
Journal of Computing and Information Technology - CIT 14, 2006, 2, 111–131
doi:10.2498/cit.2006.02.03

111

From Composition Filters to AspectJ:
A Platform Specific Model
Transformation

Djamel Meslati1, Mohamed T. Kimour1 and Saı̈d Ghoul2

1 Laboratory of Research on Computer Science (LRI), University of Annaba, Algeria
2 Computer Science Department, Philadelphia University, Amman, Jordan

Both model-driven architecture �MDA� and aspect-
oriented programming �AOP� are promising paradigms
that are very attractive for the software engineering com-
munity. While the former is an approach to application
design and implementation using models as first class
entities, the latter advocates the separation of concerns
as an approach to tackle most software development
and maintenance problems. MDA and AOP can be
related in various ways and their combination seems
to be a promising issue. In this article, we focus on
the transformation of two AOP approaches, composition
filters �CF� and ASPECTJ, considered as platform specific
metamodels within the MDA context. We propose a
transformation of CF models into ASPECTJ models using
a syntax-directed translation and a set of transformation
templates. In addition to being easy to implement,
our transformation approach covers the most important
concepts of CF.

Keywords: aspect-oriented programming,ASPECTJ, com-
position filters, model-driven architecture, model trans-
formation.

1. Introduction

Model-driven architecture is an approach to sys-
tem development that provides means for us-
ing models to direct the course of systems un-
derstanding, design, construction, deployment,
operation, maintenance and modification �18�.
The core concepts of MDA are models, meta-
models and transformations. A model is a rep-
resentation of a part of the function, structure
and�or behavior of a system. A model spec-
ification can be formal when it is based on a
language that has a well defined syntax, seman-
tics and possibly rules to analyze its constructs
�17�. Under this definition, a source code is a

model that has the salient characteristic that it
can be executed by a machine �7, 16, 17�.

A metamodel is a special kind of model that
specifies the abstract syntax of a modeling lan-
guage. In the MDA context, each model is an
instance of a metamodel that is described us-
ing the OMGMOF �ObjectManagementGroup
Meta Objet Facility� �19�. A transformation is
the process that converts one model to another
model of the same system according to some
description which, in turn, is a model and an
instance of some metamodel �14, 18�.

Broadly speaking, MDA is an approach where
models are first class entities �8, 14�. A software
system can be seen as a collection of models of
various abstraction levels where each describes
the system from some viewpoint and, conse-
quently, most engineering tasks can be consid-
ered as modeling and transforming models.

In order to promote interoperability and porta-
bility, the MDA approach puts the emphasis on
two kinds of models with respect to specific
platforms: the platform independent models
�PIM� and the platform specific models �PSM�.
Within each of these abstractions, there can be a
number of refinements �for example, many lev-
els of platform independent models� �14�. For
example, a program is a PSM obtained through-
out a cascade ofmodels and transformations. At
the top, we find a use case PIM that highlights
aspects of the system corresponding to the user
view. Then, the use case PIM is transformed
to extract objects and classes which form an-
other PIM. The last transformation might be a

112 From Composition Filters to AspectJ: A Platform Specific Model Transformation

JAVA model which is specific to a JAVA platform
�i. e. the JAVA virtual machine�. Notice that a
“platform specific” is meaningful only relative
to a particular point of view �8�. For example,
the JAVA program is a PSM when considering a
specific JAVA platform, while it is a PIM when
considering the specific operating systems on
which the JAVA virtual machine is implemented.

In the MDA approach, transformations can be
of various types such as merging or composing
models, but usually they convert models offer-
ing a particular view from one level of abstrac-
tion to a less abstract one �e.g. PIM to PSM or
PIM to PIM�, by adding more details supplied
by the transformation rules �14�. Transforma-
tions between models are needed because:

� Metamodels use various modeling concepts
and notations to highlight one or more views
within a model, depending on what is rele-
vant at any point in time �18�.

� Metamodels influence themodeling task and
the perception we have of the real world.
Thus it is beneficial to use various metamod-
els to capture the real world subtle situations
during the engineering tasks �8�.

� According to “divide and conquer” princi-
ple, the engineering tasks can be simpli-
fied if complex system models are com-
posed or merged from less complex models
using transformations that supply necessary
details.

In this article, we focus on the transformation
of two AOP approaches, CF and ASPECTJ, by
considering them as two platform specific meta-
models within the MDA context. This work is a
part of an ongoing one that aims to construct an
MDA environment where software developers
can use multiple AOP metamodels, during the
engineering tasks, and freely switch from one
another, using automated tools that preserve the
concerns’ traceability.

AOP is a particular separation of concerns ap-
proach �SOC�, where a system can be seen as
composed of business logic and concerns such
as synchronization, security, persistence, etc. It
is now commonly admitted that an appropri-
ate separation of concerns have an influence on
the development and maintenance processes. It
reduces the software complexity and code tan-
gling, facilitates reuse, improves comprehen-

sibility, simplifies component integration and
decreases invasive changes �2, 12, 20�.

Today, a large amount of literature is devoted
to three SOC approaches: composition filters
�CF� �5�, ASPECTJ �12� and hyperspace ap-
proach �20�. They aim at providing better con-
cepts and mechanisms to appropriately sepa-
rate the software concerns from the business
logic. Unfortunately, each approach has its own
philosophy and concepts. An approach might
be suitable from some point of view, but in-
appropriate from another. Consequently, pro-
viding an environment where multiple AOP ap-
proaches can be used simultaneously is aworthy
goal. This article is an attempt towards this goal
that focuses only on the transformation of CF
models to ASPECTJ models. Our interest in CF
and ASPECTJ results from the fact that they are
both AOP approaches.

The remainder of this article is composed of
six sections. Sections 2 and 3 describe, re-
spectively CF and ASPECTJ metamodels in an
intuitive way. In section 4 we give the motiva-
tions of the work and in section 5 we present
CF to ASPECTJ transformation. Section 6 dis-
cusses related work, and section 7 conclusion
and future work.

2. The Composition Filters Metamodel

2.1. Principle and Goals

CF considers a system as a set of objects that
interact with each other to achieve a common
task. Most interactions are done by sending and
receiving messages and CF intervenes during
these interactions �3, 6�. It provides an object
with an interface containing filters that inter-
cept and manipulate messages in various forms,
modifying their scope and expected behavior.
The former consists of delegating messages to
other objects �i. e. changing the target object
to which the message is sent�, whereas the lat-
ter consists of substituting a message selector
with another �i. e. replacing the name of the
method to be called with the name of another
one to be called instead�. By controlling mes-
sages �changing their targets and�or selectors�
and through a well-constructed interface, CF
provides suitable solutions to many problems
�see �2��, such as:

From Composition Filters to AspectJ: A Platform Specific Model Transformation 113

� Dynamic inheritance by enabling and dis-
abling inheritance relation between classes
at runtime

� Modeling of state dependent behaviorswhere
the behavior of an object changes according
to its state

� History sensitivity where the behavior of an
object depends on its previous behaviors

� Providing multiple views of the same object
�see example in 2.3�

� Behavior coordination and synchronization

� Tracing of programs during the development

One of the CF strengths is the use of a uniform
filtration mechanism to resolve the above prob-
lems. From this point of view, CF is easy to
understand and work with as it only adds few
concepts to the object metamodel.

2.2. Basic Concepts

CF adds to an object a wrapping layer called
interface that traps incoming and outgoing
messages. Figure 1 depicts the contents of an
interface added to a kernel object. We refer to
object or class with a CF interface by CF object
�respectively CF class�.

A CF interface is composed of the following
parts:

� Internal objects are objects whose methods
are used to compose the behavior of the CF
object. Messages received by a CF object
can be delegated to internal objects instead
of the kernel object. Internal objects are en-
capsulated in the CF object and cease to exist
when the CF object is garbage collected.

� External object are almost like internal ob-
jects. However, they are supposed to exist
on their own and their references are passed
on to the CF class constructor during instan-
tiation. These references are assigned to the
corresponding CF instance variables.

� Methods: Contains all the public methods
of the kernel class.

� Conditions: Conditions are specific meth-
ods without parameters that supply informa-
tion about the context of a call and the kernel
state without changing them �6�.

� Input filters: A set of declarative specifica-
tions that handle the incoming messages.

� Output filters: A set of declarative specifi-
cations that handle the outgoing messages.

Received messages

Sent messages

Object without filters

Kernel object

Instance
Variable

Method

Method

Method

Instance
Variable

CF Interface

Internal
Object
I t

Internal
Object Internal

Object

External
Object

External
Object

External
Object

Input Filter

Input Filter

Input Filter

Output Filter

Output Filter

Output Filter

Instance Variable
Instance Variable

Instance Variable

Instance Variable
Instance Variable

CF object

Kernel object

Instance
Variable

Method

Method

Method

Condition

Condition

Instance
Variable

Received messages

Sent messages

Instance Variable D
el

eg
at

ed
 m

es
sa

ge
s

Control Flow

Reference

Fig. 1. An object before and after adding a CF interface.

The signature of a CF object is the set of pub-
lic methods that it responds to. This includes
public methods of the kernel class and public
methods of the internal�external objects. In the
case where two methods have the same name,
that of the kernel or the internal�external ob-
ject declared first in the interface, hides the
other. Within a CF object, the kernel and in-
ternal�external objects are called targets. The
target of a message is determined by the CF
object itself when a message is received and
becomes a data accessible to filters.

Filters are declared in ordered sets as declara-
tive specifications. A call entering a CF object

114 From Composition Filters to AspectJ: A Platform Specific Model Transformation

is first reified �i. e. the method selector becomes
accessible and target determined�, then passes
each filter in the set until it is discarded or dis-
patched. Discarding a call raises an exception,
whereas dispatching consists of:

� Activating the corresponding method in the
kernel or internal�external objects, or

� Substituting it with a call to another method
in the kernel or internal�external objects and
activating it.

Each filter can accept or reject a call with an
effect depending on the semantic of its type.
Accept may imply dispatching or simply ig-
noring the message which, then, passes to the
next filter. Reject may imply that a message is
discarded, queued as long as the filter expres-
sion results in a rejection, or merely ignored �i.
e. the message continues with the next filter,
�see Table 1�. There are five commonly used
filter type: Error, Dispatch, Wait, Meta, and
RealTime �5�. Each type deals with a certain
category of concerns, but in general a filter set
contains more than one type. Wait is used to
model synchronization concerns, Meta allows
the reification of a message so that access to
its arguments, sender, receiver, return value, be-
comes possible and Realtime deals with timing
constraints. Error and Dispatch are used alone
or in combination with other filter types to al-
low the modeling of various concerns. All filter
types can be used in input and output filters, ex-
cept Dispatchwhich is used only in input filters.
In many CF articles, authors consider that out-
put filters operate almost like input filters and
do not require specific treatment. Moreover,
the object-oriented paradigm tends to adopt a
client�server model where the server respon-
sibility is prevalent. Therefore, concerns are
usually related to servers rather than scattered
among several clients �i. e. modeled in an in-
put filter set rather than in several output ones
�4��. For these reasons, output filters are not
considered in this article.

To enhance the descriptive power of CF, each
filter is composed of several elements called fil-
ter element �FE� that have the following form:

Filtername � Type � fFilterElement�
FilterElement� � � �g

An incoming message passes through each fil-
ter element which accepts or rejects it. Again,
reject or accept meaning depends on the filter

type �see Table 2�. Each filter element speci-
fies a condition C and a list of pairs �matching
part, substitution part�. We call it MSPList for
short. A FE accepts a call if the condition is true
and if the call matches the MSPList� Figure 2
depicts the syntactic diagrams corresponding to
different forms of filter elements.

To simplify the filter set specification, CF pro-
poses two operators � and �� called respec-
tively inclusion and exclusion operators. C �
MSPListmeans that when the condition C is true,
any message that matches MSPList will be ac-
cepted. C �� MSPList means that when the
condition C is true, all messages, except those
in MSPList, will be accepted.

In the following, we use two filter examples to
illustrate the syntactic diagrams of Figure 2.

Matching part MSP

Substitution part

)SelectorTarget (.

Substitution Part

Selector

Target .

Matching Part

MSP

MSP{ }

,

MSPList

Filter Element

Condition Call

MSPList

Target, Selector

*
Identifier

Fig. 2. Syntactic diagrams of filter elements.

As an example, let err be an Error filter de-
fined in the CF interface of a class called Ker.
FE stands for filter element, C for condition and
S for message selector.

err : Error = { c1 { s1, s2 }, c2 >{s4}, c3 > *, > s5 }

FE1 FE2 FE3 FE4

FE1 specifies that when C1 is true, only calls to
S1 and S2 are accepted. FE2 specifies that if C2

From Composition Filters to AspectJ: A Platform Specific Model Transformation 115

is true, only the call S4 is rejected. FE3 has a
“*” as a selector to specify that any message is
rejected when C3 is true. FE4 rejects all calls to
S5.

Now, let us consider a dispatch filter distr de-
fined in the CF interface of class Ker� nt stands
for a new target.

distr : Dispatch = { c1 { s1(nt1.ns1), s2 }, {s3},

 c2 { s4(nt2.*) , *(nt3.ns2) }, c3 *(nt4.*) }

FE2FE1

FE4FE3

FE1 is a filter element with two parts. The first
one can be written C1� S1�nt1�ns1�. It has all
the needed information �i. e. condition, selector,
new target and new selector� and specifies that
when C1 is true, messages having selector S1 are
delegated to method ns1 of object nt1, which is
an internal or external object. The second part
can be written C1 �S2, it means that messages
having selector S2 are accepted and executed by
the kernel object itself. FE2 lacks a condition
and an operator. In this case, default value True
and inclusion operator are assumed instead. FE3
has a “*” as message selector. In the beginning
“*” means accept any message and instead of
the new selector it indicates that selector S4 will
remain unchanged �i. e. the new selector is S4
itself�. FE4 specifies that when the condition C3
is true, any call to any methods is delegated to
nt4 using the same selector. nt1, nt2, nt3 and
nt4 must be internal or external objects. Table 1
summarizes the acceptance and rejection mean-
ing for a filter according to its type. Table 2,
shows when a filter element accepts or rejects
a message and the effect on the filter level �see
�4� for more details�.

In Table 2, we consider that an incoming mes-
sage has T as the target object and S as selector.

According to the value of condition C, and if
there is a matching with MSPList, the effect
on the filter element will be to accept�reject a
call and, in turn, this will have an effect on the
whole filter, which may accept or reject the call
or merely let the message continue with the next
FE.

2.3. Example

As an illustration, let us consider an Email sys-
tem example. The system is composed of four
classes Sender,Recipient, DeliveryAgent, and
the main class called Email which is partially
shown in listing 1.

Filter Type Handler actions

Error
Accept: The accepted message continues with the next
filter in the filter set.
Reject: An exception is raised.

Meta

Accept: The accepted message is reified as an object
of class Message and sent to a meta object method as
an argument. The meta object is one of the internal or
external objects (meta object and its method are
specified in the filter element that accepted the
message). Within the meta object method, it is
possible to use three specific statements: continue,
reply, and send. When continue statement is used,
the reified message is reactivated and continues with
the next filter in the filter set. When the reply
statement is used, the reified message is no longer
considered and the sender receives the argument of the
reply statement. With the send statement, the reified
message is reactivated (like continue statement) until
it reaches the return statement, so that the meta object
method can have access to the return value of the
message. The send statement is followed by reply or
continue statement. No substitution is carried out.
Reject: The message continues with the next filter in
the filter set.

Wait

Accept: The message continues with the next filter in
the filter set. No substitution or delegation is carried
out.
Reject: The rejected message is blocked until the
condition corresponding to the matching part who
matched the message becomes true. The message is
then re-evaluated by the wait filter.

Dispatch

Accept: If a new target and/or a new selector are
specified in MSPList, they are substituted in the
accepted message, and then, the message is sent to the
new target. The remaining filters in the filter set are no
longer considered.
Reject: The message continues with the next filter in
the filter set.

Realtime

Accept: The timing attributes of the accepted message
are changed, and then, the message continues with the
next filter.
Reject: The message continues with the next filter in
the filter set.

Table 1. The filter handler actions.

Sender, Recipient and DeliveryAgent are
threads that coordinate their behavior using a
bounded buffer synchronization schema. A
Sender thread creates an Email object, fills in
the content, indicates the address and puts it in
the DeliveryAgentbuffer. The latter stamps the

116 From Composition Filters to AspectJ: A Platform Specific Model Transformation

Effect when is used Effect when > is used Filter
type Syntax used to specify the filter element C value T.S matches

MSPList on FE on filter on FE on filter
False False/True Reject Continue Reject Continue
True False Reject Continue Accept Continue Error

C { T1.S1, …, Ti.Si}Or
C > { T1.S1, …, Ti.Si}
MSPList is {T1.S1, …, Ti.Si}
No substitution or delegation carried out True True Accept Accept Reject Reject

False False/True Reject Continue
True False Reject Continue Meta C { T1.S1(MO1.MS1), …, Ti.Si(MOi.MSi)}

MOi is the meta object and MSi one of its methods
True True Accept Accept

> is not used with meta
filter

False False Reject Continue Reject Reject
False True Reject Reject Reject Continue
True False Reject Continue Accept Accept

Wait
C { T1.S1, …, Ti.Si} Or
C > { T1.S1, …, Ti.Si}
No substitution or delegation carried out

True True Accept Accept Reject Continue
False False/True Reject Continue Reject Continue
True False Reject Continue Accept Accept Dispatch

C {T1.S1(NT1.NS1),…,Ti.Si(NTi,NSi),}Or
C > { T1.S1, …, Ti.Si,}

NTi.NSi are the new target and the new
selector True True Accept Accept Reject Reject

False False/True Reject Continue
True False Reject Continue Realtime

C { T1.S1(TC1), …, Ti.Si(TCi)}

TCi is the timing constraint
No substitution or delegation carried out True True Accept Accept

> is not used with real
time filter

Table 2. Filter elements acceptance or rejection and their effect on the containing filter.

Email object, then delivers it to the Recipient

buffer.

Threads that hold a reference on an Email object
can invoke all its methods. Thus, the delivery
agent can read the email content; the recipient
can stamp the email itself etc. These manipu-
lations do not correspond to a correct use of an
email in the real world. An Email object should
provide multiple views depending on the client
type, i. e. the object issuing the call. For ex-
ample, readContent�� should not be available
to the delivery agent, stamp�� � �� should not be
available to recipient and sender, etc.

public class Email {
public void modifyContent(String text){…}

// Modifies the content of the Email with a field of type String
public String readContent(){…}

// Returns the Email content
public Boolean deleteContent(){…}

// Deletes the Email content and returns a boolean as an indicator
public void setRecipientAddress(Address C){…}

// Address in C becomes the recipient’s address
public Address readRecipientAddress(){…}

// Returns the recipient’s address
public void setSenderAddress(Address C){…}

// Address in C becomes the sender’s address
public Address readSenderAddress(){…}

// Returns the sender’s address
public Boolean modifyAttributes(Attributes A){...}

// A contains new attributes (urgency mark, number of tries, …)
public void stamp(Date d, Time t){…} }

// Adds the date and time when t he Email was first processed

Listing 1. The Email class.

Multiple views problem has a suitable answer
in CF by adding to class Email a CF inter-

face which contains a set of filters enforcing
the views.

Threads may invoke any Email method, but in-
put filters reject or accept themessage according
to the sender type. Details of the CF interface
are given in listing 2.

class Email interface {
internals // No internals or externals needed in this case
externals
conditions
 private Boolean deliveryAgentView() {…}
// Returns true if the client object is of type DeliveryAgent
 private recipientView() {…}
// Returns true if the client object is of type Recipient
 private Boolean senderView () {…}
// Returns true if the client object is of type Sender
inputfilters

err : Error = {
 deliveryAgentView() {readRecipientAddress,

readSenderAddress, stamp},
 recipientView() { readContent, deleteContent,

readSenderAddress, readRecipientAddress },
 senderView() { stamp } }

 delegate : Dispatch = {true => *(inner.*)} /* All messages
that pass err are delegated to the kernel which is called inner */
}

Listing 2. A CF interface for class Email.

In this CF interface, filter err specifies that
if the client is of type DeliveryAgent, only
methods readRecipientAddress,readSender�
Address and stamp are allowed to pass to the
next filter and then be dispatched to the kernel,
otherwise, an exception is raised. The MSPList

From Composition Filters to AspectJ: A Platform Specific Model Transformation 117

of the filter err consists of only a list of selec-
tors. If the client is of type Sender, all methods
are accepted except stamp. Notice that this FE
can be expressed using the inclusion operator
and when ignoring inherited methods of class
Email, as follows:

senderView���fmodifyContent� readCon�

tent� deleteContent� setSenderAddress�
setRecipientAddress�readRecipientAddress�

readSenderAddress� modifyAttributesg

The delegate filter specifies that all messages,
i. e. those having passed filter err, go to the
kernel without changing their selectors.

3. The AspectJ Metamodel

3.1. Principle and Goals

Authors of this approach consider that the code
of a given software system contains a base code
part �i. e. the business logic� and a concerns
part. The former consists of objects that achieve
functionalities of the system, whereas concerns
are made of code that crosscut functionalities,
like transaction management and synchroniza-
tion. In the object-oriented paradigm, concerns
are scattered throughout the source code, con-
sequently a tangling arises �12�.

The AOP approach of ASPECTJ �13� proposes:

� To remove this tangling by separating the
two parts of a software system: base objects
and concerns which are called aspects.

� To weave the two parts by a tool called
Weaver to get the executable code. The
weaving is done using principled points of
the code execution.

Hence, the vision motivating AOP is that one
could provide independent specifications for
each concern and functionality, and then weave
them together to build the resulting system. The
AOP approach is appropriate for a wide range
of applications. It presents undeniable advan-
tages in all applications where security, syn-
chronization, transactions management, distri-
bution, logging, etc, are considered as concerns
and separated from the system base code. AS-
PECTJ aims at better modeling real world appli-
cations: code is smaller, less tangled and closer
to our perception of the real world, and therefore
enhances reuse, evolution and maintenance.

3.2. Basic Concepts

ASPECTJ is a general-purpose AOP extension
to JAVA. It uses four new concepts: Aspect,
Pointcut, Advice and static crosscutting.
An aspect is an entity that looks like a class, but
models a concern that crosscuts several object
classes. To understand ASPECTJ approach, let
us consider a system during its execution. At
each moment, the system evolves toward new
stateswhile generating new facts and events like
an access to, or change of a variable value, a
method call, execution or return, etc. All these
observable points called Join points represent
a base code breaking points where aspects can
get involved. Everything happens as if the ex-
ecution of the base code was interrupted in the
join points, giving a way to the aspect code
to execute and enforce the concern purposes.
Among all join points, only a subset may inter-
est a given aspect. The aspect source code speci-
fies its meaningful join points using Pointcuts.
Pointcuts are particular forms of predicates that
use boolean operators and specific primitives
to capture join points and dynamic contextual
information.

Several aspects can exist in the same software
system and be concerned by the same join points
and the same pointcuts. In this case, aspect must
be composed using some precedence rules.

The aspect code is divided into blocks called
advices. They are method-like mechanisms
used to declare that a certain code should exe-
cute when join points in some pointcut are cap-
tured. Three possible relationships, that deter-
mine the advice type, bind advices to pointcuts:
before, after and around. Thus, if a pointcut
is a call to a method m��, then concerned as-
pects must specify a pointcut that captures the
call join point and an advice that executes be-
fore or after the call of m�� and even around it.
The around advice can replace the call of m��,
as it can specify instructions that execute before
and others that execute after the call. This last
possibility is specified by using a special state-
ment called proceed�� available onlywithin the
around advice body. Figure 3 outlines how ad-
vices preempt the normal execution flow ac-
cording to the advice type. Figure 3a shows an

118 From Composition Filters to AspectJ: A Platform Specific Model Transformation

example of two objects where the method m	��

of object o	 calls the method m
�� of object o
.

Object o1
…
method m1(…)
{ …
 o2.m2(…)
 …
 …
}

Object o2
…
method m2(…)
{ …
 …
 …
}

Call and return

Capture of the call or return

Possible call or return

Previous call or return

Chronological order …

a – Base code without aspects

Object o1
…
method m1(…)
{ …
 o2.m2(…)
 …
 …
}

Object o2
…
method m2(…)
{ …
 …
 …
}

Aspect a1
…
Pointcut p()
…
Before p()
 …
 … // Advice AdB
 …

b – Base code and an aspect using a before advice

Aspect a1
…
Pointcut p()
…
After p()
 …
 … // Advice AdA
 …

Object o1
…
method m1(…)
{ …
 o2.m2(…)
 …
 …
}

Object o2
…
method m2(…)
{ …
 …
 …
}

c – Base code and an aspect using an after advice

Object o1
…
method m1(…)
{ …
 o2.m2(…)
 …
 …
}

Object o2
…
method m2(…)
{ …
 …
 …
}

Aspect a1
…
Pointcut p()
…
around p()
 … // Statements S1
 proceed()
 … // Statements S2

d – Base code and an aspect using an around advice

Fig. 3. Alteration of the control flow by an advice.

Figure 3b introduces an aspect a	 that intercepts
the call to m
�� and executes some advice AdB

and then resumes the call. Figure 3c shows an
aspect that intercepts the control flow after the
call to m
�� is achieved and executes some ad-
vice AdA. In figure 3d, the aspect intercepts the
call to m
��, executes some statements S	, re-
sumes the call to m
�� �using proceed��� and
before returning to m	��, it executes some other
statements S
.

ASPECTJ provides a rich set of primitive point-
cuts to specify join points within an aspect. Ta-
ble 3 summarizes the predicatemeaning of those
primitives and their composition.

One of the strengths of advices is that they can
access the dynamic contextual information ex-
posed by join points �this is called context ex�

posure�. For example, pointcuts can capture
the parameters and the target object of a call.
For this purpose, we can specify along with
advices and pointcuts, parameters that will be
bound to values of the current join points. More-
over, pointcuts can have an important descrip-
tive power by using the wildcard “*” instead of
a type, a method, a parameter or as a part of a
name. In the same way, “..” is used to spec-
ify one or more parameters and “�” to include
subtypes of a class within a specification.

Program Comments
public class ComputeFactorial {
 public static long factorial(int n) {
 if (n==0) return 1;
 else return n*factorial(n-1);} }

Class ComputeFactorial uses the factorial()method to compute recursively the
factorial of an integer n.

public aspect Optimizer {
 pointcut factOp(int n) :

call(* *.factorial(int)) && args(n);

The first pointcut of this aspect captures calls of factorial() along with its integer
argument.

 pointcut firstCall(int n) : factOp (n)
&& !cflowbelow(factOp (int));

Captures only non-recursive calls of factorial() among those of pointcut factOp().
Ignoring recursive calls using !cflowbelow() allows us to cache only the final result.

 private Cache fCache = new Cache();
/* fCache is private, only this aspect have
access to it */

fCache is an object of class Cache that consists of a list of pairs (int,long). The method
get(int) returns a cached value and put(int,long) puts a value in the cache at a position
corresponding to the first argument. To save space, this class is not shown.

 before(int n) : firstCall (n) {
if (n >50) bigValue();}

This before advice checks if the argument of the call is bigger than 50 then calls
bigValue() which raises an exception. For short, this method is not shown.

 long around(int n) : factOp (n) {
 long val = fCache.get(n);
 if (val != null) return val;
 return proceed(n); }

This around advice captures the call then checks the cache for the result value and return it if
found. When not found, proceed(n) resumes the normal computation flow. Notice that
when proceed() is not executed, the following advice (i.e. after returning) is ignored.

 after(int n) returning(long result) :
 firstCall (n) { fCache.put(n, result);
 }}

This after returning advice captures the value returned at the end of the execution of
factorial(). It specifies an argument to collect the return value in the returning() part.
Then, it uses the context collected from the join point to update the cache.

Listing 3. Optimizing a computation by an aspect.

From Composition Filters to AspectJ: A Platform Specific Model Transformation 119

The last concept of ASPECTJ is the static

crosscutting which modifies a model at com-
pile time. For example, ASPECTJ allows spec-
ifying new members that are associated with
other classes, as well as specifying what a class
extends or implements. The former is called
introduction or inter�type member decla�

ration. Introductions allow an aspect to spec-
ify the concerned classes by using a prefix in the
member declaration statement. When present,
the prefix indicates one or more classes; other-
wise the declared member is local to the aspect.

3.3. Example

Listing 3 shows an example of an aspect, adapted
from �15�, that optimizes the factorial compu-
tation. First, we have a simple class with a
method called factorial��which computes re-
cursively the factorial of an integer passed as an
argument. Second, the aspect captures calls
to factorial�� and caches the computed val-
ues for latter use. Now, each time we want to
compute a factorial by calling factorial��, the
aspect captures the call and checks the cache for

the result value and returns it if found. When
the result is not in the cache, the normal com-
putation flow is resumed. Notice that we can
do the same thing by adding optimization code
in the class ComputeFactorial, but such an im-
plementation will tangle the optimization logic
with factorial computation logic. By using
an aspect, the optimization code is completely
separated from the factorial computation code.
This allows us to change the caching strategy
without affecting the ComputeFactorial class.

4. Motivations

Aspect orientation and MDA can be related in
various ways: such as considering aspects and
business logic as two kinds of models or con-
sidering that a model is made up of aspects and
some business logic, and so on �21�. The intent
of this article is not to specify the aspect ori-
entation�MDA relationship, but rather to focus
on the transformation of two AOP approaches
within the MDA context.

Pointcut Corresponding predicate value (cjp stands for one of the current join points) Comments

call(S) True if cjp corresponds to a call to S

execution(S) True if cjp corresponds to an execution of S

S ::=ResultType
ClassName.MethodName
(Parameters) to specify a method or
ClassName(Parameters) to
specify a constructor

get(S) True if cjp corresponds to an access to S

set(S) True if cjp corresponds to an assignment to S

S ::= Type
ClassName.FieldName

initialization(S) True if cjp corresponds to the execution of the initialization of an object in S

preinitialization(S) True if cjp corresponds to the execution of the pre-initialization of an object in S

S ::= ClassName(Parameters)
Parameters are those of the first
constructor. Initialization includes the
super constructor call

staticinitialization(S) True if cjp corresponds to the execution of the initialization of class S S ::= ClassName

handler(TP) True if cjp corresponds to the handling of the TP exception inside a catch bloc TP specifies the exception type

within (TP) True if cjp corresponds to the execution of a code belonging to TP TP is a class name

withincode(S) True if cjp corresponds to the execution of a code defined in a method or constructor specified by S S is a method or constructor signature

cflow(P) True if cjp is in the control flow of the join point defined by P (including P itself)

cflowbelow(P) True if cjp is in the control flow below the join point in P (excluding P itself)
P is a pointcut

adviceexecution() True if the executing code belongs to an advice

this(TP or Id) True if cjp corresponds to the execution of a code belonging to the object defined by TP or Id (the
object being the current object referenced by this in JAVA)

target(TP or Id) True if the target of cjp is an object specified by TP or Id

args(TP or Id or ‘..’) True if the arguments of cjp are instances whose type is specified by TP or Id

TP is a class name and Id an identifier.
‘..’ replaces any number of parameters

if(BoolExp) True if BoolExp is true BoolExp is a boolean expression

! P True if P is not satisfied

P1 && P2 True if both P1 and P2 are satisfied

P1 || P2 True if P1 or P2 or both are satisfied

(P) True if pointcut between the brackets is satisfied

P, P1, and P2 are pointcuts

Table 3. Predicate meaning of the primitive pointcuts and their composition.

120 From Composition Filters to AspectJ: A Platform Specific Model Transformation

Although CF and ASPECTJ are grouped within
a same category �i. e. AOP approaches� they
are different and both have strengths and weak-
nesses. We summarize some of their features in
the following.

Description style. The CF allows expression
of filters using a declarative style that is easy to
understand andwork with. In contrast, ASPECTJ
has a procedural style, like JAVA, that is based
on several new constructs to express concerns.
The CF style is useful when dealing with dele-
gation of messages and substitution. However,
when more complex computations are needed,
the ASPECTJ advices are better than the CF meta
filter since they have a direct access to the dy-
namic contextual information.

Separation among concerns. In CF each filter
in the filter set describes one concern. However,
in some cases, two or more filters are combined
to describe one concern. Consequently, a CF
interface tends to describe concerns from the
class point of view, i. e. the filter set gives all
the concerns where the class is involved. In
contrast, an aspect in ASPECTJ may describe a
concern that involves several classes �i. e. a con-
cern point of view�. When modeling a system,
we need the two points of view since sometimes
we may focus on an isolated concern and some-
times we may focus on how concerns compose
for a given class.

The join point model. ASPECTJ, is provided
with a wealthy join point model that allows as-
pects to capture calls, access or modification of
fields, exception handling and to specify con-
cerns in various ways. On the opposite, CF
intercepts only the incoming and outgoing calls.

The synchronization. While ASPECTJ adopts
the JAVA synchronizationmechanism, theCFof-
fers a specific filter that allows the description of
various synchronization concerns without deal-
ing explicitly with the wait and the notify of
threads.

According to the previous, concerns that are
better expressed in CF are security, synchro-
nization and timing constraints, while concerns
that are better expressed in ASPECTJ are opti-
mization and general control of computations,
and control of access operations to object fields.
Broadly speaking, CF is more appropriate for
real time and concurrent applications since it

deals well with timing constraints and concur-
rency using wait and real time filters �2�. In
contrast, ASPECTJ is better when dealing with
applications that need optimizing some com-
putations, handling exceptions and field access
control which are concerns we usually find in
financial transaction systems, distributed sys-
tems, etc �9, 15�. However, in many cases ap-
plications have several kinds of aspects which
justify the use of multiple AOP approaches.

Since CF and ASPECTJ are different and since
metamodels influence themodeling task and the
perception we have of the real world �8�, it be-
comes advantageous to use them both to capture
the real world subtle situations. This conclusion
is the starting point of an ongoing work that
aims to construct an MDA environment where
software developers can use multiple AOP ap-
proaches at the same time and freely switch
from one to another using automated tools that
preserve the concerns’ traceability.

PIM

CFC Business logic AC

PIM

…

ASM1 CFSM1

Transformation model
(CF platform model,
rules, templates, …)

Transformation model
(AspectJ platform
model, rules, …)

CF-To-AspectJ
Transformation model

AspectJ-To-CF
Transformation model

ASM2 AC CFSM2 CFC

CF Concerns
integration model

AspectJ Concerns
integration model

ASM3 CFSM3

Fig. 4. Software development scenario.

Within this MDA environment, the software de-
velopment scenario is depicted in Figure 4 as a
cascade of PIM to PIM transformations, PIM to
PSM transformations andPSM toPSM transfor-
mations. At the top, we find a use case PIM that
highlights aspects of the system corresponding
to the user view. Then, the use case PIM is

From Composition Filters to AspectJ: A Platform Specific Model Transformation 121

transformed �likely through a cascade of trans-
formations� to extract objects, classes and con-
cerns and get a PIM that expresses some busi-
ness logic along with concerns that are platform
independent. These concerns can be divided
into two sets: concerns that are better expressed
in CF �CFC� and concerns that are better ex-
pressed in ASPECTJ �AC�.

In the next step, we get a CF specific model
�CFSM1�or anASPECTJ specificmodel �ASM1�
by transforming the PIM using CF �resp. AS-
PECTJ� platformmodel, a set of rules, templates,
etc. When the first CFSM �resp. ASM� is ob-
tained, one can transform it to get ASM2 �resp.
CFSM2� using the CF-To-ASPECTJ transforma-
tion �resp. ASPECTJ-To-CF transformation� and
then add concerns that are better expressed in
ASPECTJ �resp. in CF� to get the final PSM
ASM3 �resp. CFSM3�.

For example, consider an Email server system
consisting of several services; one thread per
user and a database where each user emails
are stored. In this type of application we can
describe the synchronization concern between
threads using CF and the exception handling
concern �transmission errors, timeouts, etc� us-
ing ASPECTJ.

Obviously, using the most suitable metamodel
each time means that developing a whole sys-
tem will involve several metamodels and trans-
formations to get the final PSM. This drawback
can be reduced by using automated tools and by
preserving the traceability. In our context, pre-
serving traceability is a challenging task since
it means preserving a one to one correspon-
dence between the CF concerns and ASPECTJ
concerns. To achieve this goal, we need to
convert concerns in CF models using as much
as possible only concepts dedicated to express
concerns in ASPECTJ and vice versa.

Allowing the use of CF and ASPECTJ metamod-
els during the development of a system is the
first and the main motivation of this work. As
a first step towards this ideal, this article is lim-
ited to only one way transformation of the CF
models into ASPECTJ.

The secondmotivation arises from the fact that a
transformation between two PSMs of the same
abstraction level is useful in some cases. To
understand this, let us consider the scenario of
Figure 5.

…

PIM

PIM

ASM CFSM

Transformation
model

CF-To-AspectJ
Transformation model

Transformation
model

Fig. 5. Example of development scenario.

According to Figure 5, one can get the ASM
using the transformation labeled �2 or through
transformation �1 followed by transformation
�3 . This last, which is our concern, is useful in
the following cases:

� Wehave theCFSMandwant to get theASM,
unfortunately there is no PIM from which it
can be generated. This situation is still fre-
quent today. Indeed, the MDA well-defined
style is not always followed and software
developers still take a PSM-only approach
where platform specificities are considered
from the early development phases, and sep-
arately defined models are not used �i. e.
PIM and PSM� �8�. Notice, in this case, that
concerns are directly described in the PSM
�CFSM or ASM�.

� We would like to change the AOP platform
�e. g. ASPECTJ instead of CF�, but at the
same timewe do not want to spend an impor-
tant effort in developing the transformation
from the PIM to the new PSM. Since the two
PSMs are relatively close, the PIM becomes
useless and the ASM is advantageously gen-
erated from the CFSM.

The thirdmotivationof thiswork lies in our con-
fidence that through such PSM to PSM transfor-
mations and by preserving traceability, one can
deduce common features of AOP approaches.
These features are potential candidates for an
AOP metamodel to build AOP PIMs. To the
best of our knowledge, an AOP metamodel to
express AOP PIMs does not exist yet and we are
currently investigating this subject in another re-
search.

122 From Composition Filters to AspectJ: A Platform Specific Model Transformation

5. CF to AspectJ Transformation

5.1. Overview

In the MDA context, the transformations can be
from PIM to PIM, PIM to PSM, PSM to PSM
or PSM to PIM, and several approaches can be
used for transforming models such as the mark�
ing, the model transformation, or the meta�

model transformation, etc �see �14, 18� for
more details�.

In this work, we propose a PSM to PSM meta-
model transformation which can be illustrated
using the MDA transformation representation
of Figure 6. The transformation model consists
of a set of normalizing rules and transformation
templates �see Figure 7�.

Since CF and ASPECTJ are both extensions of
JAVA, the transformation can be done by con-
verting the CF concepts using the JAVA part of
ASPECTJ. But, when doing so, we achieve a sim-
ple weaving that does not preserve the traceabil-
ity of concerns. In order to preserve the trace-
ability, we need to use, as much as possible,
only concepts dedicated to express concerns in

Transformation

CF Model

AspectJ Model

CF Metamodel

AspectJ Metamodel

Transformation
Model

language used

language used

source language

target language

Fig. 6. PSM to PSM metamodel transformation.

Syntax directed
translation

Normalization

CF Model

AspectJ Model

Normalizing rules

Normalized CF Model

Transformation
templates

Fig. 7. Overview of the transformation.

ASPECTJ. For this sake, we keep the base code
classes of the CF model unchanged and trans-
form the CF interfaces using aspects, advices,
pointcuts and static crosscutting.

The transformation we propose consists of two
processes �Figure 7�:

� A normalization that aims to put the filters in
a canonical form which facilitates the trans-
formation.

� A translation using a syntax-directed ap-
proach and transformation templates. It con-
sists of generating a set of aspects using a
syntax-directed approach guided by a set of
templates that preserve the CF semantics.

Notice that some concepts of CF like realtime
filter are currently outside the proposed trans-
formation. The reasons motivating this restric-
tion are given in subsection 5.5.

In the remainder of this section, we will illus-
trate the transformation using the example of
listing 4, which includes four filter types and al-
most all different forms of filter elements. Some
comments are given in the same listing.

5.2. Normalization

The goal of this process is to determine all the
accessible methods of a CF class and to put its
filter elements in a canonical form that facili-
tates the transformation. A CF interface adds
the public methods of internal�external objects
to the set of kernel class methods. In case where
two or more methods have the same name, the
one belonging to the kernel class �may be in-
herited� or the internal�external object declared
first hides the others. Hence, the signature σC
of an object C �or a class C� can be defined as
the set of all methods accessible for incoming
messages. Notice that incoming messages do
not specify internal�external objects as targets.
But their specifications in filters impose to the
CF object to deduce which target will execute
the message.

In the example of listing 4, σA� finner�m	���
inner�m
��� int	�mb	��� int	�mb
���

int��mc	��� int��mc
��� int��mc����

ext	�md	��g. Methods int
�mb	�� and
int
�mb
�� are masked by int	 since it is de-
clared first. In the same way ext	�m	�� and
ext	�m
�� are masked by the inner.

From Composition Filters to AspectJ: A Platform Specific Model Transformation 123

According to the previous, normalizing themeth-
ods’ part in the example consists of replacing the
list of declared methods with its complement to
σA �i. e. σA-finner�m	��� inner�m
��g, see
listing 5�.

To put filter elements in a canonical form we
apply a set of normalizing rules so that:

� The dispatch or meta filter elements have the
form:
C � selector�NewTarget�NewSelector�

� The wait filter elements have the form:
C � Selector where C is a condition or a
conjunction of conditions

� The error filter elements have the form: C �
f Selector1� Selector2�� � �� Selectorig
or C � Selector

Filters’ normalizing rules can be grouped in
seven categories:

– Eliminating * within a MSPList�
T���NT�NS� is equivalent to

T�S1�NT�NS�� � � �� T�Si�NT�NS� if σT�fS1� � � �� Sig
T�S���NS� is equivalent to T�S�inner�NS�
T���NT��� is equivalent to T�S1�NT�S1��� � �� T�Si�NT�Si�

if σT�fS1� � � �� Sig and σT � σNT
T�� without a substitution part, is equivalent to

T�S1� � � �� T�Si if σT�fS1� � � �� Sig

– Eliminating exclusion operator:
C��fT1�S1� � � �� Ti�Sig is equivalent to

C� σinner 	 fT1�S1� � � �� Ti�Sig

– Adding inclusion operator and condition:
fT1�S1� � � �� Ti�Sig is equivalent to�fT1�S1� � � �� Ti�Sig
�f T1�S1� � � �� Ti�Sig is equivalent to

True�fT1�S1� � � �� Ti�Sig

– Adding substitution part in dispatch filter elements:
S is equivalent to S�NT�S� if NT�S � σinner
S�NS� is equivalent to S�NT�NS� if NT�NS � σinner

– Decomposition �does not apply to error filters�
C�fT1�S1�NT1�NS1�� � � �� Ti�Si�NTi�NSi�g is equivalent to

C�T1�S1�NT1�NS1�� � � �� C�Ti�Si�NTi�NSi�
C�fT1�S1� � � �� Ti�Sig is equivalent to

C�T1�S1� � � �� C�Ti�Si

– Ignoring target in the matching part. Also applies when T�inner
T�S�NT�NS� is equivalent to S��NT�NS� if T�S � σinner
T�S is equivalent to S if T�S � σinner

– Grouping wait filter elements having the same matching part
C1 �S� C2 �S� � � �� Ci �S is equivalent to

fC1�C2�� � ��Cig�S

public class A {
public void m1();
public void m2();

 … }

Inputfilters
 err : error = { cd1() {int1.
 cd2() {m2},
 {int3.mc1} }

,int3.

 act : meta = { cd3() {m1(ext1.md
sync : wait = { cd4() {m2, int
 cd3() m2 }

2), int1.m
.*
.*(int2.
.*(ext

}, // err1
// err2
// err3

1),inpublic class B {
public void mb1();

t1.*(ext1.md1)} } // act1
// sync1 3.*},

public void mb2();
 … }

// sync2
 deleg : dispatch ={ cd1() {m1(m
 cd2() {ext1
 cd3() {int1
 cd4() {inner
}

b1(int3.mc2)}, // deleg1
public class BB {

public void mb1();
public void mb2();

 … }
public class C {

public void mc1();
public void mc2();
public void mc3();

 … }
public class D {
 public void m1();
 public void m2();
 public void md1();
 … }
class A interface {
 //A is the kernel
internals

public B int1;
public BB int2;

}, // deleg2
*)}, // deleg3
1.*)} } // deleg4

Comments
err1: When cd1 is true, calls t
act.
err2: When cd2 is true, all messa
err3: Calls of mc1 in int3 ar
act1: When cd3 is true, the cal
ext1, and when cd3 is true, cal
sync1: Causes the calls to m2 in
of all methods in int3 are also bloc
deleg1: When cd1 is true, cal
int1 are substituted by mc2 and d
deleg2: When cd2 is true, a

o the m filter

ges are
e uncondit
ls o
ls t
 the ke
ke
ls
elegate
ll

substitution. This means that calls to md
s A.

ls to methods of int1 are delegated to int2 without any

alls to the kernel methods (m1 and m2) are dispatched to the
external object ext1 without substitution.

ethods of int1 and int3 are accepted and pass to

 accepted except m2 of the kernel
ionally accepted

f m1
o methods of int are reified and passed as argument to md1.

in the kernel are reified and passed as argument to md1 in
1

rnel to be blocked until and d become true. The calls cd4 c 3
til becomes true. d un cd4

 of m in the kernel are dispa nd calls of1 tched to m2 a mb1 in
d to object int3.

calls except those where target is ext1 are dispatched without
1 are not dispatched. The other methods, m1 and m2 in ext1,
es, since they are hidden by m1 and m2 of the kernel clasare not in the scope of incoming messag

deleg3: When cd3 is true, the cal
substitution.
deleg4: When cd4 is true, all the c

public C int3;
externals

public D ext1;
conditions
private boolean cd1(){…}
private boolean cd2(){…}
private boolean cd3(){…}
private boolean cd4(){…}
methods

Remarks: For brevity, methods do not return values and only the public methods are shown
The wild card ‘*’ always matches the target or selector in the matching part and does not modify the target
or the selector when specified in the substitution part.
When the target is omitted, the kernel object is considered instead.
When a condition is missing, true is assumed instead.

 void m1(); void m2();

Listing 4. Example of a CF model.

124 From Composition Filters to AspectJ: A Platform Specific Model Transformation

When applying the normalizing rules to the ex-
ample in listing 4, we get the results shown in
listing 5.

methods void mb1(); void mb2(); void mc1();
 void mc2(); void mc3(); void md1();
Inputfilters
err : error = {
 cd1() {mb1, mb2, mc1, mc2, mc3}, // err_1
 cd2() {m1, mb1, mb2, mc1, mc2, mc3, md1}, // err_2
 true mc1 } // err_3
act : meta = {
 cd3() m1(ext1.md1), // act_1
 cd3() mb1(ext1.md1), // act_2
 cd3() mb2(ext1.md1) } // act_3
sync : wait = {
 {cd4(), cd3()} m2, // sync_1
 cd4() mc1, // sync_2
 cd4() mc2, // sync_3
 cd4() mc3 } // sync_4
deleg : dispatch ={
 cd1() m1(inner.m2), // deleg_1
 cd1() mb1(int3.mc2), // deleg_2
 cd2() m1(inner.m1), // deleg_3
 cd2() m2(inner.m2), // deleg_4
 cd2() mb1(int1.mb), // deleg_5
 cd2() mb2(int1.mb2), // deleg_6
 cd2() mc1(int3.mc1), // deleg_7
 cd2() mc2(int3.mc2), // deleg_8
 cd2() mc3(int3.mc3), // deleg_9
 cd3() mb1(int2.mb1), // deleg_10
 cd3() mb2(int2.mb2), // deleg_11
 cd4() m1(ext1.m1), // deleg_12
 cd4() m2(ext1.m2) } // deleg_13

Listing 5. Normalized methods and input filters parts.

5.3. Transformation Templates

Valid transformation changes the structure of
the original model, but preserves its behavior
�i. e. its semantics�. Recall that a CF model is a
set of ordinary JAVA interfaces and JAVA classes
where some are provided with CF interfaces.
Therefore, the overall structure transformation
of the CF model is to keep unchanged ordinary
JAVA classes and JAVA interfaces while translat-
ing CF interfaces into aspects. Consequently,
the main transformation task is to find what
corresponds to each CF interface.

Since the CF interface represents several con-
cerns, it translates to several aspects. We pro-
pose the structure transformation schemaofFig-
ure 8.

According to Figure 8, the JAVA interfaces and
classes are kept unchanged in theASPECTJmodel
while each CF interface has a counterpart con-
sisting of:

� One aspect for each filter in the input filter
set.

� One aspect composed of inter-type mem-
bers’ declaration introducing internal�exter-
nal instance variables and public methods
into the kernel class. These public methods
have an empty implementation body since
the corresponding calls will be captured by
aspects and delegated to internal�external
objects.

� One aspect called kernel Final to capture
calls that are not dispatched and raise a cor-
responding exception.

Normalized CF Model

Java interface /
Java class

CF interface

AspectJ Model CF interface counterpart

Introductions
Aspect

Aspect kernel_Final

Corresponding
Aspect

Method Internal /
External Filter

Java interface /
Java class

Keep elements
unchanged

Translate using
transformation templates

Fig. 8. The structure transformation schema.

The content of these aspects is determined using
the transformation templates given in the rest of
this subsection. Listing 6 shows the resulting
model when applying the structure transforma-
tion schema to the example of listing 5.

Aspects that correspond to filters are composed
of advices. For example, a normalized FE
C�S�NT�NS� in a filter maps to an advice in
the corresponding aspect. This advice is of
type around and has three anonymous point-
cuts �i. e. unnamed pointcuts directly declared
in the advice�. The first pointcut is call��

� inner�S��� which captures calls to method
S in the inner class �the first wildcard means
any access modifier and the second any return
value type�. The second and third pointcuts are
target�obj� and args�parameterList�. They
make available the target object and arguments
of the call within the advice body which uses
them to perform its computation.

From Composition Filters to AspectJ: A Platform Specific Model Transformation 125

public class A { public void m1();
public void m2(); … }

public class B { public void mb1();
public void mb2(); … }

public class BB { public void mb1();
public void mb2(); … }

public class C { public void mc1();
public void mc2();
public void mc3(); … }

public class D { public void m1();
public void m2();
public void md1(); … }

privileged aspect A_Introd {
declare precedence A_err, A_act, A_sync, A_deleg, A_final;
public B A.int1;
public BB A.int2;
public C A.int3;
public D A.ext1;
public boolean A.cd1(){…};
public boolean A.cd2(){…};
public boolean A.cd3(){…};
public boolean A.cd4(){…};
public void A.mb1(){};
public void A.mb2(){};
public void A.mc1(){};
public void A.mc2(){};
public void A.mc3(){};
public void A.md1(){};

}
privileged aspect A_err { …} // See listing 7
privileged aspect A_act { …} // See listing 8
privileged aspect A_sync { …} // See listing 9
privileged aspect A_deleg { …} // See listing 10
aspect A_final { …} // See listing 11

Listing 6. Transforming the structure of the CF model.

Preserving the CF semantics is a challenging
task. If we consider a filter set FS where each
filter F is composed of filter elements FElem,
then preserving the CF semantics means: im-
plementing the accept and reject effects of each
FElem on messages and on the filter F, and im-
plementing the accept and reject effects of each
filter F on messages and filter set FS.

Particularly, the following constraints must be
satisfied:

�1 A message passes once through each filter
in the filters set and each FE in an order that
corresponds to their declaration. Up-down
for filter set and from left to right for filter
elements.

�2 According to the filter type, the filter ele-
ment handler action may affect the message
flow. After a dispatch, a final reject or reifi-
cation, the remaining FE and filters are no
longer considered. In the case of a wait fil-
ter, each time the message is blocked by a
filter element, it passes the filter again.

�3 A message must be dispatched by the filter
set.

These constraints can be expressed in terms of
filter element accept or reject effects on the con-
trol flow of a message according to the filter
type, the position of the filter element within
the filter and the position of the filter within the
filter set �see Table 4�.

handler
Action

 cur

last F
the fil

essage flow
ithin a normalized input filter Filter

Current
FE

Is
FE the filter the last Effect on the m

Type E in filter in the w

rent Is current

ter? filter set? set

No Pass to next filter Accept No/Yes
Yes Raise an exception

No No/Yes Pass to next filter element E
r
r
o
r

Reject
Yes No/Yes Raise an exception

If m() executes Continue or
send, then pass to next filter
m() is the method to which the
reified message is sent

No
Accept No/Yes

Yes If m() executes Continue or send,
then raise an exception

No No/Yes Pass to next filter element
No

M
e
t
a

Pass to next filter Reject
Yes

Yes Raise an exception
No No/Yes Pass to next filter element

No Pass to next filterAccept
Yes

Yes Raise an exception

No current filter aga
Block the message then pass the

in

W
a
i
t

Reject No/Yes
Yes onRaise an excepti

Accept No/Yes No/Yes
Dispatch the message. Ignore
remaining filter elements and
filters

No No/Yes Pass to next filter element
No Pass to next filter D

i
s
p
a
t
c
h

Reject
Yes

Yes Raise an exception

Table 4. Effect of filter element handler actions on the
message flow.

To enforce constraint �1 in ASPECTJ, we de-
clare precedence between aspects. The aspect
corresponding to the first filter will dominate
the aspect corresponding to the second that will
dominate the aspect corresponding to the third
and so on. The FEs’ order is enforced by declar-
ing the corresponding advices in the same order
of the FEs in the filter.

To enforce the second constraint, we remark
that since to each FE corresponds an advice,
ignoring the remaining FEs and filters in case
of a dispatch or reject comes to inhibiting their
corresponding advices. ‘Inhibiting’ means at-
taching a condition to an advice, to preclude
its execution. For this sake, we have added a
class, called List, whose objects are inhibition
lists. Objects of class List contain inhibition

126 From Composition Filters to AspectJ: A Platform Specific Model Transformation

elements which consist of a join point identifier,
a target object identifier and a string that spec-
ifies if the inhibition concerns the whole input
filter set or only a given filter.

When processing a filter element, CFE, which
causes the filter F to accept a message and skip
the remaining FEs in F, the advice correspond-
ing to CFE inserts an element �joinpoint id�

target id� filterName��� in the inhibition
list. In the case of a dispatch or reification with
reply, the inserted element is �joinpoint id�

target id�filterSet��� which inhibits all
the remaining advices and aspects correspond-
ing to the filter set. All advices must check

for the absence of inhibiting elements before
proceeding.

Advice handles the inhibition list by three meth-
ods, inhibit��, removeInhibition�� and in�

hibited��, which respectively inserts, removes
elements, and tests for the existence of elements
in the list. The reflexive features of JAVA and
ASPECTJ allow us to know, at any time, the cur-
rent join point and current object unique identi-
fiers by using thisJoinPoint.

Notice that a form of inhibition already exists
in ASPECTJ for advices of type around. In-
deed, when an around advice executes, it pre-
cludes the execution of all other advices of lower

Aspect corresponding to Error filter err Comments

privileged aspect A_err {
object around (): … { …} // corresponds to err_1
object around (A obj): // corresponds to err_2
 (call(* * A.m1(..)) || call(* * A.mb1(..)) ||

call(* * A.mb2(..)) || call(* * A.mc1(..)) ||call(* * A.mc2(..)) ||
call(* * A.mc3(..)) ||call(* * A.md1(..))) &&target(obj) {

if ((! list.inhibited(tjp, obj, “filterset”)&&
 (! list.inhibited(tjp, obj, “A_err”)) &&
 cd2()){ list.inhibit(tjp, obj, “A_err”);
 }

return proceed();
}
object around (): … { …} // corresponds to err_3
object around (A obj): call(* * A.*(..)) && target(obj) {

if (!list.inhibited(tjp, obj, “A_err”)) raiseException();
else { list.removeInhibition(tjp, obj, “A_err”);

return proceed();}
} }

The aspect name is composed of the kernel class name and the filter
name.

Anonymous point cuts corresponding to the matching part.
This around advice tests if all the aspects corresponding to the filter set
have not been inhibited by a previous aspect, that advices of A_err
have not been inhibited by a previous advice and that cd2() is true. If
so, the call is accepted and the remaining advices in A_err are
inhibited. The proceed() allows the call to pass to other advices. tjp
stands for thisJoinPoint.

At the end of the aspect, an advice is added to raise an exception if the
call has not been accepted by the previous advices in A_err. If the call
has been accepted, the inhibition element of this aspect is removed from
the list. The proceed() allows the call to pass to advices of next
aspect.

Listing 7. Error filter transformation template.

Aspect corresponding to Meta filter act Comments

privileged aspect A_act {
object around(): … { …} // corresponds to act_1
object around(A obj, paramDecl): // corresponds to act_2
 (call(* * A.mb1(..)) && target(obj) &&

args(paramList) {
if ((! list.inhibited(tjp, obj, “filterset”)&&

 (! list.inhibited(tjp, obj, “A_act”))) && cd3(){
 list.inhibit(tjp, obj, “filterset”);
 list.inhibit(tjp, obj, “A_act”);
 …
 … // inline here instruction of md1()
 } else return proceed();
 }
}
object around(): … { …} // corresponds to act_3
}
/* paramDecl stands for a parameter declaration list and
paramList for a list of parameters */

The second advice tests if A_act and aspects corresponding to the filter set
have not been inhibited and if cd3() is true. If so, aspects corresponding to this
filter and filter set are inhibited.
During the transformation, statements of the meta object method md1() are
changed and inlined within the advice body. Recall that there are three special
statements send, reply and continue that can be applied to a reified message
mes within meta object method. Occurrences of ‘mes.continue()’ statement
are replaced with :

List.removeInhibition(tjp, obj,”filterset”);
return proceed(paramList);

Occurrences of ‘mes.reply(expression)’ are replaced with:
return expression

Occurences of ‘variable = mes.send()’ are replaced with:
List.removeInhibition(tjp, obj,”filterset”);
variable = proceed(paramList)

Notice that access to the arguments paramList can be done directly since they
are not reified. Removing the filter set inhibition allows the call to pass through
aspects corresponding to the remaining filters.
Within the advice, any reference to a field or a method of the meta object is
prefixed by ‘this.ext1.’

Listing 8. Meta filter transformation template.

From Composition Filters to AspectJ: A Platform Specific Model Transformation 127

Aspect corresponding to Wait filter sync Comments

privileged aspect A_sync {
private Lock A.l_cd4_cd3;
private Lock A.l_cd4;

object around (A obj): // corresponds to sync_1
call(* * A.m2(..))&& target(obj) {

if ((! list.inhibited(tjp, obj, “filterset”) {
while (!(cd4() && cd3())) l_cd4_cd3.block();

 }
return proceed();

}
object around (): … { …}// corresponds to sync_2
…
after (): set(* A.field1) || set(* A.field2) …{
 l_cd4_cd3.wakeup();
}
after (): set(* A.field2) || set(* A.field4) …{
 l_cd4.wakeup();
}
}

The overall tran
synchronized me
threads using the
statement.
We attach a lock
Each call to a m
condition and blo
At each iteration
on any of the v
condition again.
allows the advice

Notice that no f in each advice concern
different calls (see grouping wait filter elements normalization rule).
In the same way, the filter set is not inhibited since wait filters do not alter the message
flow but just delay it.
field1, field2, etc are assumed to be the fields that appear in the method bodies of cd4()
and cd3(). Notice that these fields can be determined by parsing cd4 and cd3 condition
methods.

sformation consists of adding a new class called Lock, having two
thods block() and wakeup() whose role is respectively to block
 JAVA wait() statement and resume them using the JAVA notifyAll()

 to each condition or conjunction of conditions in a filter element.
essage that matches a FE in MSPList causes the thread to test the
ck repeatedly unltil the condition becomes true.
, the thread is resumed by an after advice that captures set join point
ariables composing the condition. Then the thread evaluates the
When a thread leaves the while loop, it executes proceed() which
s in the remaining aspects to alter the message flow.

ilter inhibition is necessary since pointcuts

l l
Listing 9. Wait filter transformation template.

Aspect corresponding to Dispatch filter deleg Comments

privileged aspect A_deleg {
// corresponds to d

am // corresponds to deleg_2
object around(): … { …} eleg_1
object around(A obj, par Decl):

call(* * A.mb1(..)) && target(obj) && args(paramList){

;

bje ramDecl): // corresponds to deleg_4

if ((! list.inhibited(tjp, obj, “filterset”) && cd1()) {
list.removeInhibition(tjp, obj, “filterset”);
return this.int3.mc2(paramList)

 } else return proceed();
}
…
o ct around(A obj, pa

call(* * A.m2(..)) && target(obj) && args(paramList){
ist.inhibit(tjp, obj, ilterset”);

An around advice inhibits all the remaining around
advices unless proceed is used. Thus two cases are

e is to be

d case, when message is dispatched
with a new

selector, we remove the inhibition element which is
no longer needed and then delegate the message. The if ((! list.inhibited(tjp, obj, “filterset”) && cd2()) l “f

return proceed();
}… }

possible. In the first, when the messag
dispatched to the kernel object with the same selector,
we use proceed() to let the message continue but, at
the same time we need to inhibit all the remaining
advices, that’s why we use list.inhibit(tjp,
obj, “filterset”).
In the secon to
internal/external objects or the kernel class

remaining advices are implicitly inhibited since we do
not use proceed().

l l
Listing 10. Dispatch filter transformation template.

precedence concerned by the same join points,
except when proceed�� is used. In this case,
the next advice with the highest precedence is
executed. In our transformation, we rely on
the ASPECTJ inhibition whenever possible and
use proceed�� whenever we want to avoid it.
In listings 7 to 10, we take a closer look to the
transformation templates of each filter type. For
clarity sake, we use the normalized filter exam-
ples of listing 5 rather than a specific formal
template language.

Finally, to enforce constraint �3 , we add a spe-
cial aspect called kernel Final with only one
advice that captures any call to the kernel class
and raises an exception unless it is inhibited �see
listing 11�.

aspect A_Final {
 object around(A obj): call(* * A.*(..)) && target(obj) {

if ((! list.inhibited(tjp, obj, “filterset”) raiseException();
else { list.removeInhibition(tjp, obj, “filterset”);

 return proceed(); }
 }} /* raiseException is a method that throws a
NotDispatched exception */

Listing 11. Contents of the kernel final aspect.

5.4. The Syntax-directed Transformation

The second process in the transformation con-
sists of translating the normalized CF models
into ASPECTJ. For this sake, we use the syntax-
directed translation approach described in �1�

128 From Composition Filters to AspectJ: A Platform Specific Model Transformation

and the transformation templates given in 5.3.
Formally, a syntax-directed translation schema
is a 5-tuple T � �N, Σ, Δ, R, S� where:
– N is a finite set of nonterminal symbols
– Σ is a finite input alphabet
– Δ is a finite output alphabet
– R is a finite set of pairs of rules having the form �A� α ,

A� β � where the first is a derivation rule and the second is
the corresponding translation element. A�N, α ��N�Σ�*
and β ��N�Δ�*. α and β are strings composed of terminals
and nonterminals so that the nonterminals in β are a permu-
tation of the nonterminals in α . � is the derivation symbol
and � is the translation symbol.

– S is a distinguished nonterminal in N called start symbol

When transforming a model M	 �having MM	 as
a metamodel� to another model M
 �with MM
 as
a metamodel�, the syntax-directed translation
is used as a method of transforming derivation
trees in the input metamodel MM	 into deriva-
tion trees in the output metamodel MM
. Given
an input sentence x, a translation for x is ob-
tained by constructing a derivation tree for x,
then transforming the derivation tree into a tree
in MM
, and then taking the frontier of the output
tree as a translation for x. The transformation
of a normalized CF model can be characterized
by the set of rules given in Table 6, which in-
clude the structure transformation schema and
the templates. Sets N, Σ and Δ are defined as
follows.
– N � fENTITY, REMAINDER, CFINTERFACE, CD, VD, � � �g :

all words given in small capital letters
– Σ � fclass, interface, internals, conditions, ��,�,

(,), � � �g : all keywords and terminal symbols used in CF are
given in bold typeface

– Δ � fclass, interface, aspect, privileged, pointcut, before,
after, around, inhibited, obj, (,), � � �g : all keywords and
terminal symbols used in ASPECTJ are given in bold typeface

In Table 6, strings in italic typeface are in-
serted, as they are, in the generated model and
‘ ’ indicates a concatenation. The notation

Instead of Insert

$Precedence Precedence declaration statement
$LastAdvice Advice of listing 11, with $Kernel instead of A
$EndFilterError The last advice of listing 7 with $Kernel instead of A
$EndFilterWait After advices of listing 9 with $Kernel instead of A

and variables used in filter element conditions instead
of field1, field2, …

$Kernel The name of the kernel class
$ParamDecl List of parameters of the concerned method along

with their types
$ParamList List of parameters of the concerned method
$MetaMethod The body of the corresponding meta method after its

transformation according to listing 8
$Locks As many lock declarations as conditions in the

considered wait filter
$LockName The name of the lock corresponding to the condition
$Filter The name of the corresponding filter

Table 5. Directives and their corresponding codes.

A� fα j βg and A� fχ j δg represents two
rules �A� α , A� χ� and �A� β , A � δ �.
Words beginning by $ are directives used to lo-
calize positions in the translated model where
additional statements are inserted. The state-
ments corresponding to each directive are given
in Table 5.

5.5. Scope of the Transformation

Concerning the transformation of the CF mod-
els to ASPECTJ, we have proposed an approach
that covers all CF interface constructs includ-
ing four filter types. Currently, the Realtime
filter type is not supported since ASPECTJ does
not provide specific concepts to deal with tim-
ing constraints. Building a real time executive
subsystem in ASPECTJ is possible, but it will be
mainly based on JAVA.

CF has rich syntactical forms to specify filters.
Even if some forms have not been considered in
the given examples, they can be normalized and
the same transformation applied. Output filters
are not covered by the transformation for the
reasons given in 2.2, but we expect that most of
the proposed transformation can be reused. Su-
perimposition, which is a technique introduced
in CF to deal with systemic crosscutting �see �6�
for more details�, is not covered. This is due to
the lack of complete and well documented se-
mantics and the lack of an implementation that
covers CF features and superimposition in the
same time. The last implementation of CF �i.
e. extension of the Microsoft DotNet platform�
does not support superimposition �6�.

6. Related Work

Although AOP and MDA are powerful para-
digms, they are still relatively new and little
has been done in relating them. Most related
work deal with model transformations or the
role of AOP in MDA. However, to the best of
our knowledge, there is no attempt in transform-
ing one AOP approach using another within the
MDA context and even outside it. In the follow-
ing, we first present a work on the taxonomy
of model transformation approaches, then we
present works dealing with the transformation
of AOP approaches and finally we present some
works dealing with the role of AOP in MDA.

From Composition Filters to AspectJ: A Platform Specific Model Transformation 129

Production rule Corresponding translation element
S ENTITY REMAINDER S ENTITY REMAINDER

REMAINDER ENTITY REMAINDER REMAINDER ENTITY REMAINDER

ENTITY JAVACLASS | JAVAINTERFACE |CFINTERFACE ENTITY JAVACLASS | JAVAINTERFACE | CFINTERFACE

CFINTERFACE class IDENTIFIER interface { INTERNALSPART
EXTERNALSPART CONDITIONSPART METHODSPARTS
INPUTFILTERPART }

CFINTERFACE aspect IDENTIFIER_Introd { $Precedence INTERNALSPART
EXTERNALSPART CONDITIONSPART METHODSPARTS } INPUTFILTERPART
aspect IDENTIFIER_Final {$LastAdvice }

INTERNALSPART internals VARIABLEDECL INTERNALSPART VARIABLEDECL

VARIABLEDECL VD | VD; VARIABLEDECL VARIABLEDECL VD | VD; VARIABLEDECL

VD public TYPEIDENTIFIER IDENTIFIER VD public TYPEIDENTIFIER. IDENTIFIER

EXTERNALSPART externals VARIABLEDECL EXTERNALSPART VARIABLEDECL

CONDITIONSPART conditions CONDITIONDECL CONDITIONSPART CONDITIONDECL

CONDITIONDECL CD | CD; CONDITIONDECL CONDITIONDECL CD | CD; CONDITIONDECL

CD private RETTYPE IDENTIFIER () { METHODBODY } CD public RETTYPE IDENTIFIER () { METHODBODY }
METHODSPART methods METHODDECL METHODSPART METHODDECL

METHODDECL MD | MD; METHODDECL METHODDECL MD | MD; METHODDECL

MD public RETTYPE IDENTIFIER () MD public RETTYPE IDENTIFIER () { }
INPUTFILTERSPART inputfilters FILTERDECL INPUTFILTERSPART FILTERDECL

FILTERDECL FD | FD FILTERDECL FILTERDECL FD | FD FILTERDECL

FD IDENTIFIER : FILTERSPECIF FD privileged aspect $Kernel_IDENTIFIER { FILTERSPECIF

FILTERSPECIF
 error = { ERRORFEDECL } | meta = { METAFEDECL } |

 wait = { WAITFEDECL } | dispatch = { DISPFEDECL }

FILTERSPECIF
ERRORFEDECL $EndFilterError } | METAFEDECL } |

$Locks WAITFEDECL $EndFilterWait } | DISPFEDECL }

ERRORFEDECL ERRORFE| ERRORFE, ERRORFEDECL ERRORFEDECL ERRORFE | ERRORFE ERRORFEDECL

ERRORFE CONDITION LISTSELECTOR ERRORFE object around ($Kernel obj): LISTSELECTOR &&target(obj) { if
((! list.inhibited(thisJoinPoint, obj, “filterset”)&&
 (! list.inhibited(thisJoinPoint, obj, “$Kernel_$Filter”)) && CONDITION){
list.inhibit(thisJoinPoint, obj, “$Kernel_$Filter”); } return proceed(); }

LISTSELECTOR SELECT | {LS} LISTSELECTOR SELECT | (LS)
LS SELECT | SELECT, LS LS SELECT | SELECT, LS
SELECT SELECTOR SELECT call(* * $KerneL.SELECTOR (..)
METAFEDECL METAFE | METAFE, METAFEDECL METAFEDECL METAFE | METAFE METAFEDECL

METAFE
 CONDITION SELECTOR (TARGET.NEWSELECTOR)

METAFE object around($Kernel obj, $ParamDecl):
 (call(* * $Kernel.SELECTOR(..)) && target(obj) && args($ParamList) {
 if ((! list.inhibited(thisJoinPoint, obj, “filterset”)) &&
 (! list.inhibited(thisJoinPoint, obj, “$Kernel_$Filter”))) && CONDITION {
list.inhibit(thisJoinPoint, obj, “filterset”);
list.inhibit(thisJoinPoint, obj, “$Kernel_$Filter”); $MetaMethod }

 else return proceed(); } }
WAITFEDECL WAITFE | WAITFE, WAITFEDECL WAITFEDECL WAITFE | WAITFE WAITFEDECL

WAITFE COND SELECTOR WAITFE object around ($Kernel obj): call(* * $Kernel.SELECTOR(..))
 && target(obj) { if ((! list.inhibited(thisJoinPoint, obj, “filterset”) {
 while (! COND) $LockName.block();} return proceed();}

COND CONDITION | {LC} COND CONDITION | (LC)
LC CONDITION | CONDITION, LC LC CONDITION | CONDITION && LC
DISPFEDECL DISPFE | DISPFE, DISPFEDECL DISPFEDECL DISPFE | DISPFE DISPFEDECL

DISPFE

CONDITION SELECTOR (inner.SELECTOR) |
 CONDITION SELECTOR (inner.NEWSELECTOR) |

 CONDITION SELECTOR (TARGET.NEWSELECTOR)

DISPFE object around($Kernel obj, $ParamDecl):
 call(* * $KerneL.SELECTOR (..)) && target(obj) && args($ParamList) { if
((! list.inhibited(thisJoinPoint, obj, “filterset”) && CONDITION)

list.inhibit(thisjoinpoint, obj, “filterset”); return proceed(); } |
{ list.removeInhibition(thisJoinPoint, obj, “filterset”);
 return this.NEWSELECTOR ($ParamList);} else return proceed(); } |
{ list.removeInhibition(thisJoinPoint, obj, “filterset”); return
this.TARGET.NEWSELECTOR ($ParamList);} else return proceed(); }

CONDITION true | IDENTIFIER () CONDITION true | IDENTIFIER ()
JAVACLASS, JAVAINTERFACE, METHODBODY have the same
syntax as those of JAVA. IDENTIFIER, TYPEIDENTIFIER,
RETTYPE, SELECTOR, NEWSELECTOR, TARGET are lexical
variables

JAVACLASS, JAVAINTERFACE, METHODBODY are kept unchanged
IDENTIFIER, TYPEIDENTIFIER, RETTYPE, SELECTOR, NEWSELECTOR, TARGET
are lexical variables

Table 6. CF to ASPECTJ transformation rules.

130 From Composition Filters to AspectJ: A Platform Specific Model Transformation

Concerning model transformation approaches,
a taxonomy is provided in �16�. The purpose
of this taxonomy is to give an overview of the
research field of model transformation and to
present a framework for comparing and com-
bining transformation tools, techniques and for-
malisms. The authors identify a set of crite-
ria to characterize a transformation approach
such as: number of source and target mod-
els, technical space of the transformation �e.
g., MDA, XML�, endogenous�exogenous �i.
e. transformation within the same language or
between languages�, horizontal�vertical �i. e.
transformation within the same level of ab-
straction or across levels of abstraction�, syn-
tactic�semantic �i. e. simple syntactical rewrit-
ing or complex transformation taking semantics
into account�, etc. According to some of these
taxonomy criteria, our transformation approach
can be characterized as a horizontal exogenous
semantic transformation in the MDA and AOP
technical space.

Concerning the transformation ofAOPapproach-
es, most works deal with the weaving of busi-
ness logic and concerns to get a target program
in a pure object-oriented language. This is espe-
cially the case of CF, ASPECTJ and hyperspace
approach �HyperJ� for which the weaving pro-
duces a JAVA program �see �11� and the special
issue of CACM �9��. In contrast, our work deals
with the transformation of an AOP approach
�CF� using another �ASPECTJ�. Although this
can be considered as a special weaving, it is,
however, achieved under the strong constraint
of preserving business logic classes unaltered
�i. e. preserving the concerns traceability�.

Concerning the role of AOP in MDA, the work
described in �21� advocates the fact that AOP
addresses a fundamental problem faced by the
MDA: how to define separate models for con-
cerns and business logic, combine thosemodels,
and finally generate applications from them? In
the same way, we find in �10� a presentation
showing a particular integration between Cos-
mic and C-SAW. The former is a tool suite, con-
sisting in modeling languages and platform spe-
cific generative tools, dedicated to distributed
real-time and embedded systems. The latter
is an aspect model weaver which is applied
to Cosmic models to transform them according
to the characteristics of crosscutting modeling
concerns. The authors highlight the capability
of the resulting environment to support quick
insert�remove of new properties and policies

into a model without extensive manual adapta-
tion. Compared to these attempts, our work, in
its current state, does not address the problems
that may arise when integrating AOP and MDA,
however, we suppose that anAOPPSMcontains
business logic and concerns that have been de-
rived from a set of PIMs without constraining
their forms or contents.

7. Conclusion

Both aspect orientation and MDA are power-
ful paradigms whose combination is a promis-
ing issue for software development and mainte-
nance. In this article we focused on the trans-
formation of CF models into ASPECTJ models
considered as two PSMs. The strength of our
work lies in two points: the first is that we pro-
pose a syntax-directed transformation for which
the automated tool, that constructs and traverses
derivation trees, is easily implemented, second
is the exclusive use of concepts that extend
JAVA in ASPECTJ. This avoids our transforma-
tion to be a simple weaving that produces a JAVA
model. The focus on how aspect-oriented con-
cepts are related enhances the abstraction level
of the transformation and preserves traceability
of concerns between the two models.

In our future work, we will consider the in-
verse transformation �i. e. ASPECTJ to CF�,
along with transformations between other SOC
approaches. Ultimately, we will exploit these
transformations to deduce high level aspect-
oriented concepts that are platform independent.

8. Acknowledgment

We would like to thank the anonymous refe-
rees whose comments helped us to significantly
improve the first version of this article.

References

�1� A. V. AHO ET AL, Compilers. Principles, Techniques
and Tools, Addison Wesley, 1986.

�2� M. AKSIT, B. TEKINERDOGAN, Solving the Mod-
eling Problems of Object-Oriented Languages by
Composing Multiple Aspects Using Composition
Filters, AOP’98 workshop position paper, 1998.
http���trese�cs�utwente�nl�composition
filters�

From Composition Filters to AspectJ: A Platform Specific Model Transformation 131

�3� M.AKSIT,B. TEKINERDOGAN,Aspect-Oriented Pro-
gramming Using Composition Filters, ECOOP’98
Workshop Reader, Springer Verlag, July 1998.
http���trese�cs�utwente�nl�composition
filters�

�4� L. BERGMANS, Composing Concurrent Objects,
Ph.D. thesis, University of Twente, 1994. http�
��trese�cs�utwente�nl�composition
filters�

�5� BERGMANS L. , M. AKSIT, Composing Crosscutting
Concerns Using Composition Filters, Communica-
tions of the ACM, Vol. 44, No. 10, pp. 51-57,
October 2001.

�6� L. BERGMANS, M. AKSIT, Principles and De-
sign Rationale of Composition Filters, In Aspect-
Oriented Software Development, Addison-Wesley,
2004. http���trese�cs�utwente�nl�publi�
cations�files����	Chapter
CompFilts�pdf

�7� J. BÉZIVIN, From Object composition to Model
Transformation with the MDA, in proceeding of
TOOLS’USA, Vol. IEEE TOOLS-39, Santa Bar-
bara, August 2001.

�8� A. BROWN, An introduction to Model-Driven Ar-
chitecture, Part I: MDA and today’s systems,
http���www����ibm�com�developerworks�
rational�library������html

�9� T. ELRAD ET AL., Aspect-Oriented Programming,
Special theme, Communications of the ACM, Vol.
44, No. 10, October 2001.

�10� J. GRAY, A. GOKHALE, Concern Separation in
Model-Integrated Computing, OMG’s First Annual
Model-IntegratedComputing Workshop, Arlington,
VA USA, October 12–15, 2004.

�11� E. HILSDALE, J. HUGUNIN, Advice Weaving in AS-
PECTJ, 3rd International Conference on Aspect-
Oriented Software Development, pp. 26–35, April
2004.

�12� G. KICZALES ET AL., Aspect-Oriented Program-
ming, in Proc. of ECOOP’97, Lecture Notes in
Computer Science Vol. 1241, pp. 220–242, 1997.
http���eclipse�org�ASPECTJ

�13� G. KICZALES ET AL, An Overview of ASPECTJ, in
Proc. of ECOOP, Springer-Verlag, 2001.

�14� A. KLEPPE ET AL, MDA explained: The Model-
Driven Architecture Practice and Promise, Addison
Wesley, 2003.

�15� R. LADDAD, ASPECTJ in action: Practical Aspect-
Oriented Programming, Manning Publications Co.,
2003.

�16� T. MENS, P. VAN GORP, A Taxonomy of Model Trans-
formation, International Workshop on Graph and
Model Transformation, Tallinn, Estonia, Septem-
ber 28, 2005. ftp���ftp�umh�ac�be�pub�
ftp infofs�����GraMOT�taxonomy�pdf

�17� J. MILLER, J. MUKERJI, Model Driven Architec-
ture (MDA), Document number ormsc/2001-07-
01, Architecture Board ORMSC, July 9, 2001.
http���www�omg�org�mda�presentations�htm

�18� J. MILLER, J. MUKERJI, MDA Guide version 1.0.1,
OMG, June 2003. http���www�omg�org�mda

�19� Meta Object Facility Specification, Version
1.4, Object Management Group, April 2002.
http���www�omg�org�mda

�20� H. OSSHER, P. TARR, Multi-Dimensional Separa-
tion of Concerns using Hyperspaces. IBM Research
Report 21452, April, 1999.

�21� D. WAMPLER, The Role of Aspect-Oriented Pro-
gramming in OMG’s Model-Driven Architec-
ture, Aspect Programming, Inc., http���www�as�
pectprogramming�com�papers� Last
visited August ����

Received: January, 2005
Revised: August, 2005

Accepted: December, 2005

Contact address:

Djamel Meslati
Laboratoire de Recherche en Informatique

Université de Annaba
BP 12

23000, Annaba
Algérie

e-mail: meslati djamel
yahoo�com

Mohamed T. Kimour
Laboratoire de Recherche en Informatique

Université de Annaba
BP 12

23000, Annaba
Algérie

e-mail: kimour
yahoo�com

Saı̈d Ghoul
Computer Science Department

Philadelphia University
Sweilah PoBox 1101

Amman
Jordan

e-mail: sghoul
philadelphia�edu�jo

DJAMEL MESLATI is the head of the research group on evolution and
reuse of software systems. His research interests include software de-
velopment and evolution methodologies and separation of concerns.

MOHAMED T. KIMOUR is an assistant professor at the department of
computer science at the University of Annaba. His research interests
include requirements engineering and model-based development of em-
bedded real-time systems.

SAÏD GHOUL is a professor at the department of computer science at
the Philadelphia University in Amman. His research interests include
software process methodologies and programming languages.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /Unknown

 /Description <<
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000500044004600200064006f007400e900730020006400270075006e00650020007200e90073006f006c007500740069006f006e002000e9006c0065007600e9006500200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200061006d00e9006c0069006f007200e90065002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /JPN <FEFF3053306e8a2d5b9a306f30019ad889e350cf5ea6753b50cf3092542b308000200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e0020006d00690074002000650069006e006500720020006800f60068006500720065006e002000420069006c0064006100750066006c00f600730075006e0067002c00200075006d002000650069006e0065002000760065007200620065007300730065007200740065002000420069006c0064007100750061006c0069007400e400740020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d00610020007200650073006f006c007500e700e3006f00200064006500200069006d006100670065006d0020007300750070006500720069006f0072002000700061007200610020006f006200740065007200200075006d00610020007100750061006c0069006400610064006500200064006500200069006d0070007200650073007300e3006f0020006d0065006c0068006f0072002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e0030002000650020007300750070006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f8006a006500720065002000620069006c006c00650064006f0070006c00f80073006e0069006e006700200066006f00720020006100740020006600e50020006200650064007200650020007500640073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e0020006d00650074002000650065006e00200068006f0067006500720065002000610066006200650065006c00640069006e00670073007200650073006f006c007500740069006500200076006f006f0072002000650065006e0020006200650074006500720065002000610066006400720075006b006b00770061006c00690074006500690074002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006e0020006d00610079006f00720020007200650073006f006c00750063006900f3006e00200064006500200069006d006100670065006e00200070006100720061002000610075006d0065006e0074006100720020006c0061002000630061006c006900640061006400200061006c00200069006d007000720069006d00690072002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f0069006400610061006e0020006c0075006f006400610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e002000740075006c006f0073007400750073006c00610061007400750020006f006e0020006b006f0072006b006500610020006a00610020006b007500760061006e0020007400610072006b006b007500750073002000730075007500720069002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a00610020004100630072006f006200610074002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000500044004600200063006f006e00200075006e00610020007200690073006f006c0075007a0069006f006e00650020006d0061006700670069006f00720065002000700065007200200075006e00610020007100750061006c0069007400e00020006400690020007300740061006d007000610020006d00690067006c0069006f00720065002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f80079006500720065002000620069006c00640065006f00700070006c00f80073006e0069006e006700200066006f00720020006200650064007200650020007500740073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e00740020006d006500640020006800f6006700720065002000620069006c0064007500700070006c00f60073006e0069006e00670020006f006300680020006400e40072006d006500640020006600e50020006200e400740074007200650020007500740073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 /GRE <FEFF03A703C103B703C303B903BC03BF03C003BF03B903AE03C303C403B5002003B103C503C403AD03C2002003C403B903C2002003C103C503B803BC03AF03C303B503B903C2002003B303B903B1002003BD03B1002003B403B703BC03B903BF03C503C103B303AE03C303B503C403B5002003AD03B303B303C103B103C603B10020005000440046002003BC03B5002003C503C803B703BB03CC03C403B503C103B7002003B103BD03AC03BB03C503C303B7002003B503B903BA03CC03BD03C903BD002003B303B903B1002003B203B503BB03C403B903C903BC03AD03BD03B7002003C003BF03B903CC03C403B703C403B1002003B503BA03C403CD03C003C903C303B703C2002E0020039C03C003BF03C103B503AF03C403B5002003BD03B1002003B103BD03BF03AF03BE03B503C403B5002003C403B1002003AD03B303B303C103B103C603B10020005000440046002003BC03AD03C303C9002003C403BF03C50020004100630072006F006200610074002003BA03B103B9002000520065006100640065007200200035002E0030002003BA03B103B9002003BC03B503C403B103B303B503BD03AD03C303C403B503C103C903BD002003B503BA03B403CC03C303B503C903BD002E>
 /ARA <FEFF06270633062A062E062F0645002006470630064700200627064406360648062706280637002006440625064606340627062100200648062B06270626064200200050004400460020062806230639064406490020062F06420629002006440644063506480631062900200645064600200623062C06440020062A062D0633064A06460020062C0648062F062900200627064406370628062706390629002E0020064A064506430646002006440648062B06270626064200200050004400460020062306460020064A062A064500200641062A062D064706270020064506390020004100630072006F0062006100740020064800520065006100640065007200200035002E003000200648062706440623062D062F062B002E>
 /CZE <FEFF005400610074006F0020006E006100730074006100760065006E00ED00200070006F0075017E0069006A007400650020006B0020007600790074007600E101590065006E00ED00200064006F006B0075006D0065006E0074016F0020005000440046002000730020007600790161016100ED006D00200072006F007A006C006901610065006E00ED006D0020006F006200720061007A016F002C002000610062007900730074006500200064006F007300E10068006C00690020007600790161016100ED0020006B00760061006C0069007400790020007400690073006B0075002E00200044006F006B0075006D0065006E007400790020005000440046002000620075006400650020006D006F017E006E00E90020006F007400650076015900ED007400200076002000700072006F006700720061006D0065006300680020004100630072006F00620061007400200061002000520065006100640065007200200035002E0030002000610020006E006F0076011B006A016100ED00630068002E>
 /HUN <FEFF0045007A0065006B006B0065006C0020006100200062006500E1006C006C00ED007400E10073006F006B006B0061006C00200068006F007A0068006100740020006C00E9007400720065002000610020006A006F006200620020006E0079006F006D00740061007400E1007300690020006D0069006E0151007300E90067002000E9007200640065006B00E900620065006E0020006D00610067006100730061006200620020006B00E9007000660065006C0062006F006E007400E1007300FA002000500044004600200064006F006B0075006D0065006E00740075006D006F006B00610074002E00200041002000500044004600200064006F006B0075006D0065006E00740075006D006F006B00200061007A0020004100630072006F006200610074002000E9007300200061002000520065006100640065007200200035002E0030002C00200069006C006C00650074007600650020006B00E9007301510062006200690020007600650072007A006900F3006900760061006C0020006E00790069007400680061007400F3006B0020006D00650067002E>
 /POL <FEFF0055017C0079006A0020007400790063006800200075007300740061007700690065014400200064006F002000740077006F0072007A0065006E0069006100200064006F006B0075006D0065006E007400F3007700200050004400460020007A002000770079017C0073007A010500200072006F007A0064007A00690065006C0063007A006F015B0063006901050020006F006200720061007A006B00F30077002C0020007A0061007000650077006E00690061006A0105006301050020006C006500700073007A01050020006A0061006B006F015B0107002000770079006400720075006B00F30077002E00200044006F006B0075006D0065006E0074007900200050004400460020006D006F0067010500200062007901070020006F007400770069006500720061006E00650020007A006100200070006F006D006F00630105002000700072006F006700720061006D00F300770020004100630072006F0062006100740020006F00720061007A002000520065006100640065007200200035002E00300020006C007500620020006E006F00770073007A007900630068002E>
 /RUS <FEFF04180441043F043E043B044C04370443043904420435002004340430043D043D044B04350020043F043004400430043C043504420440044B00200434043B044F00200441043E043704340430043D0438044F0020005000440046002D0434043E043A0443043C0435043D0442043E04320020044100200431043E043B0435043500200432044B0441043E043A0438043C00200440043004370440043504480435043D04380435043C00200441002004460435043B044C044E0020043F043E043B044304470435043D0438044F0020043B04430447044804350433043E0020043A04300447043504410442043204300020043F04350447043004420438002E0020005000440046002D0434043E043A0443043C0435043D0442044B0020043E0442043A0440044B04320430044E04420441044F002004320020043F04400438043B043E04360435043D0438044F04450020004100630072006F00620061007400200438002000520065006100640065007200200035002E003000200028043800200431043E043B043504350020043F043E04370434043D04380445002004320435044004410438044F04450029002E>
 /TUR <FEFF004400610068006100200069007900690020006200610073006B01310020006B0061006C006900740065007300690020006900E70069006E002000640061006800610020007900FC006B00730065006B0020006700F6007200FC006E007400FC002000E700F6007A00FC006E00FC0072006C00FC011F00FC006E0065002000730061006800690070002000500044004600200064006F007300790061006C0061007201310020006F006C0075015F007400750072006D0061006B00200061006D0061006301310079006C006100200062007500200061007900610072006C0061007201310020006B0075006C006C0061006E0131006E002E002000500044004600200064006F007300790061006C0061007201310020004100630072006F006200610074002000520065006100640065007200200035002E003000200076006500200073006F006E00720061007301310020007300FC007200FC006D006C0065007200690079006C00650020006100E70131006C006100620069006C00690072002E>
 /HEB (Use these settings to create PDF documents with higher image resolution for improved printing quality. The PDF documents can be opened with Acrobat and Reader 5.0 and later.)
 /ENU <FEFF005500730065002000740068006500730065002000730065007400740069006e0067007300200074006f0020006300720065006100740065002000500044004600200064006f00630075006d0065006e0074007300200077006900740068002000680069006700680065007200200069006d0061006700650020007200650073006f006c007500740069006f006e00200066006f007200200069006d00700072006f0076006500640020007000720069006e00740069006e00670020007100750061006c006900740079002e0020005400680065002000500044004600200064006f00630075006d0065006e00740073002000630061006e0020006200650020006f00700065006e00650064002000770069007400680020004100630072006f00620061007400200061006e0064002000520065006100640065007200200035002e003000200061006e00640020006c0061007400650072002e>
 >>
>> setdistillerparams
<<
 /HWResolution [300 300]
 /PageSize [595.276 841.890]
>> setpagedevice

