
Journal of Computing and Information Technology - CIT 14, 2006, 4, 343–350
doi:10.2498/cit.2006.04.11

343

Specifying Languages Using
Aspect-oriented Approach: AspectLISA

Damijan Rebernak1, Marjan Mernik1, Pedro Rangel Henriques2,
Daniela da Cruz2, Maria João Varanda Pereira3

1University of Maribor, Faculty of Electrical Engineering and Computer Science, Slovenia
2University of Minho, Department of Computer Science, Portugal
3Polytechnic Institute of Bragança, Campus de Sta. Apolónia, Portugal

Object-oriented techniques and concepts have been
successfully used in language specification and formal-
ization. They greatly improvemodularity, reusability and
extensibility. In spite of using OO paradigms in language
specification, some semantic aspects still crosscut many
language constructs. Improvements can be achieved
with aspect-oriented techniques. The paper describes
AspectLISA tool wich uses aspect-oriented approach for
language specification (aspect-oriented attribute gram-
mars). An example will be worked out in order to
illustrate the approach. We will show how to identify
an aspect, specify it in the concrete AspectLisa syntax,
and how to gather parts in order to develop a complete
language processor.

Keywords: attribute grammars, aspect-oriented program-
ming, compiler/interpreter generator.

1. Introduction

It is a well-known fact that programming lan-
guage definitions are hard to be efficientlymodu-
larized. Moreover, newprogramming languages
are hard to build simply by incorporating diffe-
rent language components due to complex in-
teractions among different language features.
Here, object-oriented techniques and concepts,
like encapsulation and inheritance, have much
to offer and improve language specifications to-
ward better modularity, reusability, and exten-
sibility. Object-oriented notations were inte-
grated with attribute grammars a long time ago
[13]. In this case context-free grammars define
the class hierarchy. Nonterminals act as abstract
super classes and productions act as special-
ized concrete subclasses that specify the syn-
tactic structure, attributes and semantic rules.

All these elements can be inherited, special-
ized and overridden in subclasses. One of the
shortcomings of this approach is that right-hand
nonterminals cannot have inherited attributes
and the other is that only small features can be
added to the language. In other words, language
cannot evolve dramatically. Another problem
is that the class hierarchy defines the modu-
larization based on language syntax constructs,
whereas the language developer also wants to
have modules based on different aspects (e.g.
name analysis, type checking, code generation,
etc). The goal of intentional programming (IP)
[2]was also amodular language implementation
system where intentions are plug-and-play com-
ponents. Achieving independence of compo-
nents (intentions) was the main technical chal-
lenge. Modularity and reusability was achieved
using forwarding [15], a variation of inheritance
in attribute grammars, and aspects. A program-
ming language can be built simply by importing
an appropriate set of such components or it can
be extended by a rich set of features, and each of
these features is a re-usable component. The IP
project failed despite state-of-the art modular-
ity of language specifications being achieved.
In our opinion, the reason is that it was too am-
bitious, expecting death of programming lan-
guages. Moreover, again it was proved how
complex the interactions of different language
features are. Modularity and reusability can be
achieved also using other non object-oriented
techniques. One of the recent achievements
regarding better reusability and modularity of

344 Specifying Languages Using Aspect-oriented Approach: AspectLISA

action semantics is reported in [4]. The au-
thors propose a finer modular structure where
a new semantic equation module is constructed
for each production. The final language defi-
nition module is obtained simply by importing
them together, assuming that the symbols they
share correspond to common features. It is our
belief that a fine modular structure is not fea-
sible for real programming languages, just as
a monolithic structure is infeasible, since opti-
mal granularity is somewhere between two ex-
treme options. Modularity and extensibility of
specifications based on denotational semantics
are much harder to achieve. Some attempts
were made in [8]. Despite their usefulness,
language specification languages are not pop-
ular. Among the reasons are classical ones,
such as that they are hard to understand, modify
and maintain. Many of these problems can be
attributed to non-modularity, non-extensibility
and non-reusability of language specifications.

As alreadymentioned, the use of object-oriented
techniques and concepts, like encapsulation and
inheritance, greatly improves language speci-
fications towards better modularity, reusability
and extensibility. However, additional improve-
ments can be achievedwith aspect-oriented tech-
niques since semantic aspects also crosscutmany
language constructs. Indeed, aspect-oriented
constructs have already been added to some lan-
guage specifications.

In this paper an aspect-oriented extension to
LISA (AspectLISA) specification language is
presented. TheLISA system is the compiler/in-
terpreter generator based on object-oriented at-
tribute grammars. The paper is organized as
follows. A brief introduction to aspect-oriented
approach in language development and related
work is presented in Section 2. Section 3 is most
important and describes our aspect-oriented ap-
proach and tool for language development. A
case study which illustrates our ideas follows
in Section 4. The concluding comments are
mentioned in Section 5.

2. Specifying a Language with Aspects

The major abstraction technique in software en-
gineering is to divide the system into functional
components in such a manner that changes to a

particular component do not propagate through
the entire system [3]. However some issues,
called aspects, are system wide and cannot be
put into a single functional component. Failure
handling, persistence, communication, coordi-
nation, memory management, are aspects of a
system behavior that tend to crosscut groups
of functional components. As a consequence,
functional components are tangled with aspect
code. This tangling problem makes functional
components less reusable, difficult to develop,
understand and evolve. A solution is pro-
vided by aspect-oriented programming (AOP)
[6] which is a programming technique for mod-
ularizing concerns that crosscut the basic func-
tionality of programs. In AOP, aspect languages
are used to describe properties which crosscut
basic functionality in a clean and a modular
way. Despite that, the main part of AOP re-
search is devoted to general-purpose languages
[6, 9] similar problems exists in domain-specific
languages [10]. For example, in language spec-
ifications modularization is usually based on
language syntax constructs (e.g., declarations,
expressions, commands). Adding new func-
tionality to the existing language, such as a new
expression, can be usually done in a modular
way. Only syntax production and semantics for
expressions have to be changed. In this case
a new feature does not crosscut other language
components. However, many language exten-
sions (e.g., type checking, code generation) re-
quired changes in many, if not in all language
components. Clearly, such language extensions
are aspects that crosscut language components.
Therefore, in this case the language modulariza-
tion based on different aspects would be more
beneficial. To overcome this problem, aspect-
oriented techniques should be used in language
specifications.

Introduction of AOP in language development
increases modularity, readability and reuse of
language specifications. Different concepts are
defined separately and are therefore not part of
original language. With the introduction of as-
pects, semantics can be (depends on developer)
detached from syntax and can be therefore used
in different languages or/and in different pro-
ductions.

Specifying Languages Using Aspect-oriented Approach: AspectLISA 345

2.1. Related Work

Aspect-oriented programming is a very promis-
ing approach and has been successfully used in
tools for language definition and implementa-
tion. Aspects have been used for many different
tasks, such as extension for weaving debugging
information into DSL specifications [14].

In this section we briefly describe three of the
more relevant contributions in the field, using
aspects in language specification or implemen-
tation.

JastAdd [5] is a Java-based system for com-
piler construction. JastAdd is centered around
object-oriented representation of the abstract
syntax tree (AST). It is a class weaver: it reads
all the JastAdd modules and weaves the fields
and methods into the appropriate classes dur-
ing the generation of the AST classes. The
idea of aspect-orientation in JastAdd is to de-
fine each aspect of language in separate class
and then weave them together at appropriate
places (pointcuts). With separation of different
language aspects among different classes devel-
opers have the possibility to use all features of
Java programming language to specify aspects.

The aspect-oriented language AspectG [1] was
created for modular implementation of cross-
cutting concerns in ANTLR language defini-
tion. Since ANTLR belongs to syntax directed
translations (semantic rules are not declara-
tively specified and order of semantic rules is
important), AspectG uses following model:
• join points are static points in language speci-

fications where additional aspects can be
weaved,

• pointcuts specify join points and include not
only the syntax level of the grammar, but
also the semantics associated with particular
syntax,

• advice are similar to AspectJ notion (before
and after) and bring together a pointcut (to
pick out join points) and a body of code (se-
mantic rules).

At last, AspectASF [7] is a simple aspect lan-
guage for language specifications written in
ASF+SDF formalism. Only rewrite rules are
supported. Therefore, join points in AspectASF
are static points in semantic equations. Aspects
specify additional equations which are written

in ASF formalism and are appended to seman-
tic equations at appropriate places (join points).
The aim of aspects in AspectASF is to declar-
atively specify which rules should be adapted
to incorporate additional semantics (e.g. side-
effect, rule tracing, etc.). To declare how/where
these aspects will be weaved into original speci-
fications, AspectASF uses pointcut pattern lan-
guage and advice which are applied to specified
pointcut.

3. Aspects in LISA

In the LISA project [11, 12], one of the main
goalswas to enable incremental language devel-
opment. It was soon recognized that inheritance
can be very helpful since it is a language mech-
anism that allows new definitions to be based
on the existing ones. A new specification can
inherit the properties of its ancestors, and may
introduce new properties that extend, modify
or override its inherited properties. In object-
oriented languages the properties that consist of
instance variables and methods are subject to
modification. The corresponding properties in
language definitions based on attribute gram-
mars are:
• lexical regular definitions,
• attribute definitions,
• rules which are generalized syntax rules that

encapsulate semantic rules, and
• operations on semantic domains.

Therefore, regular definitions, production rules,
attributes, semantic rules and operations on se-
mantic domains can be inherited, specialized or
overridden from ancestor specifications. In this
approach the attribute grammar as a whole is
subject to inheritance employing the “Attribute
grammar = Class” paradigm [13]. We call this
multiple attribute grammar inheritance. With
our approach, the language designer is able to
add new features (syntax constructs and/or se-
mantics) to the language in a simple manner by
extending lexical, syntax and semantic specifi-
cations.

3.1. AspectLISA

As already mentioned, object-oriented techni-
ques and concepts need to be combined with

346 Specifying Languages Using Aspect-oriented Approach: AspectLISA

aspect-oriented techniques to achieve bettermod-
ularity, extensibility and reusability. This issue
is further described in the following section.

LISA features like multiple attribute grammar
inheritance, simplifies language specifications
and contributes towards better reusability, mod-
ularity and extensibility. However, there are still
situations when new semantic aspects crosscut
basic modular structure. In other words, some
semantic rules need to be repeated in different
productions. To avoid this unpleasant situation,
an aspect-oriented attribute grammar has been
incorporated into LISA language specifications.
This extension is called AspectLISA, which is
LISA extended with mechanism that enables
to specify where to apply additional semantic
rules. These points are known as join points
in AOP. Join points in AspectLISA are static
points in language specifications where addi-
tional semantic rules can be attached. These
points can be syntactic production rules or gen-
eralised LISA rules. The production matching
takes place on rules and also on productions
which are members of production rules. One
pointcut can match rules/productions in differ-
ent languages over the entire hierarchy of lan-
guages. For each pointcut we can define several
advice which are parameterized semantic rules
written as native Java assignment statements.
In AOP, several different approaches of apply-
ing aspects to pointcuts exist, like before, after
and around [6]. In AspectLISA there is only one
way to apply advice on a specific pointcut, since
attribute grammars are declarative and the order
of equations in semantic rules is not important.
Therefore, applying advice before/after a join
point is not applicable.

TheAspectLISA specification language, includ-
ing aspect-oriented features, pointcuts and ad-
vice, has the following parts:

language L1 [extends L2, ..., LN] {
lexicon {

[[Q] overrides | [Q] extends] R regular expr.

...

}
attributes type At1, ..., AtM

...

pointcut P< [S1, ..., Sr] > L.Y : LhsP ::= RhsP ;

...

advice [[B] extends | [B] overrides]
A< [T1, ..., Tr] > on P {

semantic functions

}
...

rule [[Y] extends | [Y] overrides] Z {
X ::= X11 X12 ... X1p compute {

semantic functions }
...

|
Xr1 Xr2 ... Xrt compute {

semantic functions }
;

}
...

method [[N] overrides | [N] extends] M {
operations on semantic domains

}
. . .

}

Let’s focus only on new aspect-oriented fea-
tures of LISA specification language which are
pointcuts and advice. As can be seen in formal
AspectLISA language specifications, new fea-
tures are part of language specifications. Every
LISA specifications without new features can
be used and extended with aspect-oriented fea-
tures.

Pointcuts are defined using reserved word
pointcut. Each pointcut has a unique name
and a list of parameters (terminals and non-
terminals used in semantic functions of ad-
vice). As we already mentioned, join points are
static points in language specifications where
advice can be applied. In the pointcut defini-
tion one can use two wildcards. The wildcard
‘..’ matches zero or more terminal or non ter-
minal symbols and can be used only to specify
right-hand side matching rules. The wildcard
‘∗’ is used to match parts or whole literal repre-
senting a symbol. Some examples of pointcut
specifications are shown below:

. : * ::= .. ;
matches any production in any rule in all languages across
current language hieararchy

nLPD.T* : * ::= .. ;
matches any production in all rules which start with T in nLPD
language

Specifying Languages Using Aspect-oriented Approach: AspectLISA 347

. : TIP* ::= .. *S ;
matches all productions in any rule whose left hand side symbol
satisfy pattern “TIP*” and the right-hand side’s last symbol
ends with S

Advice in AspectLISA are additional semantics
that can be appended at a specific join point. In
order to increase reusability, advice are param-
eterized. Parameters can be terminal or non-
terminal symbols and are evaluated at weaving
time. Advice are defined using the reserved
word advice and contain information about
the pointcut where advice will appear. An ex-
ample of advice which is attached to pointcut
Test is shown below:

pointcut Test<N, T, V>nLPD1.T* : * ::= .. ;

advice Beg<N, T, V> on Test{
N.outProlog = V.outProlog;
T.inProlog = "";
V.inTableTypes = T.outTableTypes;
V.inProlog = T.outProlog;

}

In Section 4 more examples of advice and point-
cuts are provided.

3.2. AOP in LISA and Inheritance

As we already mentioned, pointcuts and advice
can be reused using inheritance. All pointcuts of
predecessors can be used in all ancestors. Point-
cuts with the same signature (name and param-
eters) as in ancestors can be used, but cannot be
extended in inherited languages and are overri-
den by default. Advice inherited from ancestors
using extends keyword must be merged with
the advice in the specific language. If advice
exists in parent and inherited language, then se-
mantic functions of advice must be merged, oth-
erwise advice are simply copied from inherited
to current language. Advice can also override
semantics of its parent using keyword over-
ride. Overriden advice cannot beweaved after
it has once been overriden.

4. Case Study

Typical examples of aspects in language spec-
ifications can be additional code generation,
different language extensions (e.g., exception
handling, aspects, new paradigms), language

specification debugging, attribute tracking. In
this section a small example is presented on a
language called nLPD, which has been used in
teaching compilers at University of Minho.

This example will be used to show how we can
identify an aspect; the difference between an
extension and an aspect; how to specify an as-
pect using AspectLisa syntax and how to gather
extensions and aspects in order to develop a lan-
guage processor.

In nLPD all variables need to be declared after
type declarations, where one must define the
length of the type (bytes occupied by variable
of the particular type). There are no pre-defined
types in nLPD. Variables are allocated inmemory
continually from address 0.

The following tasks need to be computed:
1. Construct the type table.
2. Compute total memory space occupied by

all declared variables in the program.
3. Translate nLPD program into a set of Prolog-

facts.

In order to perform these three tasks, semantic
evaluations will be added to the nLPD grammar.
The language is divided into two main parts:
type definitions and variable definitions. So,
the grammar has a set of productions related
with types and another related with variables.
For the first task (type table construction) just
the first part of the grammar is used. An excerpt
of LISA specifications for type table construc-
tion is:

language nLPD1
{

lexicon {
Number [0-9]+
Id [a-z]+

...
}

attributes Hashtable *.inTableTypes,

*.outTableTypes;

rule nLPD {

NLPD ::= TIPOS VARS compute {
// type table is stored in attribute outTableTypes
NLPD.outTableTypes = TIPOS.outTableTypes;

// initialize type table
TIPOS.inTableTypes = new Hashtable();

};

}
...

348 Specifying Languages Using Aspect-oriented Approach: AspectLISA

rule Type {
TIPO::= #Id #Number compute {

// store info about type name and type lenght into type table
TIPO.outTableTypes =

addItem(TIPO.inTableTypes, #Id.value(),
integer.valueOf(#Number.value()).intValue());

};
}
}

To compute total memory space, previous spec-
ifications are extended because this second task
is associated with another part of the grammar
(variables). Note that only new semantic rules
need to be specified. All others are inherited.

language nLPD2 extends nLPD1
{

rule extends nLPD {
NLPD ::= TIPOS VARS compute {
NLPD.outTotalMem = VARS.outTotalMem;
NLPD.outDecls = VARS.outDecls;
VARS.inDecls = new Vector();

};
}

...
rule Single {

SINGLE ::= IDS \: #Id compute {
IDS.inTableTypes = SINGLE.inTableTypes;
IDS.inDecls = SINGLE.inDecls;
SINGLE.outTotalMem = SINGLE.inTotalMem +

((IDS.outVars).size()) *
lookupLengthType(SINGLE.inTableTypes,

#Id.value());
SINGLE.outDecls = IDS.outDecls;

};
}

rule Ids {
IDS ::= #Id RIDS compute {
RIDS.inVars= addElementVector(IDS.

inTableTypes, IDS.inVars,
#Id.value());

RIDS.inTableTypes = IDS.inTableTypes;
RIDS.inDecls = addElementVector(IDS.

inTableTypes, IDS.inDecls,
#Id.value());

IDS.outDecls = RIDS.outDecls;
};

}
...

}

Togenerate additional Prolog code, aspect-orien-
ted specifications are used. This third task is
performed using all the grammar productions.
There is no grammar extension, just a new as-
pect of the same productions will be specified.
Implementing this task as an aspect, we have to
define a set of pointcuts and a set of advice in
order to add new attribute evaluation statements
in grammar productions.

language nLPD3 extends nLPD2 {

pointcut Begin<NLPD,TIPOS,VARS>
*.nLPD: NLPD::=TIPOS VARS;

...
pointcut Type<TIPO,#Id,#Number>

*.Type: TIPO::= #Id #Number ;
...
pointcut Sing<SINGLE,Ids,#Id>

*.Single: SINGLE ::= IDS \: #Id;
...
advice Init<N,T,V> on Begin{

N.outProlog = V.outProlog;
T.inProlog = "";
V.inTableTypes = T.outTableTypes;
V.inProlog = T.outProlog;

}
...
advice GenType<T,I,N> on Type {
T.outProlog = T.inProlog + "type(" + I.value()

+ ’ "," + N.value() + ")\n";
}
...
advice GenMem<S,I,Id> on Sing{

S.memAdressOut = S.memAdressIn
+((I.outVars).size())*

lookupLengthType(S.inTableTypes,Id.value());
S.outProlog = S.inProlog +

writeVars(S.inTableTypes,I.outVars,
Id.value(),S.memAdressIn);

I.inVars = new Vector();
}

}

Therefore, nLPD3 implements an aspect using
the grammar specified by nLPD2 and this will
allow to perform the third proposed tasks.

5. Conclusion

Another challenge in programming language
definition is to support reusability and exten-
sibility: aspects will reinforce these features.
Aspect-oriented features of theAspectLISA tool
increase modularity since different concepts of
programming language can be designed and
implemented separately in different modules.
These modules are also more reusable due to
inheritance, which is successfully incorporated
into our tool. In the near future we will work out
more and more complex case studies in order to
set up a method to decide whether a new feature
is an extension and whether it is an aspect, clar-
ifying when and how to use aspects in language
definitions instead of the extension mechanism.
We will also assess the efficiency of our weav-
ing algorithm and decide if it deserves further
improvement.

Specifying Languages Using Aspect-oriented Approach: AspectLISA 349

References

[1] AspectG.
http://www.cis.uab.edu/wuh/ddf/index
.html, 2006.

[2] O. DE MOOR, Intentional Programming, In-
vited talk at British Computer Society,
http//web.comlab.ox.ac.uk/oucl/work/oege
.demoor/talks/ip.pdf.gz, 2001.

[3] E. W. DIJKSTRA, A Discipline of Programming,
Prentice-Hall, 1976.

[4] K. DOH AND P. MOSSES, Composing programming
languages by combining action-semantics modules,
Science of Computer Programming, 47(1),
pp. 3–36, 2003.

[5] G. HEDIN AND E. MAGNUSSON, JastAdd: an aspect-
oriented compiler construction system, Science of
Computer Programming, 47(1), pp. 37–58, 2003.

[6] G. KICZALES, E. HILSDALE, J. HUGUNIN, M. KER-
STEN, J. PALM, AND G. GRISWOLD, Getting started
with AspectJ, Communications of the ACM (Special
issue on Aspect-Oriented Programming), 44(10),
pp. 59–65, October 2001.

[7] P. KLINT, T. VAN DER STORM, AND J. J. VINJU,
Term rewriting meets aspect-oriented programming,
Technical report, CWI, 2004.

[8] S. LIANG AND P. HUDAK, Modular denotational se-
mantics for compiler construction. In Proceedings
of 6th European Symposium on Programming, Vol.
1058, pp. 219–234, 1996.

[9] D. LOHMANN, G. BLASCHKE, AND O. SPINCZYK,
Generic advice: On the combination of Aop with
generative programming in aspectC++, In GPCE,
pp. 55–74, 2004.

[10] M. MERNIK, J. HEERING, AND A. SLONE, When and
how to develop domain-specific languages, ACM
Computing Surveys, 37(4), pp. 316–344, 2005.

[11] M. MERNIK, M. LENIC, E. AVDICAUSEVIC, AND V.
ZUMER, Multiple Attribute Grammar Inheritance,
Informatica, 24(3), pp. 319–328, Semptember
2000.

[12] M. MERNIK AND V. ZUMER, Incremental program-
ming language development, Computer Languages,
Systems and Structures, pp. 1–16, 2005.

[13] J. PAAKKI, Attribute Grammar Paradigms – A High-
Level Methodology in Language Implementation,
ACM Computing Surveys, 27(2), pp. 196–255,
1995.

[14] H. WU, J. GRAY, S. ROYCHOUDHURY, AND M.
MERNIK, Weaving a debugging aspect into domain-
specific language grammars. In SAC’05: Proceed-
ings of the 2005 ACM Symposium on Applied
Computing, pp. 1370–1374, New York, NY, USA,
2005. ACM Press.

[15] E. VAN WYK, O. DE MOOR, K. BACKHOUSE, AND P.
KWIATKOWSKI, Forwarding in attribute grammars
for modular language design. In Proceedings of
11th Int. Conf. Compiler Construction, pp. 128–
142, 2002.

Received: June, 2006
Accepted: September, 2006

Contact addresses:

Damijan Rebernak
University of Maribor

Faculty of Electrical Engineering and Computer Science
Smetanova ulica 17, 2000 Maribor

Slovenia
damijan.rebernak@uni-mb.si

tel: ++386-2-220-7462
fax: ++386-2-220-7272

Marjan Mernik
University of Maribor

Faculty of Electrical Engineering and Computer Science
Smetanova ulica 17, 2000 Maribor

Slovenia
marjan.mernik@uni-mb.si

tel: ++386-2-220-7462
fax: ++386-2-220-7272

Pedro Rangel Henriques
University of Minho

Department of Computer Science
Campus de Gualtar
4710 – 057 Braga

Portugal
prh@di.uminho.pt

Daniela da Cruz
University of Minho

Department of Computer Science
Campus de Gualtar
4710 – 057 Braga

Portugal
danieladacruz@di.uminho.pt

Maria João Varanda Pereira
Polytechnic Institute of Bragança

Campus de Sta. Apolónia
Apartado 134 - 5301-857, Bragança

Portugal
mjoao@ipb.pt

DAMIJAN REBERNAK finished his B.Sc. study in 2003 as the best stu-
dent in his generation. Currently he works as a young researcher at
the Faculty of Electrical Engineering and Computer Science, but has
also worked as technical collaborator and teaching assistant in the Lab-
oratory for Computer Architecture and Programming Languages since
1999. Damijan Rebernak’s fields of research are aspect-oriented pro-
gramming, domain specific languages (DSLs), concepts and implemen-
tation of programming languages, and compiler generators.

MARJAN MERNIK received his M.Sc. and Ph.D. degrees in computer
science from the University of Maribor in 1994 and 1998 respectively.
He is currently an Associate Professor at the University of Maribor,
Faculty of Electrical Engineering and Computer Science. He is also an
adjunct associate professor at the University of Alabama in Birming-
ham, Department of Computer and Information Sciences. His research
interests include programming languages, compilers, grammar-based
systems, grammatical inference, and evolutionary computations. He is
a member of the IEEE, ACM and EAPLS.

350 Specifying Languages Using Aspect-oriented Approach: AspectLISA

PEDRO RANGEL HENRIQUES got a degree in “Electrotechnical/Electro-
nics Engineering”, at FEUP (Oporto University), and finished a Ph.D.
thesis in “Formal Languages and Attribute Grammars” at University
of Minho. In 1981 he joined the Computer Science Department at the
University of Minho, where he is a teacher/researcher. Since 1995
he has been the coordinator of the “Language Processing group”. He
teaches many different courses under the broader area of programming:
programming languages and paradigms (procedural, logic, functional
and OO); compilers and formal development of language processors,
etc. He is co-author of the book “XML & XSL: da teoria à prática”,
published by FCA in 2002. Pedro Rangel Henriques has supervised
M.Sc. (13) and Ph.D. (12) theses and more than 25 graduating training-
ships/projects in the areas of: language processing (textual and visual)
and structured document processing, program animation and program
comprehension, knowledge discovery from databases, data-mining, and
data-cleaning. He alsowas responsible for several applicational projects
(in the interface university/external-community and industry), mainly
in the area of information systems (databases and web-oriented). From
2002 until 2004 he was the Head of the Department and at moment he
is the President of APPIA.

MARIA JOÃO VARANDA PEREIRA received the M.Sc. and Ph.D. degrees
in computer science from the University of Minho in 1996 and 2003
respectively. She is currently an adjunct professor at the Polytechnic
Institute of Bragança in the Informatics and Communications Depart-
ment. Her research interests include programming languages, compil-
ers, grammar-based systems, program comprehension and animation
systems.

DANIELA CARNEIRO DA CRUZ is an undergraduate student of mathe-
matics and computer science (she is doing the last year of her studies).
She is a member of the Language Processing group of the Department
of Computing, at the University of Minho. She also belongs to the team
of PCVIA, an FCT-funded research project in program comprehension.
Daniela has been involved in the exploration of attribute-based com-
piler generators, and in the development of a compiler for the LISS
programming language, using different generating tools and virtual tar-
get machines. At present she is working in "Alma", a generic and
general purpose Program Animator. She also practises some teach-
ing activities, giving support to the practical classes on compilers and
programming languages.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (Adobe RGB \0501998\051)
 /CalCMYKProfile (Photoshop 5 Default CMYK)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /CMYK
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

