
Journal of Computing and Information Technology - CIT 16, 2008, 4, 317–323
doi:10.2498/cit.1001400

317

Web-enabling Cache Daemon
for Complex Data

Ivan Voras and Mario Žagar
Faculty of Electrical Engineering and Computing, University of Zagreb, Croatia

One of the most common basic techniques for improving
the performance of web applications is caching fre-
quently accessed data in fast data stores, colloquially
known as cache daemons. In this paper we present a
cache daemon suitable for storing complex data while
maintaining fine-grained control over data storage, re-
trieval and expiry. Data manipulation in this cache
daemon is performed via standard SQL statements so
we call it SQLcached. It is a practical, usable solution
already implemented in several large web sites.

Keywords: web cache, data cache, database cache, SQL,
database, memory database

1. Introduction

A quick survey (which does not attempt to
be comprehensive) of Internet’s most popular
“generic” web applications and high-volume
dynamic web sites confirms that most of them
rely extensively on data cache daemons to help
them achieve their high performance1. The re-
sults of this survey (from October 2007) are in
Table 1.

We also observe that all of theseweb sites except
Google use some of the rapid web application
development languages and frameworks such as
PHP, Python or Ruby, and have begun to rely on
advanced caching techniques to maximize their
performance. The popularity of Memcached in
this survey, used by most large web sites with-
out a major corporate backing, can be easily
explained by the fact that it was the first Open

Web site Cache engine used

Slashdot
(http://slashdot.org) memcached [1]

Wikipedia
(http://wikipedia.org) memcached [1]

LiveJournal
(http://livejournal.com) memcached [1]

SourceForge
(http://sourceforge.net) memcached [1]

Google
(http://google.com) BigTable [2]

YouTube
(http://youtube.com) BigTable [2]

Table 1. Survey of cache engine usage
on large Internet web sites.

Source cache daemon to provide generalized
and consistent interfaces to most popular pro-
gramming languages.

Out of a need to to increase performance in
a complex web application developed at our
Faculty2, we first created a cache layer based
on Memcached, with which we observed sig-
nificant performance improvements. However,
during the implementation and usage we found
that many common operations were not per-
formed efficiently. These operations included:
complex conditional data retrieval, complex
cache expiry rules, and reduced need for se-
rializing and unserializing data to and from
strings. The lack of flexibility in the imple-
mented solution (which only offers a simple
key-value database) led us to consider a differ-

1 Note that this is different from generalized “HTTP cache” and "web acceleration" applications which cache resulting HTML
and other content and act as a "black box" between the web server and its end users.

2 The “Quilt” web CMS, implemented at the Faculty of Electrical Engineering and Computing, other University faculties and
several government agencies in Croatia, made with the PHP language and using PostgreSQL database.

318 Web-enabling Cache Daemon for Complex Data

ent approach. Finally, a project was started to
implement a new cache daemon which could
provide these features in a uniform and con-
sistent way, with server-side implementation of
most of the complex rules. The result was the
SQLcached, whose architecture and implemen-
tation we present in this paper.

2. Data Caching in Currently Common Web
Applications

The basic idea behind using cache daemons in
web applications is to skip repetitive CPU- and
IPC- intensive steps by generating data only
once and then storing it in a high-performance
cache store, from where it can be retrieved as
needed. A very common application of this idea
is skipping the repetitive execution of complex
or largeSQLqueries by integrating a cache layer
between the web application and the database
interface (library). This cache layer will com-
monly check if the result of the passed SQL
query exists in the cache and if it does, it will
return the data directly from the cache instead of
passing the query for execution to the database.
In this simple form, the simplest kind of directly
addressable data store is enough to satisfy the
required functionality.

Common web cache daemons are essentially
memory databases that offer a simple interface
for storing and retrieving key-value records,
with some “bonus” features like simple arith-
metic operations (increment and decrement)
for well-formed numeric values in the cache,
simple atomic operations (get- and set-if-not-
changed) and data expiry (an optional expiry
timestamp attached to each key-value pair). A
typical cache layer in web applications builds
a key-value pair by hashing SQL query strings
to form the key string and serializing database
results to form the value string. Since the cache
daemon often implements data expiry directly,
it is enough for the application to check if the
hashed SQL string exists in the cache and then
either return the cached result (if it exists), or
execute the query, store the result in the cache,
and then return it.

2.1. Design of Memcached

One of the most common cache daemons in
use on the web is Memcached, whose design
is classical and straightforward. Since it’s in-
fluenced the creation of SQLcached, we will
present some of its major features here.

The architecture of Memcached makes it very
efficient in the common case [3]. The cache dae-
mon is implemented as a single executable that
is resident (as its name implies) as a daemon
process on a network-enabled server. It is cre-
ated in C for POSIX environments and is most
commonly deployed on Linux and other Unix-
like operating systems. Applications commu-
nicate with the cache daemon using a simple
text-based protocol (modelled after early TCP
protocols like SMTP) which is implemented
over TCP or UDP, with the TCP version be-
ing preferable. This protocol is easily imple-
mented in practically any programming lan-
guage, which has greatly helped Memcached’s
popularity. The cache daemon uses a low-
latency, asynchronous method of acquiring and
handling network connections. The data store
(key-value pairs) is organized as a dynami-
cally sized hash table structure optimized for
fast reading. The hash table size can only be
increased (the condition for this is when the
number of items in any hash bucket gets larger
than two thirds of the base-two logarithm of the
number of buckets). Memory for the hash table
items is allocated using an internal slab allo-
cator [4] whose purpose is to reduce memory
fragmentation [5].

Memcached is a single-threaded daemon which
handles network requests sequentially (at any
given time, the cache daemon is actively work-
ing only on one request). This makes for a
simple and efficient implementation, at the ex-
pense of not allowing it to scale on multi-CPU
systems. However, because the execution of in-
dividual requests is very fast and the operating
system handles network data transmission asyn-
chronously while requests are being executed,
the overall performance of Memcached is often
more than sufficient for its purpose.

2.2. Shortcomings of Memcached
and the Design of SQLcached

Memcached is a proven solution for data caching
andmemory databases used bymany large prod-
ucts, many of which are of "mission critical" im-
portance for their respective companies. Most
of its shortcomings are worked around in its
implementation at the data cache layer in ap-
plications, though at the expense of efficiency

Web-enabling Cache Daemon for Complex Data 319

and speed of operation. The purpose of this pa-
per is not to discourage its use, but to point out
some additional features that are generally use-
ful for applications but which are not addressed
in Memcached and to provide an alternative so-
lution that does implement them. These features
are:

1. The ability to store complex data without ex-
cessive serialization. While some forms of
data conversion is always necessary to trans-
late the data representation from the one used
in the web application (e.g. in PHP) to the
one used in the cache daemon, serialization
in dynamic languages can be slow. We have
observed that in PHP, the serialize() function
is 1.5 times slower than a naı̈ve approach
when converting simple integer values, and
up to 20 times slower when converting sim-
ple structures. Our analysis shows that much
of this difference results from taking advan-
tage of the programmer’s knowledge of data
types and structure layouts in the second
case, versus the generality of the serialize()
call. This approach cannot be used with a
simple key-value database.

2. The ability to retrieve data sets based on
complex criteria. Many cache daemons, in-
cluding Memcached, offer some way of re-
trieving a list of cached data records based
on a provided list of keys, but retrieving keys
based on a complex criteria such as “wild-
card” matching of key strings, retrieving all
cache items pertinent to a certain web page
ID, etc. is not supported. Due to the inher-
ent nature of the storage structure, hash ta-
bles (while very efficient at key-value pairs)
cannot support many of the complex queries.

3. The ability to expire data sets based on com-
plex criteria. Without additional metadata
support, cache record expiry can commonly
be performed either per-record (for each
record individually) or in bulk (all records
at once). Fine grained expiry would allow
expiry only of certain data, for example all
data pertinent to a web page ID.

4. The ability to do complex operations on the
data (both data-processing and algebraic).
This is a non-critical ability and is in any
case more a convenience than a necessity.
With a complex data model it should be pos-
sible to, for example, extend the expiry time

(“time to live”) of cached data items, or up-
date only certain portions of the data, further
increasing the cache efficiency when there
are a lot of cached records or when the data
generation is particularly slow.

Many of these features stem from the fact that
most modern dynamic web pages are, as a rule,
constructed of several individual elements. A
simple example is a web page consisting of a
header, a footer, a site navigation bar and the
contents, each of which may have complex re-
lationshipswith other elements on this and other
pages. For example, the page’s header and nav-
igation bar can be common for all pages, while
the content is changed by the administrators,
and the footer contains the timestamp of the last
change in the content. Adding a new page to the
site means only the navigation bar is changed
(for all pages). To support modern interac-
tive sites (let’s call them “Web 2.0” sites, for
a lack of a better common name), individual
users might have customized views of the same
content, multiplying most of the cacheable ele-
ments per the number of users.

The lack of fine-grained control over data re-
trieval and expiry results in inefficient use of
the cache. This inefficiency can be manifested
by either of the two following scenarios. First,
keeping too much logic and data in the appli-
cation to avoid retrieving or expiring too many
records is slow if the application is written in
an interpreted language, and can result in many
IPC calls to the cache to gather all needed data
from the cache. Second, by considering the
data at a too coarse granularity, keeping it in
few large structures which are generated and
transferred to and from the cache in bulk, or
expiring all data from the cache when a critical
piece of user-visible data changes (versus expir-
ing only the data pertinent to a certain user or to
a certain web page), significant spikes in server
load can be observed when new data is gener-
ated, which can sometime reduce the beneficial
effects of having a cache. In our experience,
this latter form of inefficiency is more danger-
ous to a smooth user experience (and a smooth
and predictable server load).

Memcached lacks all of the enumerated fea-
tures because it is structured as a true key-value
database, with both the key and the value being
simple opaque binary data strings. Some of the

320 Web-enabling Cache Daemon for Complex Data

features can be emulated to an extent by fold-
ing data qualifiers into key strings, which was
used by an early version of our web applica-
tion. Our experience from the implementation
was that such substitute techniques are often
difficult to implement and negatively impact the
overall performance of the system, as compared
to what it could have been without them. This
experience has motivated us to seek a different
solution for the data cache.

Several different approaches were considered
for the improvement of the overall system,among
which are: modification ofMemcached to better
suit our data model, creation of a similar cache
daemon which allows data to be properly sep-
arated into multiple independent domains (that
can be expired separately), and creation of a
complex caching daemon with the features of
generic tabular database.

After weighing the benefits that each approach
could bring to the system and the complexities
of each implementation, the third option was
chosen. Adding special support for our needs to
Memcached would limit its usability when the
needs change, and while separating keys into
independent domains can help with expiry, re-
taining any form of key-value database doesn’t
do any help with storage of complex data.

After the decision to implement a tabular mem-
ory database, we considered an interface to the
cache daemon. In the spirit of making it simple,
a text interface was chosen. It was soon obvious
that the most convenient (and easiest to learn)
interface to the cache engine is a subset of SQL.
In order not to duplicate work and create yet
another SQL database, it was decided to base
the new cache engine on SQLite [6].

3. Implementation of SQLcached

The new cache engine, which we named SQL-
cached, uses SQLite as its underlying stor-
age engine. SQLite is a small, embeddable,
serverless relational database with an interface
that makes it usable for seamless integration
into larger applications. At the time of this
project’s creation, two SQLite versions were
in widespread use: version 2.8.17, a stable and
mostly obsolete version, and version 3.3.5, with
a newer architecture. Preliminary tests showed
a significant difference in performance between

the versions [7] in favour of the older version.
Because of this, we have used version 2.8.17.

SQLcached is written in C and is designed as a
daemon process for POSIX environments. Ap-
plications communicate with it via either the
TCP or the “Unix sockets” interface (both can
be used at the same time), using a simple text-
based protocol. Network operations (reading,
writing and connection handling) are imple-
mented in an asynchronous way so that mul-
tiple simultaneous connections are handled ef-
ficiently, but only one request can be processed
at the same time. The asynchronous requests
are handled using the standard POSIX poll() in-
terface. SQLcached can be deployed on more
than one server to create a load-balancing setup.

The network protocol used by SQLcached of-
fers the clients an almost complete set of SQL
statements supported by SQLite, including re-
lational features like n-way joins (though they
may not be directly usable in a cache daemon,
for performance reasons).

The SQLite backend is used as a memory-only
database, and no data is ever committed to per-
manent storage. Indices can be created on ap-
propriate database fields to speed up data re-
trieval. Both data and index structures are inter-
nally stored in dynamically balanced B-trees.

4. SQLcached Features

The following sections describe howSQLcached
implements features enumerated in Section 2.2.

4.1. Support for Storing Arbitrary Data
without Excessive Serialization

Sqlcached stores data in tabular form, and the
SQL interface exposed to the clients allows
them to create arbitrary tables for their use. This
feature allows applications to store entire struc-
tures in the cache without forced serialization,
and later selectively retrieve only needed parts
of the structures. The main benefit of this mode
of operation is a smaller overhead in process-
ing time and in memory allocation, for both the
application and the cache daemon.

Web-enabling Cache Daemon for Complex Data 321

4.2. Support for Retrieving Data Sets
Based on Complex Criteria

The flexibility of SQL allows applications us-
ing SQLcached to store and retrieve data us-
ing complex criteria. The ability to cache data
per-user, per-page or per-application (with the
same keys in each of the domains) can have a
huge influence on efficiency of the cache layer,
which doesn’t have to fold all the data into a sin-
gle namespace and can issue relatively complex
queries to store and extract only the needed parts
of complex structures. It also means that the us-
age of SQLcached is not limited to caching of
opaque objects such as entire results of database
queries, but allows a different approach inwhich
applications can now cache their internal, al-
ready processed data. In addition to increasing
efficiency and flexibility, this approach opens
new possibilities for applications. SQLcached
can be used for operations that would normally
overtask the main database due to the high vol-
ume of data writes they generate, such as track-
ing of individual users’ statistical information
and presence (current web page or object they
are interacting with).

4.3. Support for Data Expiry Based on
Complex Expiry Rules

Data expiry in SQLcached can be performed ei-
ther automatically or initiated by applications.
Automatic data expiry can be triggered by one
of three conditions, configurable by the appli-
cations: data age, number of records in the table
and number of cache operations. Using these
conditions, the data cache can be effectively
limited in size and remain fresh enough for ap-
plications to use.

Applications that needmore complex expiry can
issue appropriate SQL commands with arbitrar-
ily complex conditions, which can (for exam-
ple) delete data cached per-user, per-page or
per-application.

4.4. Support for Complex Operations
on Cached Data

Applications using SQLcached have access to
operators and functions supported by SQLite,
which include basic arithmetic and compari-

son operators, simple numerical functions (e.g.
ABS), data manipulation functions (e.g. UP-
PER) and aggregate functions (e.g.MIN,MAX).

5. Usability and Performance of
SQLcached

The proper application of SQLcached in web
application requires a step away from the tra-
ditional design where the cache is used as a
single-purpose key-value database. Instead, we
propose a design where the applications exhibit
more fine-grained control over the data and co-
operate with the cache daemon to make the best
use out of the rich set of features it offers.Using
SQLcached as a simple key-value database is
suboptimal, as shown in Figure 1, presenting
results of benchmarking SQLcached and Mem-
cached in a situation where the data records
are simple key-value pairs with value sizes con-
forming to a geometric distribution3. In case
of SQLcached, a single table was created with
three columns: key, value, and time. Analo-
gous write benchmarks follow the same trends
and relations between the results.

Figure 1. Results of simple key-value read benchmarks.

However, SQLcached offers features not present
inMemcached, such as fine-grained data expiry.
We have performed benchmarks on a data set of
100,000 records in 30,000 pages and 1000 users
simulating cached data according to the exam-
ple web site described in section 2.24 (appropri-
ate indexes were created in the cache database
schema). Table 2 contains results of forced data

3 These benchmarks were performed on an Athlon 64 2 GHz in 32-bit mode on FreeBSD 7 under directly comparable conditions.
4 These benchmarks were performed on a Pentium M 1.5 GHz on FreeBSD 7 under directly comparable conditions.

322 Web-enabling Cache Daemon for Complex Data

expiry benchmarks. Forced data expiry is fre-
quently used when new content is posted which
immediately obsoletes previously cached data
(because users want to immediately see the ef-
fects of their actions).

Cache daemon operation Time

Memcached
(expire entire set at once) 1000.0 ms

SQLcached
(expire cached data, a single page) 0.2 ms

SQLcached
(expire cached data, a single user) 6.1 ms

Table 2. Effectiveness of fine-grained forced data expiry.

By employing fine-grained expiry of the cached
data in the web CMS application used at our
Faculty, we have observed up to 30% improve-
ment in overall performance at periods of inten-
sive content creation and significant reduction
of load spikes in IO and CPU on the server,
resulting in a more smooth and predictable op-
eration. We believe that offloading more data
operations from the cache layer in the applica-
tion (written in PHP) to SQLcached could yield
even better results.

6. Conclusion

This paper presented the SQLcached cache dae-
mon, a network-enabled memory database in-
tended to be used for caching frequently gen-
erated data in web applications. Development
of SQLcached was motivated by the desire to
increase performance in a real, production web
application, in a way that could not be done
with the most popular open-source cache dae-
mon, Memcached.

SQLcached offers a highly flexible interface to
client applications, based on a subset of SQL.
This allows applications to perform complex
operations on the cached data such as storage,
retrieval and data expiry, using complex rules,
which results in a more efficient use of the
cache. To gain maximum benefits from the
advanced features of the cache database, ap-
plications using it must be modified not to treat
cached data as simple binary strings, but as com-
plex objects with arbitrary properties which can
be used to increase efficiency. SQLcached is

successfully implemented in our web applica-
tion where it has satisfied all our requirements
for a flexible cache database.

The source code of SQLcached is published as
Open source and is available at http://www.sf.
net/projects/sqlcached.

7. Acknowledgments

This work is supported in part by the Croatian
Ministry of Science, Education and Sports, un-
der the research project “Software Engineering
in Ubiquitous Computing”.

References

[1] B. FITZPATRICK, “Memcached: users”, http://
www.danga.com/memcached/users.bml, retri-
eved 2007-10-14

[2] Wikipedia, “BigTable”, http://en.wikipedia.
org/wiki/Bigtable, retrieved 2007-10-14

[3] B. FITZPATRICK, A. VOROBEY and others: Mem-
cached source code, http://www.danga.com
/memcached/, retrieved 2007-10-01

[4] J. BONWICK, “The Slab Allocator: An Object-
Caching Kernel Memory Allocator”, USENIX Sum-
mer 1994 Technical Conference, 1994.

[5] A. VOROBEY, “Memory management”, Memcached
technical documentation distributed with mem-
cached source.

[6] D. R. HIPP, “SQLite Documentation”, http://
www.sqlite.org/docs.html, retrieved 2007-10-02

[7] I. VORAS, “SQLite: memory: performance dif-
ference between v2 and v3”, Public communica-
tion (mailing list), archived at http://www.mail-
archive.com/sqlite-users@sqlite.org/
msg14868.html, retrieved 2007-10-02

Received: June, 2008
Accepted: September, 2008

Contact addresses:

Ivan Voras
University of Zagreb

Faculty of Electrical Engineering and Computing
10 000 Zagreb, Croatia

e-mail: ivan.voras@fer.hr

Mario Žagar
University of Zagreb

Faculty of Electrical Engineering and Computing
10 000 Zagreb, Croatia

e-mail: mario.zagar@fer.hr

Web-enabling Cache Daemon for Complex Data 323

IVAN VORAS was born in Slavonski Brod, Croatia. He received B.Sc.
in computer engineering (2006) from the Faculty of Electrical Engi-
neering and Computing (FER) at the University of Zagreb, Croatia.
Since 2006 he has been employed by the Faculty as an Internet Services
Architect and is a graduate student (PhD) at the same Faculty, where
he has participated in research projects at the Department of Control
and Computer Engineering. His current research interests are in the
fields of distributed systems and network communications, with a spe-
cial interest in performance optimizations. He is an active member of
several Open source projects and is a regular contributor to the FreeBSD
operating system.

MARIO ŽAGAR is a professor of computing at the University of Zagreb,
Croatia. He received B.Sc., M.Sc.CS and Ph.D.CS degrees, all from
the University of Zagreb, Faculty of Electrical Engineering and Com-
puting (FER) in 1975, 1978, 1985 respectively. M. Žagar joined FER
in 1977 and since then has been involved in different scientific projects
and educational activities.

He received British Council fellowship (UMIST - Manchester, 1983)
and Fulbright fellowship (UCSB - Santa Barbara, 1983/84). His cur-
rent professional interests include: computer architectures, design au-
tomation, real-time microcomputers, distributed measurements/con-
trol, ubiquitous/ pervasive computing, open computing (JavaWorld,
XML,. . .).

M. Žagar is author/co-author of 5 books and about 100 scientific/pro-
fessional journal and conference papers. He is senior member of the
Croatian Academy of Engineering. In 2006 he received “Best educator”
award from the IEEE/CS Croatia Section.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (ColorMatch RGB)
 /CalCMYKProfile (Photoshop 5 Default CMYK)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.3
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /CMYK
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

