home Robotic Telepresence for Home Care of
Community-living Elderly Subjects. Journal of
Telemedecine and Telecare, 2006.

[20] A. NAVASA, M. A. PÉREZ, J. M. MURILLO, J.
HERNÁNDEZ, Aspect-oriented Software Architec-
ture: a Structural Perspective. Workshop on Early
Aspects: Aspect-oriented Requirements Engineer-
ing and Architecture Design. Aspect-oriented Soft-
ware Development Conference, April 2002.

Received: February, 2008
Revised: December, 2008
Accepted: February, 2009

Contact addresses:

Mohamed T. Kimour
University of Annaba

BP 12, 23000, Annaba, Algeria
e-mail: mtkimour@hotmail.fr

Ammar Bessam
University of JiJel

JiJel, Algeria
e-mail: bessamamar@yahoo.fr

Rachid Boudour
University of Annaba

BP 12, 23000, Annaba, Algeria
e-mail: racboudour@yahoo.fr

MOHAMED TAHAR KIMOUR received his Ph.D. in computer science from
the University of Annaba (Algeria) in 2005. His research interests in-
clude embedded system design, software architecture, UML/SysML,
and wireless sensor/actor networks.

AMMAR BESSAM received the M.S. degree in computer science from the
University of Constantine (Algeria). He is interested in software design,
software architecture description languages, and embedded systems.

RACHID BOUDOUR received his Ph.D. in computer science from the
University of Annaba in 2006. He is the head of the research group
on embedded systems co-design and co-verification. His research in-
terests include embedded systems co-design, high-level synthesis and
verification, and formal tools.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (ColorMatch RGB)
 /CalCMYKProfile (Photoshop 5 Default CMYK)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.3
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /CMYK
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

