
Journal of Computing and Information Technology - CIT 15, 2007, 2, 171–183
doi:10.2498/cit.1000882

171

Roles at the Basis of UML Validation

Thouraya Bouabana-Tebibel
National Institute of Computer Science, Algiers, Algeria

Formal validation of UML models proves to be hardly
realizable, due to the imprecise semantics of UML
dynamic diagrams. To remedy that, we first present a
technique for transforming UML statecharts into Petri
nets. We develop afterwards, an approach based on
the movement of the objects throughout the roles they
play. This approach allows validation of the temporal
logic properties translated from the OCL invariants, on
the Petri nets derived from the UML models. System
property validation is realized thanks to a prior initial-
ization of the objects and exchanged messages between
the communicating objects. A case study is given to
illustrate the methodology.

Keywords: UML, OCL, Petri nets, LTL, CTL, validation

1. Introduction

UML [19] suffers from continuing criticism on
the precision of its semantics at the time the ver-
ification of the model correctness has become
a key issue. UML 2.0 [18] brings more pre-
cision to its semantics, but it remains informal
and lacks tools for automatic analysis and val-
idation. We presented in [6] a methodology to
automatically transform UML models into Petri
nets [13] which are supported by lots of tools to
verifying them. In the present paper, we carry
on with this work by developing a technique to
deal with the verification process.

The Petri nets resulting from the derivation pro-
cess are analyzed by means of PROD [22],
a model checker tool for predicate/transition
nets. Model checking is classified as the most
appropriate technique for verifying UML dy-
namic models [3],[11],[17]. It allows a fast
and simple way to check whether the property
holds or not. To avoid the high learning cost
of the model checker, we suggest that the de-
signer specifies the system properties in OCL,
the Object Constraint Language [20] which is
part of UML. OCL permits the formulation of

restrictions over UML models, in particular, in-
variants. We automate the translation of these
invariants to temporal logic properties so that
they can be verified by PROD during the Petri
net analysis.

The invariants are specified on class diagrams
which model the static structure of a system,
in terms of classes and relationships between
classes. A class describes a set of objects encap-
sulating attributes and methods. An association
abstracts the links between the class instances.
It has at least two ends, named association ends,
each one representing a set of objects playing a
given role at a given time.

However, a simple translation ofOCL invariants
into Linear Temporal Logic (LTL) and Compu-
tation Tree Logic (CTL) properties is not suf-
ficient for realizing a property checking. In-
deed, OCL invariants refer to association ends
to evaluate their expressions. So, in case the de-
signer specifies OCL invariants for his models,
we attract his attention on the necessity of mod-
eling the actions treating the association ends
so that the invariants can be adequately veri-
fied by PROD. In other words, he is called on
to specify the association end update using the
link actions [21]. This provides the dynamics
of the object throughout the roles it plays. As
far as we are concerned, in addition to the OCL
invariant translation into LTL and CTL proper-
ties, we propose an approach to translate the link
actions in Petri nets, to achieve the systematic
formal verification of the OCL constraints.

The remainder of the paper starts with a brief
overview on the mapping of UML models into
Petri nets. In Sections 4 and 5 the proposed
approach is presented and the techniques upon
which it is based are developed. These tech-
niques are illustrated throughout the paper, us-
ing the case study of Section 3. Section 6
presents the OCL invariant translation into LTL

172 Roles at the Basis of UML Validation

and CTL properties. Examples on the transla-
tion of the system properties are presented in
Section 7 and some results on the model analy-
sis are given and commented in Section 8. We
provide in Section 9, the novelty and relevance
of our work versus related works. We conclude
with some observations on the obtained results
and recommendations for future research direc-
tion.

2. Background

We summarize in this section the work that we
present in [6] to transform UML statecharts into
coloured Petri nets. This work supports the ap-
proach that we develop in the present paper.

2.1. Statecharts

A statechart describes the behaviour of a class
in terms of states and messages it exchanges
with other statecharts. A state is composed of
two atomic actions (at its entry and its exit) and
one activity. The states are linked by means of
transitions annotated with the event that triggers
the transition (event trigger) and atomic actions
produced by the triggered transition. Due to
their atomicity, the entry, exit and transit ac-
tions are in fact, generated events respectively
called: entry, exit or transit events, see Figure 1.

state
entry: event
do: activity
exit: event

trigger / transit event
state

entry: event
do: activity
exit: event

Figure 1. Statechart’s events and activity.

The event is of two types: send event and call
event. These events are mentioned on the state-
chart as follows: “send” class(), “call” oper-
ation(). Examples of these events are given in
the case study of Figure 5.

2.2. Petri Nets

Petri nets have been presented in several works
[2], [5] as a suitable formalism for translating
the UML dynamic models. Both of them are
classified as a state-transition system dedicated

to the object life cycle modeling. Their syn-
tax and semantics can be easily and completely
matched. We used them in [6] to transform the
statechart diagrams. We defined them by the
5-tuple <P, T, A, C, M0,> where:
• P = {p1, p2, . . . , pn} is a set of places.
• T = {t1, t2, . . . , tn} is a set of transitions.
• A ⊆ P × T ∪ T × P, is a set of arcs.
• C = {C1, C2, . . . , Cn} is a set of colors

where Ci = {〈 c1, c2, . . . , ck〉 } and cj is a
variable or a constant.

• Mo : P → C is the initial marking function,
such that Mo(pi)

∑K
k=1 Ck.

2.3. Derivation Approach

The derivation process is based on an object-
oriented approach. Each statechart modeling an
interactive class behaviour is transformed into
an object subnet called Dynamic Model or DM
(see Figure 2). To construct the DM, each state
is converted to a place p ∈ P and each transition
is converted to a transition t ∈ T .

OPN

 Link

OPN

OPN DM
 Input

Object

Scenario

Figure 2. Petri nets interconnection architecture.

The events are modeled by tokens of event type.
They are forwarded to the DMs by means of the
Input place which constitutes an input interface
of the DM.

Together with the places Object, Scenario and
Input, the DM constitutes an Object Petri net
Model that we call OPN. To connect the differ-
ent OPNs, we use the Link place through which
all the exchanged messages should pass. Thus,
for each OPN, a directed transition from the
Link place to the Input place is built.

To deal with Petri net simulation, we address
the Petri net initial marking regarding objects

Roles at the Basis of UML Validation 173

and exchanged messages. The marking regard-
ing objects provides the class instances and their
attribute values. These instances are extracted
from the object diagram to initialize the Object
place with tokens of object type. The marking
in terms of messages provides the exchanged
messages among the interactive objects. These
messages are extracted from the sequence dia-
gram to initialize the Scenario place with tokens
of event type.

Thus, each generated event on the statechart is
converted to an arc from the Scenario place to
the transition to which it is related and an arc
from this transition to the Link place. As for the
event trigger, it is converted to an arc from the
link place to the transition on which it occurs.

Figure 3 summarizes the translation of the stat-
echart constructs into their counterparts in Petri
nets. The dashed symbols represent associated
constructs not concerned by the translation.

S

Statechart constructs Petri net constructs

S

do : act
act act

 entry : ev

exit : ev

Link

/ ev

t

 t

derivation

derivation

derivation

derivation

derivation

derivation

Scenario

LinkScenario

LinkScenario

ev / derivation
Input

Figure 3. Mapping of UML constructs to Petri nets.

3. Case Study

We illustrate our study through a message server
application where the main role of the server is
to manage the communication between the con-
nected stations. All the exchanged messages

must go through this server, to be forwarded to
the receivers. The corresponding class diagram
is represented in Figure 4, where the server is
modeled by the Server class, the stations by the
Station class and the exchanged messages by
the Message class.

Figure 4. Class diagram of the message server.

Figure 5 presents the statechart of a station
which can, at all times, connect itself to the
server. Its connection request is realized using
the “send” connection event. The server con-
firms the station connection using the “send”
okconnection events. When connected, a sta-
tion can notify a message, receive a message
or disconnect itself. It notifies by means of the
“send” message event.

entry : «send» connection()

 connected

entry : «send» disconnection()
disconnection

connection

«send» okconnection()

«send» okdisconnection()

reception
exit : «call» save()

«send» message()

entry : «send» message()
notification

Figure 5. Statechart of the station class.

After it has received a forwarded message from
the server by means of the “send” message trig-
ger, it saves it using the “call” save event. Its
disconnection is requested by the “send” dis-
connection event and confirmed by the “send”
okdisconnection event.

In Figure 6, we show the Petri net resulting from
the conversion of the statechart of the station
class.

174 Roles at the Basis of UML Validation

 connection

Input
notification

 disconnection

reception

 connected

Link

Scenario Object
t1

t2

 t3

 t4

 t5

t6

t7

t8

Figure 6. Petri nets of the station class.

4. Initialization Technique

To deal with the model simulation, starting from
statechart diagrams, two types of arguments
must be initialized, namely, the system’s ob-
jects and the exchanged messages among these
objects.

4.1. Object Initialization

We define for our approach requirements two
types of objects: active and passive. The active
objects interact exchanging passive objects. For
example, in the server message application, the
Server and Station objects are active while the
Message object is passive.

The object identity is a main concern when for-
malizing the idea of objects. We adopt the UML
notation which identifies an object by its name
and its class name as follows: object:class.
Thus, an object is formalized by the 2-tuple
(obj, attrib) where obj designates its identity
and attrib the set {attrib1, . . . , attribk} of its at-
tribute values. It is modeled in Petri nets by the
coloured token <obj, attrib> to initialize Petri
net marking in terms of objects.

The objects and their attribute values are spec-
ified on the object diagrams. These identified
objects are used to initialize the OPN marking.
This is realized by inserting all instances of the
same class in the Object place associated to the
OPN translating the class’s statechart.

Figure 7 shows an example of the object dia-
gram of the message server application before
any action (there are no links between the ob-
jects). For each station, the IP address is given.

st1 : Station

adr = ip1

st2 : Station

adr = ip2

 <st1:station,ip1>
 <st2:station,ip2>

 ObjectStation

derivation

Figure 7. Object initialization.

4.2. Message Initialization

Sequence diagrams allow the modeling of spe-
cific scenarios. They show exchangedmessages
among lifelines. The lifelines represent the par-
ticipants in the interaction where each partici-
pant is identified by its name concatenated to the
class name as follows: object:class. The mes-
sages reflect events specified with their attribute
values, as follows: “send” object:class(attrib),
“call” operation(attrib), see Figure 8. This
specification permits the initialization of the
events that are dynamically generated on the
statechart.

The sequence diagram in Figure 8 shows a sce-
nario related to the server message application
presented in Section 3. Two stations st1 and

Figure 8. A scenario from the message server
application.

Roles at the Basis of UML Validation 175

st2 request a connection from a server s. When
done, st1 transmits a message m1 and discon-
nects itself. m1 is forwarded by s to st2. st2
saves it. After this, st2 is disconnected. We
note that the arrow pointing from st2:Station
with the message “call” save(ip2,Hello) goes
out of the scope of the diagram towards the life-
line m1:message which is not represented in the
diagram.

We formalize an interaction on a sequence di-
agram by the 5 tuple (ev, srce, targ, xobj/op,
attrib). The component ev identifies the event
(“send” class(), “call” operation()). Srce and
targ are respectively the source and the target
object’s identity. The component xobj gives the
exchanged object’s identity (object:class) if a
send event or the called operation op if a call
event. As for attrib, it designates the set
{a1, . . . , ak} of the exchanged object attributes
or the operation attributes.

The events are grouped together per class, so
that for each object, only the output events
are retained. They are converted afterwards
to tokens defined by <ev, srce, targ, xobj/op,
attrib> and stored in the Scenario place of the
DM corresponding to the class. Through this
initialization, the Scenario place animates the
Petri net with the event occurrences.

The transformation of the sequence diagram
of Figure 8 gives the following Scenario place
associated to the OPN of the Station class.
This place contains tokens of the form
<ev, srce, targ, xobj/op, attrib> corresponding
to the messages exchanged in the sequence dia-
gram.

Scenario = <“send” connection(), st1:station,
s:server, connection> + <“send” connection(),
st2:station, s:server, connection> + <“send”
message(), st1:station, s:server, m1:message,
ip2, Hello> + <“send” disconnection(), st1:
station, s:server, disconnection> + <“call”
save(), st2:station, m1 message, save, ip2,
Hello> + <“send” disconnection, st2:station,
s:server, disconnection>.

5. System Property Validation

Verification by model checking as treated in
PROD, is based on state space generation and
verification and validation of LTL and CTL

properties on this space. The verification tack-
les the good construction of the model, using
generic properties as deadlock, livelock, reject
states, quasi-liveness, boundedness or reinitial-
izability. All these properties are automati-
cally verified by PROD. As for the validation, it
checks whether the model is constructed in con-
formity with the customer initial requirements.
For this purpose, specific properties of the sys-
tem, written by the modeler, are used.

Since themainmotivation of thiswork is that the
UML designer may reach valid models without
the need for knowledge of formal techniques, it
is only reasonable that the system properties are
expressed by the modeler in the OCL language
and are automatically translated afterwards into
LTL and CTL.

OCL is mainly based on the use of operations
on collections for specifying object invariants.
Since these collections correspond to associa-
tion ends, the latter must appear on Petri net
specification so that the translated LTL and
CTL properties (whose expression is essentially
made of these constructs) can be verified. This
requires the integration of the association ends
onto the statecharts in order to get, after their
transformation, the equivalent Petri net con-
structs. This object flow modeling is realized
by means of the link actions. However, the
usefulness of the link actions does not concern
explicitly the modeling of the object life cycle.
When constructing his diagrams, the designer
does not necessarily think of modeling these
concepts, which are rather specific, to the link
and end object updates. For example, for con-
necting a station to the server, the connection
request and connection confirmation actions are
naturally and systematically modeled by the de-
signer, but the addition of the connected station
to the association end is usually omitted from
the modelling, see Figures 5 and 9. That is why
we recommend to the designer to specify the
link actions on the statechart so that the OCL
invariants can be verified.

UML action semantics was defined in [21] for
model execution and transformation. It is a
practical framework for formal descriptions.
For this work, we are particularly interested in
the create link, and destroy link actions.

The create link action permits the addition of
a new end object in the association end. The
destroy link action removes an end object from

176 Roles at the Basis of UML Validation

the association end. These actions will be rep-
resented on the statechart as constraints of the
form {linkAction(associationEnd)}, following
the event which provokes the association end
update.

In Figure 9, once the station is connected (by
reception of “send” okconnection) or disconn-
ected (by reception of “send” okdisconnection),
it adds or removes itself from the association end
connectedStation, using respectively, {create-
Link(connectedStation)} or {destroyLink (con-
nectedStation)}. It adds a sent or received mes-
sage with {createLink(transmitted Message)}
or{createLink(receivedMessage)}, respectively.

entry : «send» connection()

connected

entry : «send» disconnection()
disconnection

connection

 «send» okconnection()
 {createLink(connectedStation)}

«send» okdisconnection()
{destroyLink(connectedStation)}

reception
exit : «call» save()

 «send» message()
{createLink(receivedMessage)}

entry : «send» message()
{createLink(transmittedMessage)}

notification

Figure 9. Statechart of the station class with link action
specification.

The link actions may concern an active or pas-
sive (exchanged) end object. The object-orien-
ted approach, on which both UML and Petri
nets rely, is based on modularity and encapsula-
tion principles. To deal with modularity, a given
association end should appear and be manipu-
lated in only one statechart. In Petri nets, the
association end is modelled by a place of role
type. This place holds the name of the associa-
tion end and belongs to the DM translating the
statechart.

Furthermore, an association end regrouping ac-
tive objects must be updated within the stat-
echart of the class of these objects, in order
to comply with the encapsulation concept. In-
deed, since the end object is saved in the role
place with its attributes, these attributes must be
accessible when adding the object to or remov-
ing it from the association end. The exchanged
objects are usually manipulated by the active
objects and are not specified by dynamic mod-
els. So, the association end representing them
could be updated in the statechart of the class
that is at the opposite end. For exchanged ob-
jects, the encapsulation constraint is lifted given

that the exchanged object’s attributes are trans-
mitted within the message and so, accessible by
the active objects.

The create link action is semantically equivalent
to a Petri net arc going from the transition with
the association end update towards the place
specifying the association end. The destroy link
action is semantically equivalent to an arc from
the association end place to the transition cor-
responding to the link action, see Figure 10.

Statechart constructs Petri net constructs

 {CreateLink(role)}
role

derivation

derivation
role

 {DestroyLink(role)}

Figure 10. Translation of the link actions.

In Petri nets, the association end objects are
coloured tokens of role type. They are of the
form <assoc, obj, attrib>, where obj is the ob-
ject to be added to or removed from the associ-
ation end and assoc is the object at the opposite
end.

Figure 11 shows the transformed statechart of
the station class with consideration of the link
actions.

 connection

Input
notification

 transmitted-
 Message

 disconnection

reception

received-
Message

 connected

connectedStation

Link

Scenario Object
t1

t2

t3

 t4

 t5

t6

t7

 t8

Figure 11. Petri net of the station class with link actions.

Roles at the Basis of UML Validation 177

6. Mapping OCL Invariants to PROD
Logics

An OCL invariant is a stereotyped constraint
that must be true for all instances at any time.
In general, it is given using the global expres-
sion:

Context object:class inv : ocl-expr

where the context keyword introduces the clas-
sifier on which the expression is evaluated. A
variable declaration may be used in the con-
text. The keyword inv denotes the stereotype
“invariant” which means that the constraint will
be verified on all states of the system. It is fol-
lowed by the OCL expression ocl-expr which
specifies the condition to be verified.

PROD supports both LTL and CTL logics. LTL
and CTL are different regarding expressiveness:
there are properties that can be specified in LTL,
but not in CTL and vice versa. LTL formulas
express properties of one possible system be-
havior. They are checked on the fly. CTL for-
mulas express the set of all possible behaviors
starting in a state. They are checked on all the
state space. In LTL the future of a state in a run
is inevitable, whereas in CTL a state usually has
many different possible futures. Thus, generally
speaking, CTL expresses possibility properties
whereas LTL expresses properties that are in-
evitable.

For example, ‘the system cannot deadlock’ is
a CTL property whereas ‘the system will not
deadlock’ is an LTL property. However, many
requirements can be specified both in LTL and
CTL.

For OCL invariants, the condition is entirely
evaluated on each state of the system. The tem-
poral criterion which involves the property eval-
uation on more than one state before rendering
a result is not supported. In other words, when
mapping an OCL invariant to temporal logic,
the only potential used operator is always. In
order to better exploit PROD temporal logics
and permit the expression of more properties,
we propose to introduce optionally in OCL in-
variant two new operators. The first is the key-
word will which means that the condition will
be verified in the future (LTL property). The
second is the keyword can that means that the
condition will be verified in one of the possible

futures (CTL property). So, the new forms of
the OCL invariant are:

Context object:class inv : ocl-expr [will ocl-expr]
and
Context object:class inv : ocl-expr [can ocl-expr].

In viewof these new formulations, the invariants
including will are translated to LTL properties
whereas those with can are translated to CTL
properties. If none of the keywords will or can
appears on the invariant, the latter is translated
both into LTL and CTL properties to be verified
on the fly and on all the state space.

The LTL PROD grammar that we retain to build
a formula f is given by:

f := prod-expr | not f | f and f | f or f | f implies
f | henceforth f | eventually f
where not, and, or and implies are logical op-
erators and henceforth (i.e. always), eventually
(i.e. exists) are temporal operators. We use the
same grammar for the CTL PROD formulas re-
placing henceforth with ag and eventually with
ef .

We note T: OCL invariant→LTL/CTL property
the translation function that transforms an OCL
invariant into a temporal logic property. The
transformation yields the same results for both
LTL and CTL properties, using respectively
henceforth/eventually and ag/ef . It is written
for each object of the context as follows:

T Context object:class inv : ocl-expr [will/can
ocl-expr]) = henceforth/ag (T(ocl-expr) [even-
tually/ef T(ocl-expr)]).

T(ocl-expr) gives a predicate of first-order logic
independent of temporal constraints, namely
prod-expr. We define prod-expr according to
the following PROD grammar:

prod-expr → prod-expr op prod-expr

|marking ‘:’ field-form

|‘card(‘ marking ‘)’| expression

field-form→ field-expr | field-expr log-op field-
expr

field-expr→ ‘field[‘comp’]’ rel-op ‘field[‘ comp’]’

|‘field[‘ comp‘]’ rel-op cstvar

expression → marking | cstvar
op → rel-op | log-op | math-op

178 Roles at the Basis of UML Validation

rel-op →‘==’ | ‘!=’ | ‘<’ | ‘>’ | ‘<=’ | ‘>=’
| ‘<’ | ‘>’

log-op →‘&&’ | ‘||’
math-op → ‘+’ | ‘-‘ | ‘&’ | ‘or’

where :

- marking is the place marking. The symbol
Empty designates an empty marking.

- comp is the component number of the tuple.

- cstvar is a constant or a variable.

To translate OCL expressions, we rely on the
metamodel of Figure 12 which represents the
different constructs of OCL invariants defined
in [20]. This allows the covering, in a structured
manner, of all these constructs.

oclExpression

propertyExp ifExp varExp literalExp

navigationExp attributeExp operationExp

Figure 12. OCL expression metamodel.

A literalExp is an expression whose value is
identical to the expression symbol. This in-
cludes constants like the integer 1 or literal
strings like ‘this is a LiteralExp’. This expres-
sion is unchanged when translated into PROD
syntax.

A variableExp is modeled in Petri nets using a
place and its value is rendered by the number
of tokens in the place such that: T(variable) =
card(placevariable) – 1

A navigationExp is a reference to an associa-
tion end defined in a UML model. It is used
to determine for an object, the collection of
its linked objects. The object is matched with
the association end by using a ‘.’ as follows:
object.associationEnd. As seen in Section 4,
an association end is translated into a place
of role type, with the name of the association
end. The tokens of this place are of the form
<assoc, obj, attrib1, . . . , attribn> where assoc
is the object linked to the collection including

the object obj. The expression is translated for
each object of the context by:

T(object.associationEnd) = placeassociationEnd :
field[0] == object

where the symbol ‘:’ introduces a condition and
field[0] designates the first component of the tu-
ple of the place associationEnd.

A collection may be also defined using the ex-
pression class.allinstances which gives all the
instances of a class. In temporal logic this
means that the condition is evaluated for each
object of the class. Since these objects may be
at any place of the dynamic model (from which
we exclude the role places and note DM∗) dur-
ing their life cycle, the condition is also verified
for each place of the DM∗.

T(class.allinstances) == ∪ (placeDM∗class)

An attributeExp is a reference to an attribute of
a classifier defined in a UML model. It may be
applied to the objects of the contextual class us-
ing the expression object.attribute. The transla-
tion of this expression gives for each contextual
object (which may be at any place of the DM∗):

T(object.attribute) = ∪ (placeDM∗class : field[0]
== object : field[attributeNumber])

where attributeNumber is the number of the
component attribute within the tuple that speci-
fies the object. We recall that the tokens of the
DM∗ places are of the form:
<obj, attrib1, . . . , attribn>.

An operationExp refers to two categories of op-
erations. The first consists of the usual logical
and mathematical operations applied to OCL
expressions. The second concerns predefined
OCL operations applicable to collections of ob-
jects. The translation of the logical and mathe-
matical operations is given by:

T(ocl-expr log-op/math-op ocl-expr) = T(ocl-
expr) T(log-op/math-op) T(ocl-expr)

The operations on collections are of the form
collection→operation. Their translation is given
by Table 1. For short, we replace
object.associationEnd and class.allinstances by
col.

Roles at the Basis of UML Validation 179

OCL operations Temporal logic formulas

col.→ size() card(T(col.))
col.→ isEmpty() (T(col.)) == empty
col.→ notEmpty() (T(col.)) != empty
col.→ union(col. 2) T(col.) + T(col. 2)
col.→ intersection(col. 2) T(col.) & T(col. 2)
col.→ including(object) T(col.) + T(object)
col.→ excluding(object) T(col.) − T(object)
col.→ count(object) card(T(col.) : field[0/1]

== object)
col.→ includes(object) T(col.) : field[0/1]

== object) != empty
col.→ excludes(object) T(col.) : field[0/1]

== object) == empty
col.→ includesAll(col.2) T(col.) > =T(col. 2)
col.→ excludesAll(col.2) (T(col.) & T(col. 2))

== empty
col.→ select(ocl-expr) T(ocl.) : T(ocl-expr)
col.→ reject(ocl-expr) T(col.) : T(!ocl-expr)
col.→ exists(ocl-expr) (T(col.) : T(ocl-expr))

!= empty
col.→ one(ocl-expr) card(T(col.) : T(ocl-expr))

== 1

field[0/1]==object means that if the object comes from
a collection that models class instances, it is translated
in a token of the form <obj, attrib1, . . . , attribn> and
so, we write field[0]==object. Otherwise, the object
belongs to an association end, it is modeled by a token
of the form <assoc, obj, attrib1, . . . , attribn> and so, we
write field[1]==object.

Likewise, T(object) = <obj, attrib1, . . . , attribn> if
object models a class instance. It is equal to
<assoc, obj, attrib1, . . . , attribn> if object models an
association end.

Table 1. Mapping OCL operations to temporal logic
formulas.

An IfExp is of the form if if-ocl-expr then then-
ocl-expr else else-ocl-expr. It is translated dif-
ferently in LTL or CTL formulas. The LTL
translation gives:

T(if-ocl-expr) implies T(then-ocl-expr) or
T(! if-ocl-expr) implies T(else-ocl-expr)

The CTL translation gives:

IfThen (T(if-ocl-expr), T(then-ocl-expr)) or
IfThen(T(! if-ocl-expr), T(else-ocl-expr))

7. System Property Translation

To illustrate theOCL translation into PROD log-
ics, we present three properties covering a large
spectrum of OCL expressions. These properties
are first expressed into a paraphrased (textual)

form, second, specified as OCL invariants and
then translated into LTL properties. To make
easier the comprehension of the properties, re-
fer to the class diagram of the server message
application (Figure 4).

Property 1

The number of connected stations is limited to
maxStation.

Property 1 expression in OCL

context s:Server inv :

s.connectedStation→size <= s.maxStation

Property 1 expression in PROD

For each place of the DM∗ of the server s write
the property:

verify henceforth

(card(connectedStation : field[0] == s server)
<= (placeDM∗ server : field[2]))

where:
— field[0] designates the first component (as-

soc) of the connectedStation’s tokens,
— field[2] designates the third component

(attrib2 = maxStation) of the tokens of
DM∗ of the server.

Property 2

Only connected stations can transmit messages.

Property 2 expression in OCL

Context s:Server inv :

s.connectedStation→excludes(st1:Station)
implies st1.transmittedMessage→isEmpty()

Property 2 expression in PROD

#verify henceforth

(connectedStation: (field[0] == s server &&
field[1] == st1 station) == empty implies
(transmittedMessage: field[0] == st1 station)
== empty)

where :
— “connectedStation: field[0]== s server&&

field[1] == st1 station” designates the 1st
and 2nd components of the connectedSta-
tion’s tokens,

— “transmittedMessage: field[0]== st1 station”
designates the 1st component of the trans-
mittedMessage’s tokens

180 Roles at the Basis of UML Validation

Property 3

While a station st2 is connected, it receives all
the messages that are transmitted from a station
st1.

Property 3 expression in OCL

context station inv :

s.connectedStation→includes(r) and

st1.transmittedMessage→includes(msg)
implies will

st2.receivedMessage→includes(msg)

Property 3 expression in PROD

verify henceforth

((connectedStation: (field[0] == s server &&

field[1] == st2 station) != empty) &&

(transmittedMessage: (field[0] == st1 station
&&

field[1] == m1 message) != empty) implies
eventually

(receivedMessage: (field[0]== st2 station&&

field[1] == m1 message) != empty))

where:
— “connectedStation: field[0]== s server&&

field[1] == st2 station” designates the 1st
and 2nd components of the connectedSta-
tion’s tokens,

— “transmittedMessage: field[0] == st1 sta-
tion && field[1] == m1 message” desig-
nate the 1st and 2nd components of the trans-
mittedMessage’s tokens.

— “receivedMessage: field[0] == st2 station
&& field[1] == m1 message” designate the
1st and 2nd components of the receivedMes-
sage’s tokens.

8. Model Analysis

To test the practical implementation of our ap-
proach, we built a translator whose seman-
tic functions are drawn from the conversion
rules we have set in [6]. We also developed
a graphical interface for the construction of
the statechart, class, object and sequence dia-
grams. These diagrams constitute the input of
the translator whose outputs result into predi-
cate/transition nets, specified in PROD syntax.

A little part of the translated model is given in
what follows, for the transition (t2) from the
state connection to the state connected:

#trans t2

in {connection:<.targ,attrib.>;

Input:<.srce,targ,xobj,attrib1,attrib2.>}
out {connected:<.targ,attrib.>;

connectedStation:<.srce,targ,attrib.>}
#endtr

where the keywords trans, in, out and endtr
designate respectively the transition, its input
places, its output places and its end.

Figure 11 shows the transformed statechart of
the station class considering the link actions.

PROD was executed afterwards to verify the
models. The Petri net initial marking was de-
fined by the object and sequence diagrams of
Figures 7 and 8.

The generic properties concerning absence of
livelock (infinite loops) and deadlock have been
first checked. They were specified using the
PROD commands:

#place tester lo(<.0.>)hi(<.0.>)mk(<.0.>)

#tester tester deadlock(<.0.>).

#place tester lo(<.0.>)hi(<.1.>)mk(<.0.>)

#tester tester livelock(<.1.>)

This gives the following results:

where the nodes are the different states of the
system life cycle and the arrows are the transi-
tions between these states. Here, a node (or a
state) represents a view of the system, identi-
fied by a marking and obtained after a Petri net
transition firing. The last node (number 200,
the first is number 0) which is given after the
last transition of the system behaviour, shows
the final marking of Petri net model. Only the
places with tokens are represented. The others

Roles at the Basis of UML Validation 181

are empty. We notice that both the association
end places transmittedMessage and received-
Message, include the message m1. The asso-
ciation end place connectedMessage is empty,
because the stations have disconnected them-
selves. As for the server, it waits for new con-
nection requests (in the place free).

Some system’s invariants were afterwards ex-
pressed in LTL properties and verified. Three
of these properties are presented in Section 7.
When executed with these properties, PROD
program terminates without signalling errors.

9. Contribution vs. Related Work

Formalization ofUMLstatechart semantics [14],
[25], [28] and integration in the statecharts of
languages state-oriented [1], [16] or property-
oriented [1],[24] have been widely investigated.
The OCL language has also been integrated
within statecharts in various works, in partic-
ular, those of Flake and Mueller [9], [10] who
extend it with temporal logic to express proper-
ties over time.

However, no previous work has tackled the in-
tegration of the association end specification
within statecharts. We can explain this, arguing
that the UML/OCL association is rarely used
to formally validate the UML models. When
done, it is limited to OCL attribute expressions
AttributeExp [26] or OCL pre and postcondi-
tions [9], [10]. Generally, the formalized UML
models are rather coupled with formalisms for
the expression of system properties. So, as long
as navigation expressions are not used, the as-
sociation end specification onto the object life
cycle is not required. Otherwise, this specifi-
cation provides after transformation into Petri
nets, a formal basis for the validation of the
translated invariants. Indeed, from Sections 5
and 6, we can easily see that the OCL navi-
gation expressions (navigationExp) and OCL
operation expressions (operationExp applied to
navigation expressions) rely on the evaluation
of the association end objects. So, although cor-
rectly specified and translated into LTL or CTL
properties, they could never be validated on the
derived Petri nets without association end spec-
ification on the statecharts. To deal with this
integration, we proposed a technique based on
the link actions.

The relevance of such an approach is to exploit
all OCL capabilities to formally validate the sys-
tem properties. These capabilities concern par-
ticularly the navigation and operation constructs
that yield most of the OCL expressions. Its only
constraint concerns the obligation for the user to
specify the link actions on the statechart. How-
ever, this constraint is minimal compared to that
of limitingOCL expressions or specifying using
formal languages like temporal logics.

Translation of OCL invariants in formalisms
such as Object-z [23], B [15], first-order pred-
icate logic [4] or object-based temporal logics
[8], is undertaken to precise OCL semantics.
Other works tackle OCL invariant extension
with temporal operations [7], [9]. As far as we
are concerned, we first, extend the OCL invari-
ants with temporal operators in order to benefit
from all capabilities of the target logics. Sec-
ond, we automate the OCL property translation
into LTL and CTL logics expressed in PROD
syntax. The relevance of such a mapping is of
a practical nature. It presents the merit of pro-
viding a dedicated formal specification that is
not limited to the generic constructs of tempo-
ral logic, but also takes PROD tool characteris-
tics into account. Furthermore, the automated
translation, spare the designer the hard effort of
learning new formalisms as LTL and CTL.

Sequence diagrams are generally combinedwith
the statecharts in order to connect object life
cycles [5], [28]. They are also transformed sep-
arately in other formalisms to validate specific
scenarios [12] or composed together to describe
the system overall behaviour [27]. As far as we
are concerned, we introduce a novel use of the
sequence diagram exploiting it to simulate the
models with the events of the scenario that will
be verified.

10. Conclusion

This paper presents an approach for validating
systematically UML models without the need
for the user to know formal checking tech-
niques. The verification concerns both the cor-
rectness of the model construction and the faith-
fulness of the modeling. The latter is allowed
using the system properties which are expressed
by the modeler in OCL language and then trans-
lated into LTL and CTL properties. To effi-
ciently deal with the property validation, we

182 Roles at the Basis of UML Validation

propose to introduce an object flow specifica-
tion into the object control flow model (state-
chart), using predefined actions on the associa-
tion ends.

Among the prospects of this work, the analysis
of the validation/verification results and then,
their feedback to the user is explored. Since the
methodology calls for UML designer to provide
the input specifications, it is only reasonable for
the output results to be meaningful to that user.
So, the results must be presented to the designer
in an interpreted form, where the error inmodels
is simply and clearly pointed out.

Another prospect concerns large-scale systems
that might explode the state space. For these
systems, we propose to start the simulation at a
critical moment from the object life cycle and
not obligatorily from the initial state. To deal
with this, the object diagram will be used to rep-
resent the system objects at this moment. This
representation will have repercussions on the to-
ken distribution at the Petri nets initial marking.

References

[1] C. ATTIOGBÉ, P. POIZAT, G. SALAUN, Integration of
Formal Datatypes within State Diagrams. Fun-
damental Approaches to Software Engineering
FASE’2003, LNCS Vol. 2621, (2003), pp. 341–355.

[2] L. BARESI, M. PEZZÈ, On Formalizing UML with
High-Level Petri Nets, Advances in Petri Nets,
LNCS Springer, vol. 2001, (2000), pp. 276–304.

[3] M. BEATO, M. BARRIO-SOLORZANO, C. CUESTA,
UML Automatic Verification Tool (TABU). 12th
ACM SIGSOFT Symp. on the Foundations of Soft-
ware Engineering, 2004.

[4] B. BECKERT, U. KELLER, P. SCHMITT, Translating
the Object Constraints Language into First-order
Predicate Logic. Proc. Verify, Workshop at Feder-
ated Logic Conferences, (2002), Copenhagen.

[5] S. BERNARDI, S. DONATELLI, J. MERSEGUER, From
UML Sequence Diagrams and Statecharts to
Analysable Petri Net models. Proc. third int. work-
shop on software and performance, Rome, Italy,
ACM Press, (2002), pp. 35–45.

[6] T. BOUABANA-TEBIBEL, M. BELMESK, Formaliza-
tion of UML object dynamics and behavior. Proc.
2004 IEEE Int. Conf. on Systems, Man & Cybernet-
ics, (2004), Netherlands.

[7] M. V. CENGARLE, A. KNAPP, Towards OCL/RT, In
L.-H. Eriksson and P. Lindsay, eds.. Formal Meth-
ods – Getting IT Right, LNCS vol. 2391, Springer,
(2002), pp. 389–408.

[8] D. DISTEFANO, J.-P. KATOEN, A. RENSINK, On a
Temporal Logic for Object-Based Systems. Proc.
4th Int. Conf. on Formal Methods for Open Object-
Based Distributed System, FMOODs (2000), Stan-
ford, USA.

[9] S. FLAKE, W. MUELLER, Past-and Future-Oriented
Temporal Time-Bounded Properties with OCL.
Proc. 2nd Int. Conf. on Software Engineering and
Formal Methods, China, c©IEEE Computer Society
Press, (2004), pp. 154–163

[10] S. FLAKE, UML-Based Specification of State-
oriented Real-time Properties. PhD thesis, Fac-
ulty of Computer Science, Electrical Engineering
and Mathematics, Paderborn University, Germany,
2003.

[11] S. GNESI, F. MAZZANTI, On the Fly Model Check-
ing of Communicating UML State Machines. Tech.
Report 2003-TR-63, Istituto di Scienzae Tecnolo-
gie dell’Informazione “Alessandro Faedo”, (2003),
Italy.

[12] D. HAREL, H. KUGLER, A. PNUELI, Synthesis Revis-
ited: Generating Statechart Models from Scenario-
Based Requirements. Formal Methods in Software
and System Modeling, LNCS, vol. 3393, (2005),
pp. 309–324.

[13] K. JENSEN, Coloured Petri nets. Vol 1: Basic Con-
cepts, Springer, (1992).

[14] S. KUSKE, A formal semantics of UML state ma-
chines based on structured graph transformation,
UML: The Unified Modeling Language. Modeling
Languages, Concepts and Tools, LNCS, vol. 2185,
(2001), pp. 241–256.

[15] R. MARCANO, N. LÉVY Transformation rules of
OCL Constraints into B Formal Expressions. (Uni-
versity of Versailles Saint-Quentin-en-YvelinesEd.),
(May 2002).

[16] E. MEYER, Développements formels par objets :
utilisation conjointe de B et d’UML. PhD thesis,
University of Nancy 2, France. 2001.

[17] OBER, S. GRAF, I. OBER, Validating Timed UML
Models by Simulation and Verification. Proc. Int.
Workshop SVERTS: Specification and Validation of
UML Models for Real Time and Embedded Systems,
(2003), USA.

[18] OBJECT MANAGEMENT GROUP, UML 2.0 Super-
structure Specification. (2004).

[19] OBJECT MANAGEMENT GROUP, OMG Unified Mod-
eling Language Specification. version 1.5, (2003).

[20] OBJECT MANAGEMENT GROUP, UML 2.0 OCL
Specification. (October 2003).

[21] OBJECT MANAGEMENT GROUP, The UML Action
Semantics. (November 2001).

[22] PROD 3. 4, An advanced tool for efficient reachabil-
ity analysis. Laboratory for Theoretical Computer
Science, Helsinki University of Technology, (2004),
Espoo, Finland.

Roles at the Basis of UML Validation 183

[23] D. ROE, K. BRODA, A. RUSSO, Mapping UML Mod-
els Incorporating OCL Constraints into Object-
Z. Imperial College Technical Report N02003/9,
(2003).

[24] J.-C. ROYER, Temporal Logic Verifications for
UML, The Vending Machine Example. RSTI -
L’objet, 4th Rigorous Object-Oriented Methods
Workshop, Vol. 9, No. 4 (2003).

[25] N. TRUONG, J. SOUQUIÈRES, Verification of behav-
ioral elements of UML models using B. In proc. of
20th Annual ACM Symposium on Applied Comput-
ing, (2005), USA.

[26] N. TRUONG, J. SOUQUIÈRES, Validation des pro-
priétés d’un scénario UML/OCL à partir de
sa dérivation en B. Approches Formelles dans
l’Assitance au Développement de Logiciels –
AFADL’04, (2004), France.

[27] S. UCHITEL, J. KRAMER, J. MAGEE, Synthesis of
Behavioral Models from Scenarios. IEEE Trans-
actions on Software Engineering, Vol. 29, No. 2,
(2003), pp. 99–115.

[28] T. ZIADI, L. HÉLOUËT, J.-M. JÉZÉQUEL, Revisiting
Statechart Synthesis with an Algebraic Approach.
Proc. 26th Int. Conf. on Software Engineering
(ICSE’04) ACM, (2004) , pp. 242–251, Edimburgh,
UK.

Received: June, 2006
Revised: January, 2007

Accepted: January, 2007

Contact address:

Thouraya Bouabana-Tebibel
National Institute of Computer Science

INI BP 68M
16309 Oued-Smar

Alger, Algeria
e-mail: t tebibel@ini.dz

THOURAYA BOUABANA-TEBIBEL obtained the B.S degree in Computer
Science from Houari-Boumédième Technology and Science University
(USTHB), Algeria and the M.S degree in Industrial Engineering from
Polytechnic National School (ENP) of Algeria. She is now a Ph.D.
candidate in Software Engineering at the USTHB University and she
works as an assistant professor in the National Institute of Computer
Science, Algeria. She is also a Cisco instructor in the network area.
Her research interests include object-oriented specification in particular
UML and Object Petri nets, simulation, validation and verification of
interactive systems.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /CMYK
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

