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This paper presents a ModifiedVariational Splines Fitting
(MVSF) algorithm for surface reconstruction using thin
plate splines on scattered patches or points of originally
smooth surfaces. In particular, a more accurate derivation
of the discrete equations for the energy corresponding
to the thin plate model is introduced. The results
obtained on simulated data show that the proposed algo-
rithm converges faster than the original VSF algorithm.
Additionally, we discuss an approach for choosing the
algorithm’s parameters using a cross validation tech-
nique. Results obtained with the modified algorithm are
compared to those using a Frequency Fourier-based 3D
Harmonic modelling (3DHM) algorithm and show that
the proposed algorithm gives an improved performance
under the small sample size condition. The developed
model has been successfully applied for real biomedical
data; in particular for the reconstruction of left ventricle
of human heart.
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1. Introduction

Surface reconstruction and smoothing methods
are widely used in practice to best estimate
the original surface represented by a scattered
noisy point set arising in a number of scien-
tific and engineering application domains in-
cluding medical imaging applications [1]. For
instance, the number and the distribution of the
initial samples of an organ surface lead to in-
complete meshes. Stacks of two-dimensional
contours can also be used to reconstruct three-
dimensional surfaces [2]. The problem of sur-
face reconstruction can be solved using a variety

of techniques. The finite element method is one
of these techniques. An example of this method
is the use of Voronoi diagram and Delaunay tri-
angulation [3] to find the topological connection
of the sample points.

Another type of reconstructing smooth surfaces
rely on the finite difference methods using de-
formablemodels [4] such as thin platemodel [5].
The main idea is to create an initial mesh and
deform it to best match the range input data.
This is usually expressed as an energy min-
imisation problem. There are two forces that
formulize the final shape of the reconstructed
surface. One attracts the surface towards the
input data and the other tries to keep the surface
smooth. Fourier-based interpolation methods
[6], to mention a few, are also used in the do-
main of surface reconstruction. These methods
are generally computationally inexpensive, but
comparably more sensitive to number of miss-
ing points. The former two approaches were
selected for further study in this work as these
are generally more appropriate for smooth sur-
faces such as surfaces of left ventricle of heart.
In general, methods based on deformable mod-
els give nice smooth surfaces, but are computa-
tionally expensive and complex. We present in
this work a faster and less complex algorithm
compared to a previous algorithm proposed by
Richard Szeliski. The rest of this paper is orga-
nized as follows: in Section 2, both spline-based
and frequency-based algorithms are described.
In Subsection 2.1, an introduction to variational
splines fitting algorithms is given. The data



124 Improved VSF Algorithm for Smooth Surface Reconstruction from Sparse Medical Data

compatibility constraint of the thin plate model
and the smoothness constraint are also presented
in this section. We then introduce our modifi-
cation to the original VSF algorithm in order to
improve its performance. The resulting algo-
rithm is called the Modified Variational Splines
Fitting (MVSF) algorithm. At the end of the
section, the overall discrete optimization prob-
lem is formulated. For comparison reasons, the
Fourier-based 3DHM algorithm is described in
Subsection 2.2. This algorithm was previously
developed by the authors. Simulation results
are presented in Section 3 and application re-
sults are presented in Section 4. We finally
conclude our paper in Section 5 by a summary
and some keynotes for future work.

2. Algorithm Description

2.1. Variational Splines Fitting Algorithms

In [7], Szeliski proposed to use a deformable
model to estimate the missing points (here we
call it VSF). In this algorithm, the problem is
formulated as an optimization one. The func-
tion to be minimized is written:

E(x) = Ed(x) + λEs(x), (1)

where

x = [xi,j], (i = 0 : N − 1, j = 0 : M − 1)

are the mesh regular points of the reconstructed
surface, i and j indicate spatial positions. This
function includes two constraints: the data com-
patibility constraint Ed(x), and the smoothness
constraintEs(x). λ (λ > 0) is the regularization
parameter which is used to adjust the closeness
of the fit between the surface and the sparse
data set. This parameter depends on the sparse
data set and can be estimated using a gener-
alised cross validation technique. In general, as
λ increases, the reconstructed surface becomes
smoother. However, the probability of error
between the original sparse samples and their
corresponding estimated ones becomes higher.
For very high values of λ , (λ ≈ ∞), the fitted
surface tends towards a flat one. As λ tends
to zero, this probability becomes smaller, but
the reconstructed surfaces might no longer be
smooth.

The above formulation is usually expressed as
an energy minimisation problem where an at-
tracting force draws themesh towards the sparse

data and a tension in the mesh keeps the surface
smooth [2].

The data compatibility constraint measures the
distance between the original sparse points and
the interpolated smooth surface. The energy ex-
pression corresponding to the data compatibility
constraint can be written as:

εd(x) =
1
2

∑
i

wi(f (ui, vi) − di)2. (2)

The discrete form is:

Ed(x, d) =
1
2

∑
i,j

wi,j(xi,j − di,j)2, (3)

where xi,j stands for the discrete values of
f (ui, vi) : xi,j = f (ui, vi), di,j(di,j = 0 at miss-
ing points) are the sparse samples of the orig-
inal incomplete surface and the weights wi,j
(wi,j = 0 at missing points) are inversely related
to the variance of the measurements. The higher
the weights, the better the reconstructed surface
fits the original sparse samples. In this case, the
data compatibility constraint overinfluences the
overall energy function and the reconstructed
surface become no longer smooth.

Reassembling all mesh points into a vector x,
one can rewrite equations (3) in a matrix form.
The energy corresponding to the data compati-
bility constraint becomes:

Ed (x, d) =
1
2

(x − d)T Ad (x − d) , (4)

where d is a zero-padded vector of data val-
ues and the diagonal matrix Ad has entries wi
at which the data coincide with the sparse data
points and zeros elsewhere. In particular, this
allows treating problems with missing or un-
known data.

Using the thin plate model, the energy function
corresponding to the smoothness constraint can
be written in continuous form as:

εs(f ) =
1
2

∫ ∫ (
f 2
uu + f 2

vv + 2f 2
uv

)
dudv,

(5)
where f : f (u, v) is the smoothed continuous
functional of the interpolated surface in u and
v directions; and the subscripts uu, vv and uv
indicate partial derivatives.
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Original VSF Algorithm

In the original VSF algorithm, the discrete form
of the above energy function is derived using a
classical finite-difference scheme. The result-
ing discrete function is:

Es(x) =
huhv

2

∑
i,j

[(
xi+1,j − 2xi,j + xi−1,j

h2
u

)2

+
(

xi,j+1 − 2xi,j + xi,j−1

h2
v

)2

(6)

+2

(
xi+1,j+1−xi,j+1−xi+1,j + xi,j

huhv

)2
]

,

where hu = |Δu| and hv = |Δv| are the step sizes
of the regular mesh of the reconstructed surface
in the u and v directions respectively.

MVSF Algorithm

In thiswork, we propose amore accurate deriva-
tion process to get the discrete energy corre-
sponding to the above continuous function (5).
In particular, we propose to take into consider-
ation higher element components of the corre-
sponding two-variable Taylor formula:

Es(x) =
huhv

2

∑
i,j

[(
xi+1,j − 2xi,j + xi−1,j

h2
u

)2

+
(

xi,j+1 − 2xi,j + xi,j−1

h2
v

)2

(7)

+
1
8

(
xi+1,j+1−xi+1,j−1−xi−1,j+1+xi−1,j−1

huhv

)2
]
.

We can see from the above expression that the
first two terms are similar to the original formu-
lation given in equation (6). They both use the
so-called 5-star-points scheme.

The main advantage of the expression given in
equation (7) is its accuracy in using the 4 diag-
onal points to approximate the crossed second-
order derivative at position (i,j), as shown in
Figure 1. Obviously, Szeliski’s approximation
is a biased forward approximation, as shown in
Figure 2.

Reassembling all mesh points into a vector x,
we can rewrite equations (6) and (7) in a ma-
trix form. The energy corresponding to the thin
plate model can also be written in compact form
as:

Figure 1. Point estimation using MVSF algorithm.

Figure 2. Point estimation using VSF algorithm.

E(x) =
1
2
xTAsx, (8)

where the stiffness matrix As is a sparse block
diagonal matrix. The matrix As has at most 13
non-zero entries per row, as discussed in [7].
The rows with the maximum number of entries
are: (n + 1)M + (m + 2); n = 1 : N − 4
and m = 1 : M − 4; N and M > 4.

However, when periodicity is imposed upon the
stiffness matrix As, all rows would then have
13 non-zeros entries. Note that such periodic-
ity constraint is appropriate when considering
spherical coordinates used in describing human
organs. The resulting stiffness matrix has a ho-
mogeneous structure and can be easily coded.

AS =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

B C D 0 . . . 0 D C
C B C D 0 . . . 0 D
D C B C D 0 . . . 0
0 D C B C D 0 . . .
...

...
...

...
...

...
...

...
0 . . . 0 D C B C D
D 0 . . . 0 D C B C
C D 0 . . . 0 D C B

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

(9)

where B, C and D are M×N matrices. 0 is an
M×N zero matrix.
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The Discrete Problem

The combined discrete energy expression can
hence be written in matrix form as:

E (x) =
1
2
xTA x − xTb + c, (10)

where A = λ ·As+Ad, b = Ad ·d and c is a con-
stant that may be omitted in the minimization
process. This energy function has a minimum
at x = x∗, which is the solution of the follow-
ing linear system that is obtained via the Euler
equation:

A x∗ = b, (11)

since A is a strictly positive matrix. The above
set of linear equations is, hence, a high di-
mension homogeneous positive definite system,
that can be solved using the conjugate gradient
method, thanks to the strict positivity of the ma-
trix A.

Our approximation is found to lead to better
performance compared to that used in original
VSF algorithm.

2.2. 3DHM Fourier-based Algorithm

For comparison purposes, we considered the
use of the 3D Harmonic Modelling (3DHM)
algorithm (developed previously by the authors
[6]). This algorithm is much less complex than
the previous thin plate splines algorithm. The
3DHM algorithm reconstructs the incomplete
surface using an iterative algorithm based on
Fourier analysis. This algorithm consists of four
major steps (per iteration):
A) The 2D Fourier transform D(u, v)of the kth

doubly periodic mesh xk
i,j is computed.

B) The resulting D(u, v) is low-pass filtered to
reduce discontinuities in the space domain.

C) The missing points are then estimated using
the inverse Fourier transform.

D) The algorithm terminates the iterationswhen
the Mean Square Error between the esti-
mated values of the missing points from suc-
cessive iterations falls below a preset thresh-
old ζ . If not, the algorithm restarts using
the recently generated mesh (k = k + 1) as
an input to step A. The data from the initial
sparse mesh is retained.

The mean square error (MSE) between succes-
sive surfaces is calculated as follows:

1
N · M

N∑
i=0

M∑
j=0

[
xk

i,j − xk+1
i,j

]2
, (12)

where N and M represent the size of the regular
mesh in the ith and jth directions, respectively.

3. Simulation Result

Our first aim was to compare the convergence
characteristics of the original and modified Sze-
liski algorithm for relatively smooth surfaces.
We then compared the performance of the mod-
ified algorithm and that of the 3DHM algorithm.
In order to limit the scope of the problem, we
adopted the following methodology for choos-
ing the optimal values for the control parameters
(ω , λ ).
A) Choose a smooth surface as a referencemodel.
B) Randomly select about 30% of the total sur-

face patches.
C) Reconstruct the surface using these selected

patches.
D) Calculate the mean square error between

the reconstructed surface and the reference
model using different values of (ω , λ ).

Figure 3 presents a reference model of a 32×32
smooth surface, and Figure 4 shows a surface
with about 70% of missing points. Figure 5
shows a reconstructed surface and Figure 6
shows the main square error between the ref-
erence and reconstructed surfaces.

Figure 3. Typical 32×32 smooth surface.
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Figure 4. Randomly selected 30% of the total samples
of the reference surface.

Figure 5. Reconstructed surface.
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Figure 6. Mean square error between reference and
reconstructed surfaces.

Figure 7 displays the MSE as a function of (ω ,
λ ). Notice that the MSE almost stabilizes when
ω is greater than 300 and λ is less than 30.
ω=314 is actually the inverse of the variance of
the selected sample [7]. The results displayed
in Figure 8 show that the proposed algorithm,

MVSF, outperforms the originalVSFalgorithm,
e.g. when the tolerance value of the iterative
conjugate gradient algorithm is set to 10−4, the
modified algorithm converges about 100 itera-
tions faster than the original algorithm. One
can also notice that the inappropriate choice of
ω and λ can lead to substantial deterioration in
performance.

Figure 7. The MSE vs. ω and λ .

Figure 8. Rate of convergence of the conjugate gradient
algorithm.

To complete the performance analysis of the
proposed algorithm, we considered many dif-
ferent scenarios. In this paper, we present re-
sults that correspond to two of them: in the
1st scenario, a surface of small sample sizes is
considered. A set of 52 sparse samples were
randomly chosen from the reference surface. In
the 2nd scenario, a surface of relatively medium
sample sizes is considered. A set of 308 sparse
samples were randomly chosen from the refer-
ence surface.
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As expected, with a very small number of sparse
patches, both theVSFand theMVSFalgorithms
performed better than the 3DHM algorithm. As
it can be seen from Figure 9, the 3DHM cannot
achieve an MSE of the ratio of 10−4, while both
other algorithms achieved such tolerance in less
than 300 iterations.
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Figure 9. MSE comparison for the 1st scenario.

Figure 10 corresponds to the 2nd scenario,where
about only 30% of the total mesh samples were
chosen. In this case the 3DHM algorithm out-
performs both the original and improved VSF
algorithms. One may conclude that as the num-
ber of missing samples gets lower, it would be
better using the 3DHM algorithm. In case of
relatively small size of sparse data, it would be
better using the MVSF algorithm. In general,
the 3DHM algorithm is much faster than the
two spline-based algorithms. For example, do-
ing 300 iterations takes about 20 computation
times longer for the original and modified algo-
rithm than it takes for the 3DHM algorithm.
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Figure 10. MSE comparison for the 2nd scenario.

4. 3D Surface Reconstruction Example

Smooth surface reconstruction techniques can
be used for medical applications where rela-
tively smooth organs like the left ventricle of the
heart. In this section, the MVSF algorithm has
been used to reconstruct the surface of the left
ventricle of the heart starting with data acquired
along three contours (Figure 11) extracted by a
specialist from echocardiographic images. The
3D data is first transferred into a 2D developed
surface (Figure 12). The available data is about
23% of the total mesh points. The missing
points on the resulting incomplete surface are
then estimated using the MVSF algorithm as
shown in Figure 13. The reconstructed LV sur-
face in Conclusion is a 3D representation of the
2D developed surface of Figure 13. Even if
results from the original VSF algorithm looked
visually similar, the computation time of the im-
proved algorithm is relatively reduced. Using
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Figure 11. Three 3D contour data of a left ventricle.

Figure 12. 2D developed incomplete surface of the left
ventricle of Figure 11.
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Figure 13. 2D developed surface from the original
sparse data which are represented here by black dots.

Figure 14. 3D reconstructed surface of the left ventricle
using MVSF algorithm.

the same initial parameters to reconstruct the
LV surface, the MVSF algorithm converges in
about 50% faster than the original VSF algo-
rithm, as a result of a reduction of about 100
iterations. As expected, the computation time
of both VSF and MVSF is much higher when
compared to the 3DHM algorithm.

5. Conclusion

In this paper, we presented an improved mod-
ification of the Variational Spline Fitting Al-
gorithm. The proposed algorithm is based on
a more accurate approximation of the energy
equations in discrete time. Additionally, the al-
gorithm takes into account the periodicity con-
straints which apply to our target application of
modelling human internal organs such as the left
ventricle of the heart. For simulated surfaces,
we showed that our algorithm outperforms the
original implementation discussed by Szeleski.

When compared to the 3DHM Fourier-based al-
gorithm (developed earlier by the authors), the
proposed algorithm was found to be best suited
for the small sample-size case.

We have also shown that the proposed algorithm
converges faster than the original one. Our re-
sults related to the reconstruction of the left ven-
tricle of the heart have been very promising. We
are currently investigating the use of the MVSF
algorithm in 3D medical image registration.
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MAÏTINE BERGOUNIOUX is full Professor of Mathematics at the Uni-
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