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The paper presents a novel technique for affine invariant
feature extraction with the view of object recognition
based on parameterized contour. The proposed tech-
nique first normalizes an input image by removing
the affine deformations using independent component
analysis which also reduces the noise introduced during
contour parameterization. Then four invariant function-
als are constructed using the restored object contour,
dyadic wavelet transform and conics in the context of
wavelets. Experimental results are conducted using three
different standard datasets to confirm the validity of the
proposed technique. Beside this, the error rates obtained
in terms of invariant stability are significantly lower
when compared to other wavelet-based invariants. Also
the proposed invariants exhibit higher feature disparity
than the method of Fourier descriptors.
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1. Introduction

One of the key tasks in robotic vision is to recog-
nize objects when subjected to different view-
point transformations. This can be achieved by
constructing invariants to certain groups (Eu-
clidean, affine, projective transformations)
which hold potential for widespread applica-
tions for industrial part recognition [14], hand-
written character recognition [15], identification
of aircrafts [6], and shape analysis [16], to name
a few. Viewpoint related changes of objects
can broadly be represented by weak perspective
transformation which occurs when the depth of
an object along the line of sight is small com-
pared to the viewing distance. This reduces
the problem of perspective transformation to the
affine transformation which is linear [18].

The affine group includes four basic forms of
geometric deformations under weak perspective
projection assumption, namely: translation, ro-
tation, scaling and shearing. Finding a set of
descriptors that can resist geometric attacks on
the object contour can act as a good starting
point for the more difficult projective group of
transformations.

In this paper, we propose a new method of con-
structing invariants which is based on normal-
izing an affine-distorted and noise-corrupted
object boundary using independent component
analysis which makes it invariant to transla-
tion, scaling and shearing deformations, besides
removing noise from the contour data points.
Then, using the restored object contour we con-
struct four invariants three of which use the ap-
proximation coefficients of the dyadic wavelet
transform. It is important to mention here that
the constructed invariants are independent of the
contour scan order.

The paper is organized as follows. In Section 2
we briefly review the concepts of independent
component analysis and dyadic wavelet trans-
form. Next in Section 3 we review some of the
previously publishedworks, Section 4 describes
the proposed method in detail and Section 5
provides experimental results and comparisons
with previously published techniques.

2. Review

Before we move ahead, let us make a brief over-
view of the two primary components namely in-
dependent component analysis and dyadicwave-
let transform that form the basis of the proposed
technique.
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2.1. Independent Component Analysis

Primarily developed to find a suitable repre-
sentation of multivariate data, it performs blind
source separation of a linear mixture of signals
and has found numerous applications in short
time. Assume that we observe a linear mixture
Q of n independent components:

Qj = Aj1S1 + Aj2S2 + . . . + AjnSn for all j (1)

where A represents the mixing variable and S
the source signals. Using vector notation it can
be expressed as:

Q = AS. (2)

The model above is called the independent com-
ponent analysis or ICA model [1][2] which is
a generative model as it describes the process
of mixing the component signals Si. All that
is observed is Q and A, S must be estimated
from it. In order to estimate A, the component
Si must be statistically independent and have a
non-gaussian distribution. After estimating the
mixing variable A we can compute its inverse
say W and obtain the independent components
as:

S = WQ. (3)

We opted for ICA as a possible solution space
because an affine deformation of the object con-
tour results in the linearmixing of the data points
on the coordinate axis besides being coupled
with random noise during contour parameteri-
zation.

2.2. Dyadic Wavelet Transform

In pattern recognition, it is important to con-
struct signal representations that are invariant
to translation. Whenever a pattern undergoes
a shift, the descriptors may also undergo a
shift, but should not change its numeric sig-
nature. Continuous wavelet transform and win-
dowed Fourier transform provide translation in-
variant representations, but uniformly sampling
the translation parameter destroys this transla-
tion invariance. Whereas the dyadic wavelet
transforms maintain translation invariance by
sampling only the scale parameter along a dyadic
sequence{2j}j∈Z of the continuouswavelet trans-
form [19]. Thus the scale parameter is discre-
tized, but not the translation parameter. Hence

the resulting input signal may undergo a shift,
but the samplingmechanismof the dyadicwave-
let transform preserves the numeric values from
being modified due to shift in the input signal.

3. Related Work

Keeping in view the importance of constructing
invariants and their widespread applications, re-
search has been conducted by many which can
broadly be classified into two groups, namely:
Region-based and Contour-based invariant de-
scriptors. In the context below we review some
of the contour-based techniques that are most
related to the present work.

Several parameterizations of the object bound-
ary that are linear under an affine transforma-
tion have been proposed. The affine arc length
τ proposed in [8] is defined as follows:

τ =

b∫
a

3
√

x(t)′y(t)′′ − x(t)′′y(t)′dt (4)

where x(t)′, y(t)′ are the first and x(t)′′, y(t)′′
the second order derivatives with respect to the
parameterization order t. As the above com-
putation requires second order derivates, it be-
comes susceptible to noise introduced because
of incorrect segmentation of the object.

To solve the above problem Arbter et al. [9] in-
troduced the invariant Fourier descriptors using
the enclosed area parameter defined as:

σ =
1
2

b∫
a

|x(t)y(t)′ − y(t)x(t)′|dt (5)

The above formulation was derived using the
property that the area occupied by an object
changes linearly under an affine transformation.
The only drawback is that it is not invariant to
translation and requires the starting and ending
points to be connected. Arbter [9] also found
that using sign in the enclosed area parameter
(5) makes it much less sensitive to noise instead
of the absolute values. Besides this, compared
to the wavelet-based descriptors, this technique
has a higher misclassification rate.
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Zhao et al. [10] introduced affine curve moment
invariants based on affine arc length (4) defined
as:

vpq =
∫
C

[x(t) − x̃]p[y(t) − ỹ]q

{[x(t) − x̃]y(t)′[y(t) − ỹ]x(t)′}dt

(6)

where x̃ and ỹ are the centroid of the contour
computed using (4) after removing the cubic
root in the framework of moments. They de-
rived a total of three invariants using equation
(6) and have shown them to be invariant to the
affine group of transformations. The drawback
of the above framework is that the invariants are
sensitive to noise and local variations of shape
because the computation of invariants is based
on moments and derivates of first order.

More recently, Manay et al. [7] introduced the
Euclidean integral invariants to counter the ef-
fect of noise based on the concept of differential
invariants. They have derived two invariants,
namely; distance integral invariant and area in-
tegral invariant. The major drawback of their
work is that the distance integral invariant is a
global descriptor and a local change of shape
i.e. missing parts of shape, affects the invariant
values for the entire shape, whereas the area in-
tegral invariant only counters for the Euclidean
group of transformations.

Tieng et al. [4] proposed the use of dyadic
wavelet transform for constructing invariants
using the approximation and detail coefficients.
They formulated a framework based on en-
closed area parameter for constructing invari-
ants in the wavelet domain. Later Khalil et al.
[5][6] extended theirwork and derived invariants
using the detail coefficients and wavelet-based
conic equation.

More recently, Ibrahim et al. [3] derived invari-
ants using the approximation coefficients based
on the framework proposed in [4] and showed
that approximation-based invariants outperform
detail-based invariants in terms of error rates. In
this paper we extend our work initially proposed
in [21] and add two more invariants to the de-
scriptor list besides elaborating in detail the ex-
perimental results. In the process, we make use
of the frameworks proposed in [4] and [6] while
constructing invariants in the next sections and

improve upon the wavelet-based methods by re-
ducing error rates.

4. Proposed Technique

We propose a three-step process for the con-
struction of contour-based invariant descriptors
of the objects. The first step acts as founda-
tion for second and third steps (divided into two
parts: construction of invariant I1, I2 and I3,
I4) in which ICA is applied and then invariants
are constructed. Next we provide the detailed
description of each step.

4.1. Boundary Parameterization and
Re-sampling

In the first step, object contour is extracted and
parameterized. Let us define this parametric
curve as [x(t), y(t)] with parameter t on a plane.
Next the parameterized boundary is resampled
to a total of L data points. Thus a point on the
resampled curve under an affine transformation
can be expressed as:

x̃(t) = a0 + a1x(t) + a2y(t)
ỹ(t) = b0 + b1x(t) + b2y(t)

(7)

The above equations can be written in matrix
form as:[

x̃(t′)
ỹ(t′)

]
=

[
a1 a2
b1 b2

] [
x(t)
y(t)

]
+

[
a0
b0

]

[
x̃(t′)
ỹ(t′)

]
= P

[
x(t)
y(t)

]
+ B (8)

Y ′(t′) = PY(t) + B

where t and t′ are different because of the differ-
ence in contour scan order and sampling of the
two contours, Y ′ is obtained as a result of affine
transformation of Y , P is the affine transforma-
tion matrix and B is the translation vector which
can be removed (B = 0) by using the centroid
contour coordinates.

The source code written for contour parame-
terization can be obtained from the following
weblink1.

1 http://www.mathworks.com/matlabcentral/fileexchange/loadFile.do?objectId=13109&objectType=file
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4.2. Theoretical Formulation and
Application of ICA

We know that Y(t) and Y ′(t′) are the linear com-
bination of the same source S with a different
mixing matrix A and A′ referring to equation
(2). Then we can write:

Y(t) = AS(t)
Y ′(t′) = A′S(t) (9)

where A′ is the linear combination of P and ran-
dom noise N. In (9) the mixing matrix A′ is dif-
ferent because of the difference in affine trans-
formation parameters and the random noise in-
troduced during contour parameterization.

Next we estimate the mixing variableA′ by find-
ing a matrix W of weights using the Fast ICA
algorithm from [1]. Then W will be used to
find the original source S as per equation (3).
The two-step process for computing ICA is as
follows:

Step 1: Whiten the Centered Data

Whitening is performed on Y ′(t′) in order to re-
duce the number of parameters that need to be
estimated. Its utility resides in the fact that the
new mixing matrix Ã′ that will be estimated is
orthogonal such that it satisfies:

Ã′Ã′T = I (10)

So, the data Y ′ becomes uncorrelated after this
step. Whitening is stronger than uncorrelated-
ness as whiteness of a zero mean vector means
that its components are uncorrelated and their
variance equals unity. In other words, the co-
variance and correlation matrix of Ã′ equals the
identity matrix as per equation (10). Whitening
is then performed by computing the Eigen value
decomposition of covariance matrix as:

Y ′Y ′T = EDET

Ỹ ′ = ED−1/2ETY ′ (11)

where E is the orthogonal matrix of eigenvec-
tors of {Y ′Y ′T} and D is the diagonal matrix of
eigen values.

Step 2: Apply ICA on the Whitened Object
Contour

Herewe apply the independent component anal-
ysis on the whitened contour Ỹ ′ = [x′(t′) y′(t′)].
The steps involved in the algorithm are detailed
below:

a. Initialize a random matrix of weights W.

b. Compute the intermediate matrix as:

W+ = E{Ỹ ′g(WTỸ ′)} − E{Ỹ ′g′(WTỸ ′)}W
(12)

where g is a non quadratic function and E{.}
represents the maxima of the approximation
of negentropy. For more details refer to [1].

Figure 1. The complete system diagram for the construction of contour-based invariant descriptors.



Affine Invariant Contour Descriptors Using Independent Component Analysis and Dyadic Wavelet Transform 173

(a) (c) (e)

(b) (d) (f)

Figure 2. (a) Original image. (b) Parameterized boundary. (c) and (e) are affine transformed version of (b).
(d) and (f) are the restored (normalized) counterparts obtained after performing whitening.

c. Let W = W+/||W+||
d. If not converged, then go back to (b).

It is important to note that convergence means
that the previous and current values of W have
the same sign and the difference is below a cer-
tain permissible value.

By using the above procedure we have been able
to find a matrix W ′ of weights that satisfies:

W ′Y ′(t′) = W ′AS(t′) ≈ S(t′)
A′ = W ′−1 (13)

So we now use the inverse of the matrix W ′ to
find S as per equation (3). The obtained source
S(t′) will have the same statistical characteris-
tics as the original source S(t), but will only
differ from it because of the random contour
parameterization order.

Figure 1 shows the complete system diagram
and elaborates the above mentioned operations
in a sequential and precise manner where, as
Figure 2 and Figure 3 demonstrate, the out-
put obtained after applying the abovementioned
steps.

(a) (b)

Figure 3. (a) An affine deformed and noise-corrupted
object contour. (b) Noise-reduced and affine normalized

image obtained after applying ICA.

Although using the above procedure we have
been able to recover the contour of the object,
the obtained independent componentsmay have
been inverted along either the parameterized x-
axes or y-axes. As a result there are four possi-
ble cases [x, y], [xr, y], [x, yr] and [xr, yr] where
xr, yr represent values in reverse order. How-
ever, we can consider only one of the two cases
[x, y] and [xr, yr] for invariant construction as
the effect of inversion along both axes can be
removed by using normalized cross correlation.
So we are left with three cases and we construct
invariants I1, I2, I3 and I4 proposed in the next
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sub-section for each of the cases and use them
while performing cross correlation.

4.3. Affine Invariant Functions I1 & I2

As a consequence of previous operations we
have been able to remove translation, scaling
and shearing distortions from the object con-
tour, besides considerably reducing the effect
of noise which is introduced during the parame-
terization process because of incorrect segmen-
tation. The only distortion we are left with is
rotation. So in this third and final step we con-
struct two invariants using the restored object
contour.

Stepwise process used for the construction of
invariant I1 is described below:

a. Enclose the full object contour in a circle C
= [Cx Cy] of radius R as shown in Figure
4(c).

b. Compute the Manhattan distance of a point
lying on the recovered object contour S(t′)
= [x(t′) y(t′)] with all the points of C as:

D = |xt′ − Cx| + |yt′ − Cy| (14)

c. Select the minimum value of D as an invari-
ant and add it to I1(t).

(a) (b)

(c) (d)

Figure 4. (a) Original parameterized boundary. (b)
Affine transformed object. (c), (d) Enclosed objects

after restoration for constructing invariant I1.

d. Repeat (b) and (c) for every point lying on
the object contour.

As a result of the above operation we have been
able to convert rotational distortion of an object
into translationalmisalignmentwhich can be re-
moved by performing normalized cross correla-
tion of the original and transformed object con-
tour parameterized in an unknown order. Figure
5[(a), (b)] shows the plots of Invariant I1 for the
same object and its deformed version. Normal-
ized cross correlation value obtained for invari-
ant I1 in Figure 5 is 0.9627. Besides this, the
invariant can also resist small deformations such
as missing parts of shape.

In order to increase the discriminative capabil-
ity of the invariants we make use of the wavelet
transform to construct invariant I2. Wavelet
transform is a linear transform and if it is applied
to the affine-distorted shape then it also gets af-
fected by the same distortion. But the object
in our case is only rotationally deformed and
all other geometric deformations are removed.
Then we can write:

T =
[

WTix(t′) WTjx(t′)
WTiy(t′) WTjy(t′)

]

T =
[

cos θ − sin θ
sin θ cos θ

]
T (15)

An affine invariant function is computed by tak-
ing the determinant of (15) as:

WTix(t′)WTjy(t′) − WTiy(t′)WTjx(t′) =
det(V)(WTix(t′)WTjy(t′) − WTiy(t′)WTjx(t′))

(16)

where V is the rotational transformation matrix
which only effects the contour parameterization
order, i and j represent coefficients at two differ-
ent levels of thewavelet transform. In (16), only
if the approximation coefficients of the wavelet
transform are used, it can be written as:

I2 = Aix(t′)Ajy(t′) − Aiy(t′)Ajx(t′) (17)

To construct the above invariant we make use
of the “A Trous algorithm” proposed by Mallat
[19]. Figure 5[(c), (d)] shows the plot of I2 for
the image in 4(a) and 4(b).
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(a) (b)

(c) (d)

Figure 5. (a), (c) Invariant I1 and I2 for the object shown in Figure 4(a).
(b), (d) Invariant I1 and I2 for the corresponding affine deformed object shown in Figure 4(b).

4.4. Affine Invariant Functions I3 & I4

Here we construct two invariants by using con-
ics in context of the dyadic wavelet transform
for the restored object contour. Conics have
been used previously in computer vision to de-
rive geometric invariant functions. Conics are
curves defined in terms of projective invariant
property and have a central role in projective
geometry. A geometric interpretation of these
invariants is given in [18].

For a point (x, y) from the restored object con-
tour the conic can be expressed as the quadratic
form [20]:

[ x y ] G
[

x
y

]
= h,

where G =
[

G11 G12
G12 G22

]
(18)

where h is a constant and G is a symmetric ma-
trix.

A wavelet-based conic equation [6] can be ob-
tained from (18) using three dyadic levelsWix(t)
and Wiy(t) where W represents the wavelet
transform and i ∈ {a, b, c}.

[Wix(t) Wiy(t) ] ζ(t)
[

Wix(t)
Wiy(t)

]
= h

where ζ =
[
η11 η12
η12 η22

]
(19)

An affine invariant function can then be defined
as:

ηa,b,c(t) = η11(t)η22(t) − η2
12(t) (20)
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(a) (b)

(c) (d)

Figure 6. (a), (b) Invariant I3 and I4 for the object shown in Figure 4(a).
(c), (d) Invariant I3 and I4 for the corresponding affine deformed object shown in Figure 4(b).

The above function has been proven by [5][6] to
be equivalent to:

ηa,b,c = −f 4
c,b(t) − f 4

a,c(t) − f 4
b,a(t)

+ 2f 2
a,c(t)f

2
c,b(t) + 2f 2

c,b(t)f
2
b,a(t)

+ 2f 2
b,a(t)f

2
a,c(t)

(21)

where

f p,q = Apx(t)Aqy(t) − Aqx(t)Apy(t) (22)

The function in (21) is an invariant of weight
four. Affine invariant functions I3 and I4 can
then be constructed as:

I[3,4] = −f 4
c,b(t) − f 4

a,c(t) − f 4
b,a(t)

+ 2f 2
a,c(t)f

2
c,b(t) + 2f 2

c,b(t)f
2
b,a(t)

+ 2f 2
b,a(t)f

2
a,c(t).

(23)

It is clear from here that (23) is itself a function
of (22) which is affine invariant. We make use
of the approximation coefficients of the dyadic
wavelet transform while constructing invariants
I3 and I4 using (23). The dyadic wavelet trans-
form is implemented using the “A Trous algo-
rithm” proposed by Mallat [19]. Figure 6 shows
the plot of invariants I3 and I4.

5. Experimental Results

The proposed techniquewas tested on a 2.4GHz
Pentium IV machine with Windows XP and
Matlab as the development tool. The datasets
used in the experiments include the MPEG-7
Shape-B datasets, 10 aircraft images from [6]



Affine Invariant Contour Descriptors Using Independent Component Analysis and Dyadic Wavelet Transform 177

and English alphabets dataset. All the parame-
terized contours are resampled to have the same
length L of 256 data points. In the construction
of the invariant I1 the value ofRused is 80, qubic
spline filters for the construction of invariant I2
have been used with decomposition up to level
four, where, as in the construction of invariant I3
and I4, the approximations coefficients at level
{3, 4, 5} and {2, 4, 6} are used. As the invari-
ants constructed in section (4.4) are based on the
same mathematical concept hence by varying
the wavelet decomposition levels only a large
number of invariants can be constructed as has
been the case for invariants I3 and I4. Further
qubic spline filters are used for wavelet decom-
position.

The decomposition levels were selected to be
slightly coarser. The purpose was to prevent the
invariants from small noise perturbations left on
the output of ICA which can also mimic itself
in the output of wavelet transform if a finer de-
composition level is selected. Whereas select-
ing very coarse decomposition levels can reduce
the discrimination capability of constructed de-
scriptors between objects resembling outer con-
tours. Hence a tradeoff between sensitivity to
noise distortions and discrimination capability
resulted in the selection of above decomposition
levels.

Besides this, we use normalized cross correla-
tion for comparing two sequences Ak and Bk
which is defined as:

RAB =

∑
l

∑
k

AkBk−l

√∑
k

A2
k

∑
k

B2
k

(24)

This section is divided into three parts: first we
demonstrate the stability of the four invariants

against five different affine transformations then
we provide a comparative analysis of the four
invariants with the method in [3] and lastly we
demonstrate the feature discrimination capabil-
ity of the four invariants when compared to the
method of Fourier descriptors.

(a)

(b)

Figure 7. The comparison of invariant I1, I2, I3 and I4
with the method in [3]. The results are averaged over the

MPEG-7 shape-B dataset.

Object 1 [figure 2(b)] Object 2 [figure 4(a)]
Transformation I1 I2 I3 I4 I1 I2 I3 I4

Original Image 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
R(70), S(2,1) 0.9447 0.9562 0.9693 0.9571 0.9712 0.9718 0.9403 0.9335

R(135), S(2,3), T 0.9850 0.9634 0.9718 0.9709 0.9854 0.9936 0.9785 0.9596
R(45),Sh(2.05,1.0),T 0.9124 0.8550 0.9369 0.9202 0.9632 0.8949 0.9035 0.9267

R(165), S(3,3), Sh(1,2), T 0.9309 0.9070 0.9845 0.9818 0.9058 0.9290 0.9148 0.9423
R(230), S(4,1), Sh(3,3), T 0.9165 0.8561 0.9376 0.9679 0.9301 0.8641 0.9217 0.9466

Table 1. The normalized cross correlation values of the invariants after applying different affine transformations.
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S.No Image Name Transformation I1 I2 I3 I4

Butterfly Original Image 1.00 1.00 1.00 1.00
R(70), S(2,1) 0.9432 0.9522 0.9916 0.9828

1. R(135), S(2,3), T 0.9534 0.9961 0.9897 0.9714
R(45),Sh(2.05,1.0),T 0.9460 0.9561 0.9834 0.9627

R(165), S(3,3), Sh(1,2), T 0.9424 0.9508 0.9864 0.9771
R(230), S(4,1), Sh(3,3), T 0.9272 0.9658 0.9865 0.9648

Bird Original Image 1.00 1.00 1.00 1.00

R(70), S(2,1) 0.9279 0.9757 0.9285 0.9473
2. R(135), S(2,3), T 0.9484 0.9868 0.9692 0.9012

R(45),Sh(2.05,1.0),T 0.8747 0.9018 0.9053 0.8929
R(165), S(3,3), Sh(1,2), T 0.9273 0.9761 0.9033 0.9304
R(230), S(4,1), Sh(3,3), T 0.8826 0.8996 0.9148 0.9180

Device Original Image 1.00 1.00 1.00 1.00
R(70), S(2,1) 0.8847 0.9203 0.9185 0.9182

3. R(135), S(2,3), T 0.9619 0.9477 0.9678 0.8944
R(45),Sh(2.05,1.0),T 0.8926 0.8784 0.8894 0.9382

R(165), S(3,3), Sh(1,2), T 0.9200 0.9310 0.9508 0.9631
R(230), S(4,1), Sh(3,3), T 0.9081 0.9160 0.9085 0.9090

Chopper Original Image 1.00 1.00 1.00 1.00
R(70), S(2,1) 0.9211 0.8817 0.9504 0.9310

4. R(135), S(2,3), T 0.9447 0.9231 0.9675 0.9333
R(45),Sh(2.05,1.0),T 0.8830 0.8710 0.8890 0.8917

R(165), S(3,3), Sh(1,2), T 0.9217 0.8958 0.9631 0.9516
R(230), S(4,1), Sh(3,3), T 0.8595 0.9129 0.9465 0.8864

Bat Original Image 1.00 1.00 1.00 1.00

R(70), S(2,1) 0.9031 0.9631 0.8711 0.8853
5. R(135), S(2,3), T 0.9276 0.9944 0.9241 0.9231

R(45),Sh(2.05,1.0),T 0.9031 0.9359 0.9257 0.9754
R(165), S(3,3), Sh(1,2), T 0.9257 0.9768 0.9142 0.9427
R(230), S(4,1), Sh(3,3), T 0.8844 0.9571 0.9478 0.9425

Camel Original Image 1.00 1.00 1.00 1.00

R(70), S(2,1) 0.8900 0.9060 0.9341 0.9487
6. R(135), S(2,3), T 0.9725 0.8975 0.9479 0.9066

R(45),Sh(2.05,1.0),T 0.9138 0.9580 0.9609 0.9750
R(165), S(3,3), Sh(1,2), T 0.9382 0.9143 0.9721 0.9426
R(230), S(4,1), Sh(3,3), T 0.9233 0.9118 0.8712 0.8984

Chicken Original Image 1.00 1.00 1.00 1.00

R(70), S(2,1) 0.9375 0.9683 0.9394 0.9653
7. R(135), S(2,3), T 0.9364 0.9191 0.9581 0.9651

R(45),Sh(2.05,1.0),T 0.8959 0.8903 0.9368 0.9376
R(165), S(3,3), Sh(1,2), T 0.9197 0.9780 0.9429 0.9596
R(230), S(4,1), Sh(3,3), T 0.8834 0.8904 0.9465 0.9542

Apple Original Image 1.00 1.00 1.00 1.00

R(70), S(2,1) 0.9180 0.9985 0.9773 0.9713
8. R(135), S(2,3), T 0.9513 0.9642 0.9805 0.9720

R(45),Sh(2.05,1.0),T 0.9357 0.9405 0.9451 0.9375
R(165), S(3,3), Sh(1,2), T 0.9813 0.9763 0.9774 0.9527
R(230), S(4,1), Sh(3,3), T 0.9353 0.9088 0.8743 0.9130

Table 2. The normalized cross correlation values of the invariants after applying different
affine transformations on a subset of MPEG-7 shape-B dataset.
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Table 1 provides comparison of the invariants
I1, I2, I3 and I4 in terms of the normalized cross
correlation values against different affine trans-
formations for the objects in Figure 2(b) and
Figure 4(a) from the aircraft dataset. In the
table, the following notation is used: Rotation
(R) in degrees, Scaling (S), Shear (Sh) along x
and y axis and Translation (T). The figures in
brackets represent the parameters of the trans-
formation.

Similarly, Table 2 provides the comparison of
invariants I1, I2, I3 and I4 in terms of the nor-
malized cross correlation values against differ-
ent affine transformations for a selected set of
objects from the MPEG-7 Shape-B dataset.

To further elaborate and demonstrate invariant
stability, Figure 7 compares the proposed invari-
ants I1, I2, I3 and I4 with [3] over a set of 15 affine
transformations shown in Table 3. The results
are averaged over the MPEG-7 shape-B dataset.
Obtained results show a significant increase in
performance as a function of increased correla-
tion between the original and affine transformed
images for the proposed invariants.

(a)

(b)

Figure 8. The discrimination capability of invariant I1,
I2, I3 and I4 using the aircraft and MPEG7 dataset.

S.No Rotation◦ Scaling
X

Scaling
Y

Shear
X

Shear
Y

1. 35 3 3 0 0
2. 150 3 4 0 0
3. 170 3 2 1 0
4. 140 1 4 0 0
5. 30 1 2 0 0
6. 70 3 2 0 1
7. 150 1 3 2 0
8. 235 1 4 1 0
9. 46 4 2 0 0
10. 45 1 1 1 3
11. 55 1 1 3 1
12. 65 1 1 2.05 2
13. 110 1 1 1.5 1.7
14. 25 3 3 1.5 1.7
15. 120 2 1 0 1

Table 3. The set of fifteen affine transformations used
for performing various experiments.

Finally we demonstrate the feature discrimina-
tion capability of the proposed invariants using
Figure 8 and compare it with that of the Fourier
Descriptors in Figure 9. Figure 8[(a), (b)] plots
the result of correlation of the proposed in-
variants for the aircraft dataset and its fifteen
affine transformed versions and correlation of
fifteen objects and there affine transformed ver-
sion from the MPEG-7 shape-B dataset with the
aircraft dataset.

The results have been averaged for I1, I2 (Fig-
ure 8(a)) and I3, I4 (Figure 8(b)). For the in-
variants that can exhibit good disparity between

Figure 9. The discrimination capability of Fourier
Descriptors using the aircraft and MPEG7 dataset.
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shapes the two correlation plots should not over-
lap which has been the case for the proposed
invariants I1, I2 and I3, I4 in Figure 8. Figure
9 plots the above mentioned correlations using
the method of Fourier Descriptors where the
two correlation plots overlap significantly.

Although the resampling of object contour re-
sults in loss of may be precious data points and
can have a negative effect on cross correlation
values but at the same time it is necessary so
that the signals to be compared don’t become
the subset of each other and correspondence
can be established fairly. Further processing
time is reduced substantially against arbitrary
length signals.

It is important to mention here that a preprocess-
ing step such as a smoothing operation applied
on the object contour after restoration can sig-
nificantly increase the correlation values, which
at present has not been used to preserve the
shape discrimination power of the two invari-
ants. Obtained results show significant reduc-
tion in error, thus validating the proposed ap-
proach.

6. Conclusion

In this paper we have presented a new technique
for invariant construction using the independent
component analysis and dyadic wavelet trans-
form. Experimental results validate the use of
an affine normalization technique as a prepro-
cessor to the computation of invariant function-
als. Besides this, the use of dyadic wavelet
transform after affine normalization added the
much needed discriminative power to the pro-
posed set of invariants. Presently, our work is
in progress to extend the framework to handle
the projective group of transformations and es-
timation of the affine parameters. In future, we
intend to build an intelligent classifier for per-
forming object recognition over a large dataset
based on the proposed invariants.
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