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Automatic classification of digital signal types is ex-
tremely important in communication intelligence. In
this paper, we present a highly efficient digital signal
type classifier for fading environments. In the proposed
method, an equalizer is used to reduce the channel
effects. Selected combination of the fourth, the sixth
and the eighth order of moments and cumulants of the
received signal are introduced as the features for repre-
sentation of digital signal. A novel multiclass classifier
based on support vector machines determines types of
the received signals. Simulation results show that the
proposed method has a high success rate for recognition
of different digital signal types, even at low signal to
noise ratio (SNR).
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1. Introduction

Automatic digital signal type classification (AD-
STC) is increasingly important as the number
and sophistication of digital signaling systems
increase. There is an emerging need for in-
telligent modems which would be capable of
quickly discriminating signal types. Signal type
classification may be used to identify interfer-
ences or to choose the appropriate demodulator
in the cooperative scenario. Due to the increas-
ing usage of digital signal in many novel appli-
cations, in this paper we shall focus on classifi-
cation of these types of signal.

Generally, ADSTC approaches can be divided
into two main categories: decision theoretic
(DT) approaches and pattern recognition (PR)
approaches. DT approaches use probabilistic
and hypothesis testing arguments to formulate
the recognition problem [1-7]. The major draw-
backs ofDTapproaches are computational com-
plexity, difficulty of their implementation and

thorough analysis required to set the proper
threshold values [8]. However, PR techniques
do nut need such a careful treatment. PR tech-
niques are divided into two main subsystems:
the feature extraction subsystem and the clas-
sifier subsystem [8-20]. The former is respon-
sible for extracting prominent characteristics of
the received signal, and the latter determines the
class of the signal.

Most of the automatic digital signal type clas-
sifiers have been proposed for recognition of
signal formats in additive white Gaussian noise
(AWGN) channels [1-5], [8-17]. However, in
real world, communication environments, such
aswireless communication channels suffer from
fading. There are few ADSTC methods over
fading environments [6, 7], [18-20]. In [6], a
method is proposed for classification of PSK2
and PSK4 in a flat Rayleigh fading. In [7], a
quasi-optimal solution based on the approxima-
tion of the log-likelihood function is proposed
to identify FSK signals in a fading channel.
In [18], signal formats PSK2, QPSK4, π/4 -
QPSK and QAM16 were classified by applying
the nearest neighbor rule in a two-dimensional
feature space, i.e. the variance of differential
phase between consecutive symbols and stan-
dard deviation of the instantaneous amplitude.
In [19], a method has been proposed based on
a combination of the fourth order cumulants
and power moment matrices for identification
of PSK2, PSK4, QAM8, ASK2 and ASK4 dig-
ital signals in multipath environment. In this
method a multi-layer perceptron (MLP) neu-
ral network is used as the classifier. In [20], a
SVMs-based classifier is used for identification
of PSK2, PSK4, PSK8, ASK2 and ASK4. In
this method a combination of the fourth order
cumulants and symmetry of the received signal
are used as the features.
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In this paper, we present a highly efficient dig-
ital signal type classifier (HEDSTC) for fad-
ing environments. Figure 1 shows the general
scheme ofHEDSTC. It includes fourmainmod-
ules. In the preprocessing module, components
of the channel noise that are outside the sig-
nal bandwidth are removed, carrier frequency is
estimated, complex envelope is recovered, etc.
This module is similar to ADSTC methods and
will not be explained here. The role of equaliza-
tion module is to reduce the channel distortion.
Feature extraction module extracts a selected
combination of the higher order moments and
higher order cumulants up to eighth. Classi-
fier module has a multiclass structure based on
binary support vector machines (SVMs).

The paper is organized as follows. In Section
2, the channel equalization will be explained.
The feature extraction module will be described
in Section 3. The multi-class support vectors
machine classifier (as the new proposed classi-
fier) is explained in Section 4. Section 5 shows
some of the simulation results. Finally, Section
6 concludes the paper.

Figure 1. General scheme of HEDSTC.

2. Channel Equalization

In digital communications, there are four dig-
ital modulation techniques based on changes
of frequency, amplitude, phase of message, fre-
quency shift keying (FSK), amplitude shift key-
ing (ASK), phase shift keying (PSK) and quadra-
ture amplitude modulation (QAM) [21]. In
real world scenarios, the transmission channel

is a critical factor that may cause unrecover-
able distortions on the signal, particularly for
higher order digital signals. To reduce the
dispersion effects of channel, an equalization
stage has been used in the receiver. In appli-
cations such as signal type classification, the
training set which is needed for adjusting the
coefficients of equalizer is not available. Hence
the equalization must be done blindly. When
the type of signal is unknown, the fraction-
ally spaced equalizer-constant modulus algo-
rithm (FSE-CMA) is one of the common blind
equalization algorithms [22]. FSE-CMA is the
integration of two different parts: the constant
modulus algorithms (CMA) and the fractional
spaced equalizer (FSE).

The constant modulus algorithm (CMA) is a
stochastic gradient algorithm, designed to force
the equalizer weight to keep a constant enve-
lope. Even though it was originally designed
for problems where the signal of interest has a
constant envelope property, it has been shown
that it works well for some of QAM types [22].
As a result, the CMA is expected to have bet-
ter performance for FSK and PSK signals than
QAM types. The CMA cost function is given
by:

J(k) = E
{
|y(k)|2 − γ

}
(1)

where y(k) is the equalizer output and γ called
the dispersion constant that defined by (2).

γ =
M40

M20
(2)

where M40 and M20 are fourth and second order
moment respectively. The cost function J(k) is
minimized iteratively by using a gradient-based
algorithm.

In any standard CMA equalization system, the
coefficient taps are baud-spaced. However, it
is often desired to use an equalizer with taps
spaced at a fraction of the data symbol period T.
This configuration gives extra degrees of free-
dom to perform additional filtering. Such a
scheme is called fractional spaced equalization
(FSE). Let us assume that the received signal
is:

x(t) =
∞∑

k=−∞
s(k)h(t − kT) + ν(t) (3)

where h(t) is the channel impulse response, s(k)
is the sequence of information and ν is AWGN.
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It is assumed that h(t) has finite length. Frac-
tionally spaced channel output which results
from P times oversamplingwith respect to sym-
bol rate can be written as:

x

(
k
T
P

)
=

∞∑
l=−∞

s(l)h
(

k
T
P
−lT

)
+ν
(

k
Tt
P

)
.

(4)
An equivalent representation can be formed by
using P-channel parallel filter bank model. The
output of the ith sub-channel hi(k) is given by:

xi(k) =
∞∑

l=−∞
s(l)hi(k − l) + νi(k);

i = 0, . . . , P − 1. (5)
Now, we use an equalizer wi(k) in cascade with
each sub-channel hi(k). The equalizer coeffi-
cients (taps) are adjusted by using FSE-CMA
algorithm:

w(k+1)=w(k)+ζx∗(k)y(k)
(
|y(k)|2−γ

)2

(6)
where ζ is the step size parameter and:

x(k)=[x1(k), . . ., x1(k−(N−1)), . . .,
xP(k), . . ., xP(k−(k−(N−1))]T .

(7)

3. Feature Extraction

Different digital signal types have different char-
acteristics. Therefore, extracting proper fea-
tures for recognition of digital signals, partic-
ularly in the case of higher order and/or non-
square types, is a serious problem. Choosing
unsuitable features can make it impossible, even
for an advanced classifier, to perform a simple
task, while choosing appropriate features can
make it possible for a simple classifier to solve
complex problems [23].
In this paper, we consider the following digi-
tal signal types: PSK2, PSK4, PSK8, ASK8,
QAM32, V29, Star-QAM8 and QAM64. To
simplify the indication, we use P1, P2, P3, P4,
P5, P6, P7 and P8 to denote PSK2, PSK4, PSK8,
ASK8, QAM32, V29, Star-QAM8 and QAM64
respectively. Amongdifferent features that have
been extracted, the higher order moments and
higher order cumulants up to eighth, achieve
the highest performances in classification of the
considered digital signals. The following sub-
sections briefly describe these features.

3.1. Moments

Probability distribution moments are the gener-
alization of the concept of the expected value.
Recall that the general expression for the ith

moment of a random variable is given by [24]:

μi =
∫ ∞

−∞
(s − m)i f (s)ds (8)

where m is the mean of the random variable.
The definition of the ith moment for a finite
length discrete signal is given by:

μi =
N∑

k=1

(sk − m)i f (sk) (9)

where N is the data length. In this study, signals
are considered to be zero mean. Thus:

μi =
N∑

k=1

sk
i f (sk). (10)

Now, the auto-moment of the random variable
may be defined as follows:

Mpq = E
[
s p−q(s∗)q] (11)

where p is the moment order and s∗ stands for
complex conjugation s.

Consider a zero mean discrete signal sequence
with the form s = a+jb. Using the definition of
the auto-moments, the expressions for different
orders may be easily derived. For example:

M41=E[(a+jb)3(a−jb)]=E[a4−b4]. (12)

3.2. Cumulants

Consider a scalar zero mean random variable s
with characteristic function:

f̂ (t) = E
{
e jts} . (13)

Expanding the logarithm of the characteristic
function as a Taylor series, we have:

log f̂ (t)=k1( jt)+
k2( jt)2

2
+. . .+

kr( jt)r

r!
+. . ..

(14)



260 A New Signal Type Classifier for Fading Environments

The constants ki in (14) are called the cumu-
lants. The symbolism for pth order of cumu-
lants is similar to the pth order moment. More
specifically:

Cpq = Cum[ s, . . . , s︸ ︷︷ ︸
(p−q) terms

, s∗, . . . , s∗︸ ︷︷ ︸
(q) terms

]. (15)

For example:

C81 = Cum(s, s, s, s, s, s, s, s∗). (16)

3.3. Relations between Moments and
Cumulants

The nth order cumulant is a function of the mo-
ments of orders up to n. Moments can be ex-
pressed in terms of cumulants as:

M [s1, . . ., sn] =∑
∀ν

Cum�{sj}j∈ν1
�. . .um�{sj}j∈ν1

�
(17)

where the summation index is over all parti-
tions ν = (ν1, . . . , νq) for the set of indices
(1, 2, . . . , n), and q is the number of elements
in a given partition. Cumulants can be also
derived in terms of moments. The nth order
cumulant of a discrete signal s(n) is given by:

Cum[s1, . . . , sn] =

∑
∀ν

(−1)q−1(q − 1)!E

⎡
⎣∏

j∈ν1

sj

⎤
⎦ . . .E

⎡
⎣∏

j∈νq

sj

⎤
⎦

(18)

where the summation is performed on all par-
titions ν = (ν1, . . . , νq) for the set of indices
(1, 2, . . . , n).

Let n = 3. In this case, the available set
of indices is (1, 2, 3), and four different types
of partitioning may be obtained for that set:
{(1, 2, 3)} leads to q = 1, {(1), (2, 3)} leads
to q = 2, {2, (1, 3)} leads to q = 2, {3, (1, 2)}
leads to q = 2, {(1), (2), (3)} leads to q = 3.

Therefore:

Cum[s1, s2, s3] = (−1)1−1(1 − 1)!E[s1s2s3]
+(−1)2−1(2 − 1)!E[s1]E[s2s3]
+(−1)2−1(2 − 1)!E[s2]E[s1s3]
+(−1)2−1(2 − 1)!E[s3]E[s1s2]
+(−1)2−1(2 − 1)!E[s3]E[s1s2]
+(−1)3−1(3 − 1)!E[s1]E[s2s3],

(19)

Cum[s1, s2, s3] = E[s1s2s3] − E[s1]E[s2s3]
+ E[s2]E[s1s3] − E[s3]E[s1s2]
+ 2E[s1]E[s2]E[s3].

Using the same manner, cumulants expressions
up to eighth order can be computed. Among
these features, we need to select the best ones.
The best selected features are: C40, M41, M61,
C61, C63, M84, C80, C82 and C83. Table 1 shows
some of these features for a number of con-
sidered digital signal types. These values are
computed under the constraint of unit variance
and are noise free.

P1 P2 P4 P6 P7

M41 1 0 1.76 0 0

M61 1 -1 3.62 8.667 2.92

C63 16 4 7.19 -4.43 0.160

M84 1 1 7.92 28.75 5.25

C83 -244 0 9.27 0 0

Table 1. Some of the chosen features for a number of
considered digital signal types.

4. Classifier

We have proposed a multi-class SVM-based
classifier. The SVMs are based on structural
risk minimization (SRM) principle that lets
them have high generalization ability and sev-
eral applications in the area of pattern recogni-
tion [25]. Though SVM was originally designed
for two-class problems, several approaches have
been proposed to extend SVM for multi-class
data sets [26]. The following subsections de-
scribe briefly the binary SVM and multi-class
classifier.
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4.1. Binary SVM (BSVM)

BSVMconstructs optimal separating hyperplanes
(OSH) for classification. OSH maximizes the
margin between the two nearest data points be-
longing to two classes. The idea of BSVM can
be expressed as follows.

Consider the training set (xi, yi), i = 1, 2, . . . , l,
x ∈ Rd, y ∈ {−1, +1} which can be separated
by the hyperplane wTx + b = 0, where w is the
weight vector and b is the bias. If this hyper-
plane maximizes the margin, then the following
inequality is valid for all input data:

yi(wTxi+b)≥1 for all xi, i=1, 2, . . ., l. (20)

The margin of the hyperplane is equal to 2/‖w‖.
Thus, the problem is to maximize the margin
by minimizing ‖w‖2 subject to (20). This is
a convex quadratic programming (QP) prob-
lem. To solve this problem, Lagrange multipli-
ers (α1, i = 1, . . . , l; α1 ≥ 0) are used:

Lp =
1
2
‖w‖2 −

l∑
i=1

αi
[
yi(wTxi + b) − 1

]
.

(21)
After minimizing LP in terms of both w and b,
the optimal weights are given by:

w∗ =
l∑

i=1

αi
∗yixi. (22)

The dual of the problem is given by:

Ld=
l∑

i=1

αi−1
2

l∑
i=1

l∑
j=1

αi αj yi yj xi
T xj. (23)

Ld should be maximized under the constraints
of
∑l

i=1 αiyi = 0. The Lagrange multipliers
are only non-zero when yi(wTxi + b) = 1. The
training points, for which the equality of (20)
holds, are called support vectors (SV) that can
satisfyαi ≺ 0. The optimal bias for any support
vector xi is given by:

b∗ = yi − w∗Txi. (24)

Optimal decision function (ODF) is given by:

f (x)=sgn

(
l∑

i=1

yiαi
∗xTxi+b∗

)
(25)

where αi
∗’s are optimal Lagrange multipliers.

For the input data with high noise levels, SVM
uses soft margins that can be expressed as fol-
lows, with the introduction of the non-negative
slack variables ξi, i = 1, . . . , l:

yi(wTxi+b)≥1−ξi for i=1, 2, . . ., l. (26)

Toobtain theOSH, theΦ =
1
2
‖w‖2+C

∑l
i=1 ξi

k

should minimize the subject to (26), where C is
the penalty parameter. The parameter C con-
trols tradeoff between the complexity of the
decision function and the number of training
examples which are misclassified.

In the nonlinearly separable cases, SVM maps
the training points to a high dimensional fea-
ture space using the kernel function K(�xi,�xj),
where linear separation can be possible. One of
the most famous kernel functions is Gaussian
radial basis function (GRBF) given by:

K(x, y) = exp
(
−‖x − y‖2/2σ2

)
(27)

where σ is the width of the RBF kernel. After
selecting the kernel function, the QP problem
is:

Ld =
l∑

i=1

αi − 1
2

l∑
i=1

l∑
j=1

αi αj yi yj K(xi, xj)

(28)
where αi

∗ is derived by:

αi
∗=arg max

α
Ld

0≤αi≤C; i=1, 2, . . ., l;
l∑

j=1

αi yi=0.
(29)

After training, we have the following decision
function:

f (x)=sgn

(
l∑

i=1

yi αi
∗K(x, xi) + b∗

)
. (30)

4.2. Multi-class SVM-based Classifier

In this paper, we propose a simple method for
combining the binary SVMs, to construct a
multi-class classifier. We use an approach sim-
ilar to the one in [27]. Our approach can be
described as follows:



262 A New Signal Type Classifier for Fading Environments

Let {Pi : i = 1, 2, . . . , N} be N classes of
signals. We construct N classifiers {f i : i =
1, 2, . . . , N} and each classifier is trained by the
method of one-c1ass-versus-the-rest; that is, the
classifier f i is trained for Pi versus the rest of
the classes. Then, in the signal classification
phase, the classifiers make decision according
to the following decision rule:

x ⇒ Pi if f i=max{f k(x) > 0; k=1, . . ., N−1}
(31)

where the function f k(x) provides the distance
of x to the decision surfaces.

5. Simulation Results

In this section, we evaluate the performance of
HEDSTC for identification of the considered
digital signal types. We assumed that carrier fre-
quencies were estimated correctly and the sig-
nals heterodyned down. Thus, the only complex
base-band signals were considered. For each
digital signal type modulation scheme 10000
samples were created and stored. Simulations
studies were done by using the channel models
developed in [28].

First, a 6000-sample sequence was extracted
out of the 10000 samples generated for each
digital signal type. Next, each sequence was
passed through propagation channel. Then the
resulting signal sequences were corrupted with
additive white Gaussian noise with SNR levels
between 0 to 20 dB. For FSE-CMA algorithm,
a 12-tap equalizer was chosen and the step size
was set to 0.5 to ensure that the algorithm is
stable.

Finally, 200 trials per SNR level were gener-
ated. We used multiple trials per SNR level to
get a sense of the variance in the measurements
and enhance the performances of the classifier.
Next, the features were extracted from each
noisy signal. These features fed into the SVMs
for training. After training, we tested the trained
classifier. For testing phase we selected seven
SNR levels, i.e. 2dB, 5dB, 8dB, 11dB, 14dB,
17dB and 20 dB. In each test, a new random
message and noise was created to ensure the
independence of all results. Classifying by the
new SVM-based classifier, GRBF kernel func-
tion showed better performance than the others.
Hence we used GRBF in all of SVMs. The

kernel parameters for all of SVMs were chosen
σ = 1, based on trial and error method. We
evaluated the performance of HEDSTC in two
stages described in the following subsections.

5.1. Performance of HEDSTC in Typical
Urban Environment

In this subsection, we consider a typical urban
environment as the propagation environment.
The mobile speed is considered 85 km/h. Ta-
bles 2–4 show the confusion matrices of the
HEDSTC at three levels of SNR, i.e. 2dB, 8dB
and 17dB.

P1 P2 P3 P4 P5 P6 P7 P8

P1 91 8 1
P2 8 84 4 1 3
P3 14 8 78
P4 11 3 86
P5 76 4 20
P6 2 1 78 19
P7 5 20 75
P8 4 25 71

Table 2. Confusion matrix of HEDSTC in SNR=2dB.

P1 P2 P3 P4 P5 P6 P7 P8

P1 100
P2 4 96
P3 6 1 93
P4 2 98
P5 90 1 9
P6 91 9
P7 12 88
P8 1 12 87

Table 3. Confusion matrix of HEDSTC in SNR=8dB.

P1 P2 P3 P4 P5 P6 P7 P8

P1 100
P2 100
P3 100
P4 100
P5 97 3
P6 98 2
P7 4 96
P8 6 94

Table 4. Confusion matrix of HEDSTC in SNR=17dB.
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Figure 2 shows the probability of the correct
classification (PC) of HEDSTC at different
SNRs. Note that Pc at each SNR is equal to
the average value of the numbers that appear
in the diagonal of the confusion matrix. It can
be seen that HEDSTC classifies the digital sig-
nal types with high accuracy. Basically, this is
due to the selected features and the proposed
classifier. The selected features have effective
properties in signal representation. On the other
hand, the proposed classifier has high generali-
zation ability.

In Section 2, we explained FSE-CMA. In order
to evaluate the contribution of the equalizer,
the classification results for non-equalized and
equalized signals are compared. Figure 3 and
Figure 4 show these results for PSK8 and
QAM64 signals, respectively. It can be seen that
performances of the classifier with equalizer are
higher than performances of the classifier with-

Figure 2. Performance of HEDSTC at different SNRs.

Figure 3. Classification results for equalized and
non-equalized PSK8.

Figure 4. Classification results for equalized and
non-equalized QAM 64.

Figure 5. Comparison between the performances of
HEDSTC and METHOD2 at different SNRs.

out equalizer, both for PSK8 and QAM64 SIG-
NALS. Therefore it can be said that equalizer
plays an important role in the classification of
digital signals over fading environments.

In order to indicate the effectiveness of the pro-
posed classifier, we consider a radial basis func-
tion neural network (RBFNN), which has high
performance in neural networks [29]. The set
up simulations are the same. We name this
method METHOD2. Figure 5 shows perfor-
mances of two classifiers in different SNRs. It
can be seen that HEDSTC has higher accuracy
than METHOD2 at all SNRs, particularly at
low SNRs. When the SNR is low, METHOD2
shows poor performance while in higher SNRs
its success rate is higher. The reason may be
that in low SNRs the structure of neural net-
work is not proper and sometimes it will not
converge, which in turn results in low generali-
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zation ability. In higher SNRs, the features are
proper and closer to the noiseless state and it is
easier to construct the neural network results in
high classification probability. The SVM classi-
fier sufficiently uses the information of features
and maps them nonlinearly into a high dimen-
sional feature space and constructs the optimum
separating hyperplane to make the data linearly
separable. Thus, the probability of correct clas-
sification is increased and HEDSTC provides
excellent performance of classification of con-
sidered digital signals at all of SNRs.

In order to show the effectiveness of the ex-
tracted features, we have used the features intro-
duced in [8]. The structure of the classifiers and
the simulations setup are the same. We name
this method METHOD3. Figure 6 shows the
performances of METHOD3 and HEDSTC at
different SNRs. Results imply that our selected
features have effective properties in signal rep-
resentation.

Figure 6. Performances of HEDSTC and METHOD3 at
different SNRs.

Figure 7. Performances of HEDSTC at different speeds.

In order to evaluate the performance of HED-
STCat differentmobile speeds,we have changed
the mobile speed to 120 km/h. Figure 7 shows
the classification results ofHEDSTCat 20 km/h
as well as at 85 km/h. It can be seen at 120
km/h, the performance of HEDSTC is lower
than the performance of HEDSTC in case of 85
km/h; however it does not degrade drastically.

5.2. Performance of HEDSTC in Different
Propagation Environments

In this subsection we experiment with the per-
formances of HEDSTC in different propagation
environments, i.e. rural and bad urban environ-
ments. The mobile speed is considered to be 85
km/h. Figure 8 shows the classification results
of HEDSTC in these environments. Also, the
performance of HEDSTC in the typical urban
is showed. It is found that HEDSTC performs
classification task very well, even in bad ur-
ban environment. Although the performance of
HEDSTC in rural environment is better than in
other environments, it can be said that HED-
STC has nearly robust performance in different
fading environments.

Figure 8. Performances of HEDSTC in different fading
environments.

6. Conclusion

Automatic digital signal type classification is
the most important topic in communication in-
telligence. Most of the previous methods have
been proposed for classification of digital sig-
nals in AWGN environments. However, in real
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world, we face the fading environments. This
paper presents a highly efficient digital signal
type classifier for fading environments. In this
method the channel dispersion is mitigated us-
ing an FSE-CMA equalizer. A simple multi-
class SVM-based classifier is proposed to de-
termine the membership of the received signal.
A selected combination of the higher order mo-
ments and higher order cumulants are proposed
for representation of the digital signals. Sim-
ulation results show that the proposed method
works very well, even at low SNRs and shows
a nearly robust performance in different condi-
tions. For future works, we can change model
of the fading environments and experiment with
the proposed method in these environments.
Also, we can consider another classifier and
compare the respective results with the results
presented in this paper.
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