
Journal of Computing and Information Technology - CIT 11, 2003, 1, 41–54 41

Feature Extraction and Classification
from Boundary Representation

David Podgorelec and Borut Žalik
Faculty of Electrical Engineering and Computer Science, University of Maribor, Slovenia

In the paper, an algorithm for explicit feature extraction
and classification from boundary representation is pre-
sented. It operates in two phases: the topological and the
geometrical. While the topological part is just an adapta-
tion of an already known algorithm, the geometrical part
represents an original and new solution. In this part, the
algorithm manipulates with features filled by material
and the empty ones. The algorithm classifies extracted
features into eight classes. It successfully and efficiently
handles voids, nested features and many cases of mutual
feature intersections. The time complexity depends on
input data, and never exceeds O�n2�.

Keywords: geometric �form� features, feature recog-
nition, geometric modelling, boundary representation,
CAD.

1. Introduction

Feature–based design of parts has been first
introduced to facilitate NC–programming and
computer–aided process planning �CAPP�while
all other representations have not offered satis-
factory level of abstraction. Beside to the ge-
ometrical and topological data provided by a
solid model, some explicit information on ge-
ometric features of designed objects are nec-
essary. The geometric feature �form feature,
shape–based feature or simply the feature� is
a set of geometric and topological entities with
some context–dependent functionalmeaning �1�.
A three–dimensional object can be described as
a set of geometric features organised in a hi-
erarchical structure. While the final shape of
a product is usually not known in detail in the
design phase already, automatic procedures for
feature recognition in the CAD system have
to be provided. The feature recognition is exe-
cuted in two steps:

� feature extraction is based on procedures
that recognise features and extract them from
themodel. Concerning user’s requests, some
algorithms are able to remove the features
from the model, but more commonly, the
features are being completed with missing
elements to valid geometric bodies.

� feature classification classifies extracted fe-
atures into classes, for example: protrusions,
depressions, bridges, handles, and through–
holes.

Different authors have proposed various
methods able to recognise different types of
features. Some of them �2� have studied how
to transform the CSG model into a presen-
tation convenient for feature recognition, but
the majority of authors still project their algo-
rithms on boundary representation. Ferreira and
Hinduja �3� have described the method based
on convex hulls of particular faces. Most of
the form–features on 2.5D components can be
recognised, and the method can be extended
to handle scenes with non–planar faces, but it
does not recognise voids. Sandiford and Hin-
duja again �4� presented an algorithm, which
uses the concavity of faces, edges and vertices
to detect features and their intersections. Sim-
ple rules have been developed, which allow in-
tersections of quadric surfaces. Intersections
of faces adjacent to the feature faces are used to
create new edges, and these are employed to cre-
ate totally new construction faces. These faces
are then used to complete the boundary of the
feature. An interesting approach was proposed
by Meeran and Taib �5�. It recognises isolated,

42 Feature Extraction and Classification from Boundary Representation

nested and interacting features from 2D ortho-
graphic projections through a two–stage pro-
cess of profile searching and feature completion.
De Floriani �6� paid more attention to topolog-
ical algorithms. She has described the method
for extraction of particular feature types from
the relational boundary model called the gener-
alised edge–face graph �GEFG�. The algorithm
is based on decomposition of GEFG into bicon-
nected and triconnected subgraphs, and it effi-
ciently extracts simple topological shapes that
define one or more rings. De Floriani and Bruz-
zone �7� have also described another topologi-
cal algorithm based on ring identification and
marking biconnected components in so–called
symmetric boundary graph. Each shell of ob-
ject’s boundary is described with collections of
faces, edges and vertices. Six different relations
between these entity types are employed. In
this way, later geometrical classification based
on concave edges of rings is importantly facili-
tated.

Falcidieno and Giannini �1� have extended fea-
ture recognition with the third step. Feature
organisation connects extracted features into a
hierarchical feature graph. In this way, repre-
sentation of assemblies of parts is supported.
Namely, the majority of engineering problems
have to be solved by assemblies rather than by
single parts. The representation and manipula-
tion of assemblies involve structural and spatial
relationships between individual parts at higher
level of abstraction than the representation of
single parts. Such a representation must sup-
port construction of an assembly from all given
parts and its editability: selection of individ-
ual parts in the assembly, changes of relative
positions of parts, and manipulation of the as-
sembly as a whole �8�. Geometric constraints
and their automatic solving offer a solution to
this problem �9, 10�. A geometric constraint is a
relation among geometric entities that should be
satisfied. At the beginning, the constraints were
usually employed on geometric elements com-
posing an object: points, line segments, circles
and curves, but they can also efficiently describe
relations among geometric features i.e. objects
composing an assembly. Martini �11� has de-
scribed a hierarchical approach that employs
both, shape constraints to define parts of as-
sembly, and location constraints at higher level
of hierarchy to define connections among these
parts, and to facilitate their manipulation. The

implementation was inspired by the problems
in the building design. In contrary, Gui and
Mäntylä �12� have stressed advantages of so–
called top–down assembly design, where a de-
signer starts with a general mechanical design
prototype, and develops an assembly model as
an instance of this prototype. Many other au-
thors like Anantha, Kramer and Crawford �8�
have also contributed to further integration of
geometric features and constraints.

In the presented paper, we propose a solution
for explicit feature extraction and classification
from the boundary representation. Basic defini-
tions and feature types being recognised are ex-
plained in the next chapter. After this, two steps
forming the algorithm are highlighted: the topo-
logical and the geometrical phase. The first one
was inspired by work of De Floriani and Bruz-
zone �7�, but the geometrical part, which divides
each of four classes of extracted features into the
features filled by material and the empty ones,
represents an original and new solution. At the
end, the time complexity and applicability of
the method are discussed, and our future work
in this area is stressed.

2. Geometric Features

To understand the rest of the paper, the reader
should be familiar with some basic terms of ge-
ometric modelling: a solid �a body, a shape�,
a surface, a shell, an edge, a vertex, a face, a
loop, and a ring. The definitions can be found
in �13� for example. The face is simply con-
nected if its boundary consists of a single loop.
Otherwise, it is multiple connected. In this
case, one of the loops surrounding all others is
said to be the external loop �or simply the loop�,
and the others are called rings or internal loops.
In a boundary representation, a geometric fea-
ture is a connected set of faces that form a part
of the object’s boundary and have some par-
ticular function in the design or manufacturing
process �7�.

According to the geometry, we can distinguish
between external and internal features. Former
define external shape, and latter define the in-
terior of the object. Most of the algorithms for
feature recognition also divide features into ex-
plicit and implicit features. Explicit features
are based on rings, and can be found only on

Feature Extraction and Classification from Boundary Representation 43

multiple connected faces. An explicit feature
F is fastened to the rest of the solid by a set
of rings. We use expression that the feature F
defines rings r1� � � � � rm on the object’s surface,
and each of these rings is said to open the fea-
ture F on the surface. According to the number
of rings, we distinguish between:

� DP–features, which define a single ring.
Representatives of this class are an explicit
protrusion �Fig. 1a� and an explicit depres-
sion or a pocket �Fig. 1b�.

� H–features, which define two or more rings
on one or more faces of the object. These
faces can belong to different features of the
object. A handle �Fig. 1c� is fastened to
a single feature, and a through–hole �Fig.
1d� tunnels just one feature as well. Two or
more features can be connected by a bridge
�Fig. 1e�.

Algorithms for explicit feature recognition usu-
ally complete features with missing faces. In
this way, each feature becomes a regular geo-
metric solid. An algorithm should create a new
face for each ring, and the observed ring be-
comes the external loop of the new face. How-
ever, in the resulting collection of regular 3D
shapes, there are also features, which have not

defined any rings in the past. We name them
main shapes. Only the topological data suf-
fices for the object decomposition and classi-
fication of extracted features into main shapes,
DP–features and H–features, but such topolog-
ical algorithms are typically used only as pre-
processors to geometric algorithms that further
classify features from particular classes into ex-
ternal and internal. This geometic classifica-
tion is usually done by determining convexity
of edges forming the rings �7�. External features
are protrusions, handles and bridges, and inter-
nal are pockets and through–holes. An internal
equivalent to the bridge is called a bridge be-
tween internal features �Fig. 1g and Fig. 1h�.
The main shape can also be either external or
internal. The latter is called a void �Fig. 1f�.
The meaning of the hierarchical structures in
Fig. 1a–h will be described later.

The second category consists of implicit fea-
tures. They are not based on rings, but on con-
cave edges of external loops. Algorithms for
their recognition are projected on geometrical
data. The task of testing convexity of edges can
be transformed into the problem of face orien-
tation �determining the exterior and the interior
side of the face�. An implicit depression is

Fig. 1. Simple combinations of explicit features and corresponding hierarchical structures.

44 Feature Extraction and Classification from Boundary Representation

Fig. 2. A shape with an implicit a� depression, b� protrusion.

shown in Fig. 2a, and an implicit protrusion can
be seen in Fig. 2b.

3. Algorithm for Recognition of Explicit
Geometric Features

The basic idea of the presented algorithm can be
employed on any geometric shape, but the cur-
rent implementation of some supporting func-
tions enables only feature recognition in scenes
with planar faces. Explicit features being recog-
nised can be opened by arbitrary number of
rings, and these can belong to different features.
But a ring is allowed to be defined on a single
face of a feature only. This feature is said to
be external to the feature opened by the ring.
The limitation means that features expanding
through more faces like a protrusion on an edge
cannot be recognised.

The method is not based on usual division to
external and internal features. The features
are rather classified as filled �by material� and
empty features. This proves sensible when
nested features are present. Namely, it sounds
strange and confusing that some external fea-
ture could be included in an internal one. The
method operates in two phases:

� a topological part completes themodelwith
new faces encircled by rings, divides the
scene into simpler valid geometric bodies
�features�, and classifies these features into
four classes: main shapes, DP–features, H–
features attached to a single feature, and
H–features connecting more features. Only
topological data are employed.

� a geometrical part classifies extracted fea-
tures into filled and empty ones. Each of
four classes is split into two new classes.
The classification is not being executed by
testing convexity of edges in rings, but rather
by determining eventualmutual containment
of features. The problem of penetration is
partially handled, too.

Besides the geometrical and topological data,
the employed boundary model includes fields
that characterise features, and some additional
information for the program control. A solid
is presented by faces, loops, edges and vertices
as shown in Fig. 3. Arrows indicate accessi-
bility of entities of a particular type. Three
lists of geometric elements are directly accessi-
ble through the solid object: faces, edges and
vertices. However, loops cannot be reached
directly but through faces �the relation face–
loop�. Multiple connected faces are encircled
by several loops. In the data structure, they
are organised in a double–connected list. The
first list element presents the external loop. It
can be followed by several elements presenting
eventual rings. After the decomposition, the
face–loop relation becomes one–to–one, andwe
do not have to distinguish between both entity
types any more. The inverse relation loop–face
enables us to access both elements simultane-
ously. Loops are also accessible through edges.
The relation edge–loop could seem a bit strange
or at least redundant to someone, but it speeds
up some parts of the program considerably.

Fig. 3. Object’s boundary representation.

Feature Extraction and Classification from Boundary Representation 45

4. Topological Part of the Algorithm

In the first part of the algorithm, the feature
extraction and the first step of the feature clas-
sification are done. The employed topologi-
cal algorithm is just an adaptation of the algo-
rithmdescribed by De Floriani and Bruzzone �7�
with some modifications of the data structures.
While only the topological data are employed,
this step works successfully with objects with
non–planar faces as well. The feature extraction
is carried out in two steps:

Creation of new faces – new face is created
for each ring, and the ring becomes its external
loop. At the same time, it is removed from the
list of loops of previously multiple connected
face. This face is said to be external to the newly
created face. After the removal of all rings, we
obtain the set of simply connected faces.

Object decomposition – the scene is decom-
posed into features with regard to adjacency
of edges and vertices only. The features are
simpler bodies bounded by simply connected
faces only. In the first part of the decomposi-
tion, each face is tested against all faces situ-
ated in the face list before it. The test searches
for faces that share common edges and there-
fore belong to the same feature. Such faces are
called combinable. The same term is used for
the feature candidates that should be joined. Al-
though all necessary information are accessible
directly from the boundary representation, some
additional fields in the data structure speed up
the process considerably. The description of
the face is extended by the fields feature ID and
edge set. Two arrays of integers: combinable
and correction are also employed in this step.
They refer to feature candidates, and the current
number of them is stored in number of features,
which may not exceed the predefined constant
max features. The edge set has to be initialised
with indices of all edges of the external loop
of the corresponding face i.e. with their relative
positions in the edge list, and all fields feature ID
have to be set to some value larger than the real
number of features �max features + 1�. Three
different situations can occur during testing a
face against preceding members of the face list:

�i� The face currently being tested is not com-
binable with any other face. New feature
candidate is identified. The number of featu-
res is incremented by one, and the fields

combinable[number of features] and correction
[number of features] are employed then. Whi-
le such a face and a corresponding feature
are not combinablewith any other identified
since that moment, the value of combinable
is set to its index.

�ii� The tested face ft is combinable with a face
fp belonging to the feature indexed i, and ft
is already combinable with some other face
belonging to the feature j, where j � i. The
following actions have to be performed:

f[t].edge set =
S

(f[t].edge set, f[p].edge set);

f[p].edge set = f[t].edge set

combinable[f[p].feature ID] = f[t].feature ID;

�iii�The face currently being tested � ft� is com-
binable with a face fp belonging to the fea-
ture i, and ft has not been combinable with
any face yet, or it is eventually combinable
with some face belonging to the feature j,
where j � i. The following actions have to
be performed:

f[t].edge set=
S

(f[t].edge set, f[p].edge set);

f[p].edge set = f[t].edge set

f[t].feature ID = combinable[f[p].feature ID];

It is obvious that the values combinable are
forced to become as low as possible. They are
initialised with their indices and later, they can
be only decreased. We are especially interested
in those fields that keep their values unchanged
after all comparisons. These fields actually
present real features, and will be called feature–
introducing elements �FIEs�. Currently, each
face is assigned to one of number of features fea-
ture candidates, but we want them all assign to
the FIEs only. The number of features should
present number of FIEs, and indices of FIEs
have to be transformed into the range [1, num-
ber of features].

In the continuation, we first calculate correc-
tions of indices of FIEs and the correct num-
ber of features. Then we find the FIE and repair
value of feature ID for each face. The procedures

46 Feature Extraction and Classification from Boundary Representation

are given below. Finally, we are ready to per-
form the real object decomposition by splitting
common lists of faces, edges and vertices into
partial ones describing particular features. At
this stage, we can already initialise some aux-
iliary data refering to the features: coordinates
of the bounding box needed for the minimax
test in the geometrical part of the algorithm, the
number of newly created faces of the feature
�number of rings�, and the number of features
that contain the rings describing these newly
created faces �number of parents�.

Algorithm FindFIE (face, fie)
begin

fie = combinable[face.feature ID];
loop

if (fie = combinable[fie]) then exit loop;
fie = combinable[fie];

forever;
end.

...
(* calculate correct feature ID of face f *)
FindFIE (f, fie);
f.feature ID = fie correction[fie];
...

Feature extraction is followed by a topologi-
cal part of the feature classification. In the
feature’s data structure there is also the inte-
ger variable feature class, which is set to value
between 1 and 4:

1 – main shape
(number of rings = number of parents = 0),

2 – DP–feature
(number of rings = 1),

3 – H–feature on one feature
(number of rings � 1, number of parents = 1),

4 – bridge
(number of parents � 1).

An example of feature extraction and topologi-
cal classification is given in an appendix.

5. Geometrical Part of the Algorithm

The topological algorithm represents a prepro-
cessor for geometric classification. We cannot

imagine an application that would treat a de-
pression or protrusion, for example, in the same
way. If the manufacturing machine obtains in-
formation to process a DP–feature, it "does not
know" whether to remove the interior or the
exterior of the feature. Most common geomet-
rical classification distinguishes between exter-
nal and internal geometric features. The clas-
sification usually tests concavity of the edges
forming rings, and meet the complex problem
of face orientation �14�. As long as main shapes
are supposed to be filled by material, the prob-
lem is solved easily, but it becomes a hard one
if voids are allowed. A protrusion on void does
not define a concave, but a convex edge. Before
performing any tests of concavity of edges, the
differentiation of filled and empty main shapes
has to be done. In addition to this, we allow fea-
tures nested to arbitrary level to increase gen-
erality and applicability of the method. There-
fore, a hierarchical structure connecting main
shapes according to their eventual mutual con-
tainment is employed. Features not contained
in any other feature are placed at the root level,
and at the level n, we meet the features directly
contained in the features of the level n�1. Fea-
tures placed at odd levels are identified as filled,
and those at even level are empty features. How-
ever, voids can be contained in any filled feature
and not only in main shapes. For this reason,
all the features should be arranged in the hier-
archical structure, and therefore, they can also
be classified according to odd or even level of
appearance. Before describing the details, the
main procedure of the geometrical part of our
algorithm is listed.

Algorithm ClassifyFilledEmpty()
begin

elt = CreateNode(1);
rootNode = elt;
j = 2;
loop

if (j � number of features) then exit loop;
elt = CreateNode(j);
rootNode = InsertNodeToStructure(elt, rootNode);
j = j + 1;

forever;
ClassificationOddEven(rootNode, 1);

end.

Feature Extraction and Classification from Boundary Representation 47

Fig. 4. Left: depression in depression is protrusion. Right: nested depression.

5.1. Relation of Containment

Function InsertNodeToStructure presents the only
point where the algorithm meets geometrical
data. Namely, determination of eventual fea-
ture intersections and the containment test are
hidden inside its body. We suppose that only
an empty feature can be directly contained in
the filled one and the opposite, the filled feature
always occupies some empty space and not the
space occupied by some other filled feature. In
this way, we obtain the desired result: empty
features are at even levels in the hierarchical
structure, and filled features are at odd levels.
A depression in a depression has to be recog-
nised as protrusion, and a nested depression is
still a depression. Both examples are shown in
Fig. 4.

The containment test has to identify whether
the tested feature is situated inside another fea-
ture or not. We use a 3D extension of simple
containment test point–in–polygon to find out
whether the point is inside the body or not �15�.
While the test is performed after handling pos-
sible feature intersections, it suffices to test a
single point of the tested feature against all faces
of the other feature. Unnecessary calculations
can be avoided by performing a simpleminimax
test.

5.2. Auxiliary Hierarchical Structure

Geometrical classification is facilitated by em-
ploying the hierarchical structure connecting
nodes �features� according to their mutual con-
tainment or intersections. Two nodes at the
same level are not contained in each other, and
will be called siblings. The feature Fi contained
in some other feature Fj is recursively inserted

into the substructure rooted in Fj, among the de-
scendants of Fj. Direct descendants are called
sons. Analogously, nodes that contain some
other node �Fi� are called ancestors of Fi. Di-
rect ancestor is father. Each node, except the
ones at the root level, has exactly one father.
Nodes are accessible through the ancestors, and
the inverse connections are not defined. The
number of sons is arbitrary, but in the struc-
ture, only a pointer to one of them is used. All
its siblings are listed behind it in the connected
list. Each list is connected in one direction only,
and therefore, we shall distinguish between left
and right siblings. When we reach a particular
node, its left siblings have been visited already,
and the right siblings and the descendants of the
node form the substructure that should be vis-
ited next. Each node contains the pointer to the
first node in the list of its sons �first son�, the
pointer to the next right sibling �first sibling� and
the field feature ID that establishes a unique re-
lation between the node and the corresponding
feature obtained in the topological part.

In Fig. 1 already, all types of features recognised
by our algorithm and the corresponding hierar-
chical structures are given. Horizontal connec-
tions present siblings, and the vertical are used
for father–son relations. Unfortunately, this
simple organisation is useful only while feature
intersections are not allowed. When we meet a
feature Fi that is partially contained inside some
other feature Fj, and the rest of Fi is outside Fj,
then we cannot decide whether to insert the cor-
responding node Fi between the siblings of Fj
or between its descendants. In such case we
use two or more copies of the node. In the next
section, we propose a solution to this problem.

48 Feature Extraction and Classification from Boundary Representation

5.3. The Problem of Feature Intersections

When we talk about general and really usable
algorithm, we cannot avoid the problem of fea-
ture intersections. Possible appearance of in-
tersections of solid bodies presents one of the
main problems in computer graphics and geo-
metric modelling. In our algorithm, only the
real scenes are expected. Filled feature can be
directly �partially� contained only in an empty
feature, and similarly, empty feature can be di-
rectly partially contained in a filled one only.
We rather use the term partial containment in-
stead of feature intersection to show that one
feature is pierced by another in such situation.
The node of feature Fi piercing the feature Fj is
cloned, and the original is inserted among the
sons of Fj, and the copy is inserted into the list
of right siblings of Fj. The first copy is pre-
senting a part of Fi that is contained in Fj, and
the second copy is used for the part of Fi out-
side Fj. After study of both examples in Fig.
5, the reader will understand why two copies
of the protrusion F3 are necessary. In case a�,
the protrusion is placed among descendants of
the main shape F1 and the depression F2 only,
and the void F4, which is situated outside the
main shape F1, is incorrectly classified as the
filled feature. In case b�, the protrusion F3 is
inserted to the list of siblings of the main shape
F1, and the void F4 between the descendants of
the feature F1. The void F4 is again incorrectly
recognised as filled feature.

Possible intersections are determined by search-
ing for the intersections of the faces belonging

to the first feature and those belonging to the
second one. If two faces are intersecting, the
procedure can be released. While the polygons
presenting faces can be concave as well, it does
not suffice to test only two line segments, but to
find all intervals on line obtained as the inter-
section of two planes. It is wise to employ the
test minimax. If the intersection is not identi-
fied after testing all pairs of intervals, the next
pair of faces is being tested. If no intersections
are identified after all possible tests, the con-
tainment test can be employed on the same pair
of features.

5.4. Creating the Hierarchical Structure

Two functions are employed to create the hier-
archical structure. The simple one named Crea-
teNode(int j) creates the node presenting the fea-
ture Fj, and the second one InsertNodeToStruc-
ture(elt, rootNode) recursively inserts the node elt
into the substructure with root rootNode. The hi-
erarchical structure should be organised in the
way that all the copies presenting the same fea-
ture have common sons, but different siblings.
Six different situations can occur while insert-
ing elt in the structure:

1. Substructure rootNode is empty. The node elt
becomes the root of the substructure.

2. Feature elt is piercing the feature rootNode.
Node elt is recursively inserted into the sub-
structure of the descendants of rootNode. If
elt is not a sibling of the rootNode yet �the

Fig. 5. The piercing feature is not only a descendant of the pierced one �a� and not only a neighbour �b� - the void F 4
is incorrectly recognised as filled feature.

Feature Extraction and Classification from Boundary Representation 49

Boolean field visited is employed for this
task�, a copy of elt is inserted into the sub-
structure of right siblings of rootNode.

3. The node rootNode is piercing the new node
elt. The rootNode is cloned, and a copy is
inserted in the structure of descendants of
elt. The node elt occupies the place of the
rootNode in the structure, another copy of the
rootNode is inserted in the structure of right
siblings of elt, and all the previous right sib-
lings of the rootNode are recursively inserted
into the substructure with the new root node
elt.

4. New node elt is contained in the root root-
Node. The node elt is recursively inserted
into the structure of descendants of rootNode.

5. The node rootNode is contained in new node
elt. The rootNode is cloned, and a copy is in-
serted in the structure of descendants of elt.
The node elt occupies the place of the orig-
inal rootNode, and all the previous right sib-
lings of the rootNode are recursively inserted
into the substructure with the new root node
elt.

6. New node elt and the root of the structure
rootNode do not intersect and are not con-
tained in each other as well. The node elt
is recursively inserted into the structure of
right siblings of rootNode.

5.5. Geometrical Classification to Filled
and Empty Features

The nodes at odd levels are presenting filled fea-
tures and the nodes at even levels correspond to
empty features. Each node contains the integer
attribute feature ID that enables direct access to
the data structure presenting the feature. We
remember that the topological part has set the
value feature class in this structure to the inte-
ger number between 1 and 4. The geometrical
classification only changes the sign of the fea-
ture class for all features with the corresponding
nodes at even levels of the hierarchical structure.
In this way, we split each of the four classes into
two new classes, and therefore, obtain eight fea-
ture classes. But the problem appears because
multiple copies presenting the same feature can
be located at both, odd and even levels. Without
mathematical proof, we shall declare that in the

depth–first search of the structure, the first copy
�the left–most copy� of the node met is correctly
nested. For both examples from Fig. 5, we ob-
tain the structure shown in Fig. 6. The left most
copy of the protrusion F3 is correctly nested at
the third �odd� level. Right copies F3�1 and F3�2
are not tested, and therefore, the incorrect even
level of the node F3�1 does not have any influ-
ence to the solution. The common descendant
of all three copies �void F4� is met after visiting
the left most copy of its fathers, and it is again
correctly set at the fourth �even� level.

Fig. 6. Incorrect level of the right copy �F3�1� does not
affect the solution.

In Fig. 7, twomore complex examples are given.
In both cases, we meet the same problem: the
existance of features that are pairly intersecting
each other, and we cannot specify which one
is the piercing feature and which is the pierced
one. While the algorithm can only handle this
type of feature intersections, it simply chooses
one of the intersecting features to be the pierc-
ing one and another to be the pierced feature.
The choice depends on indices of features and
also on ordering of faces of both features. How-
ever, we have tested all possible orders of fea-
tures for both examples, and the obtained results
were correct in all cases: the left most copies of
solid features are situated at odd levels, and the
left most copies of empty features can be met at
even levels only.

In the example a�, we have two solid main
shapes and each of them contains a depression.
Four features can be ordered in 4! � 24 differ-
ent ways, but because of the symmetry, only 12
of them have to be observed. But in all cases,
there are two possibilities: the solid feature with
lower index is piercing the solid feature with

50 Feature Extraction and Classification from Boundary Representation

Fig. 7. Two more examples of pairs of components piercing each other.

higher index, and the opposite. Therefore, 24
situations have to be observed. Two of them
corresponding to indexing, applied in the fig-
ure, are presented. The structure i� corresponds
to the case when the solid F3 is the piercing one,
and the structure ii�was obtainedwhen the solid
F1 was piercing the solid F3 and the pocket F4.

The example b� is even more complex. We
have two solid main shapes, and each of them
contains a through–hole. Again, we have 24
different ways of feature indexing, but because
of the symmetry, only 12 of them are interest-
ing. But this time, both, the solid feature and its
nested through–hole are simultaneously pierc-
ing another solid feature and a through–hole,
and the opposite. Altogether, we had to test
12 �24 � 192 situations and we always obtained
correct result.

In all hierarchical structures, the original nodes
are labeled F1, F2, F3, F4, and copies are
equipped with additional indices regarding the
time of their creation �the copy created earlier
has lower index�. By observing the hierachi-
cal structures in Fig. 7 carefully, a conclusion
can be made that the nodes can be perturbed sev-
eral times during the creation of the hierarchical
structure. In the case b.iii�, the node F1�1 which
was created as the right copy, even became the
root node, and therefore, the left most copy of
the node F1. The main reason for these pertur-
bations is hidden in the situations 2 and 5 from
the section 5.4. Because of the perturbations,
many pairs of features that were already tested
against each other are met for testing again and
again. To avoid repeating of tests already done,
the adjecency matrix is employed. Each ele-
ment ai�j stores one of the following values:

Feature Extraction and Classification from Boundary Representation 51

0 – the features Fi and Fj have not been tested
yet,

1 – the feature Fi contains the feature Fj,
2 – the feature Fj contains the feature Fi,
3 – the feature Fi is piercing the feature Fj,
4 – the feature Fj is piercing the feature Fi,
5 – features Fi and Fj do not contain each other

and do not intersect.

Of course, only the pairs of features, where both
corresponding matrix elements are set to 0, have
to be tested, what accelerates the program con-
siderably.

6. The Time Complexity

The time complexity of the algorithm varies
from step to step and does not exceed O�n2�.
In the topological part, a new face is created
for each ring of multiple connected faces at the
beginning. We obtain linear time complexity
O�n�, where n is the number of rings. In the
object decomposition step, each face is tested
against all faces situated in the face list before
it. We have n�n � 1��2 comparisons, and this
gives the time complexity O�n2�, where n is
the number of faces. Corrections of indices of
FIEs are then calculated in O�n�, where n is the
number of feature candidates. After this, the
FIE for each face should be determined. Let
us suppose that we have a single feature, and
an inconvenient order of its faces causes that
each face is attached to different feature can-
didate. Fortunately, this is not possible, and
the time complexity of this step cannot exceed
O�n2�. At the end of the object decomposition
step, each face, edge and vertex is assigned to
the corresponding feature. Each list element is
visited once, and we obtain the time complexity
O�n�. The topological classification is also ex-
ecuted in O�n�, where n is the number of faces
�the feature’s attributes depend on attributes of
the feature’s faces�. The time complexity of the
geometrical part depends a lot on the branch-
ing of the hierarchical structure. In the worst
case, we have to test each feature being inserted
against all other features in the structure, and
we obtain n�n � 1��2 comparisons.

7. Conclusions

In the paper, the algorithm for explicit fea-
ture extraction and classification from bound-
ary representation is presented. It operates in
two phases: the topological and the geometri-
cal, and classifies extracted features into eight
classes. The topological part is not limited to
the bodies with planar faces, but in the geomet-
rical part, the current implementation of some
tasks requires this limitation. It can be omit-
ted by approximation of curved faces by sets
of planar polygons and by performing the con-
tainment test and the feature intersection test on
these polygons.

The last version of the algorithm is implemented
in C�� and is going to be integrated with the
geometric constraint solver into an efficient tool
for manipulation of mechanical parts. Let us
suppose thatwe have a protrusion placed exactly
in the middle of the top face of the block �main
shape�. If we change the dimensions of the
block, it is hard to believe that the protrusion is
still placed in the middle. The geometrical data
describing the protrusion have to be manually
updated to satisfy this requirement. This is just
a simple example, but in practise, hundreds or
thousands of calculations should be performed
to enable such modifications of the geometry
preserving additional requirements of the rela-
tive positions of the features. This is the ideal
task for employing geometric constraints. But
remember that first we have to obtain geometric
features from the original boundary representa-
tion in some way, and this is the function of the
algorithm described in the paper.

Beside to generalisation of the algorithm to han-
dle objects with non–planar faces, and integra-
tion of the feature–based and constraint–based
design, our future work is intended to introduce
new explicit feature types containg rings opened
on two or more neighbouring faces.

APPENDIX

Let us highlight the object decomposition and
topological classification �Section 4� on a sim-
ple example described in Fig. 8. Left and right
vertical faces are denoted f1 – f4, front and back
faces are f5 – f8, and bottom and top faces are

52 Feature Extraction and Classification from Boundary Representation

Fig. 8. Example illustrating object decomposition.

f9 – f12. The faces are indexed in order of their
appearance in the face list. The initial data are
shown in Tab. 1.

face edge set feature ID

1 1–4 1001
2 5–8 1001
3 9–12 1001
4 13–16 1001
5 1, 5, 17, 23 1001
6 9, 13, 19, 21 1001
7 11, 15, 20, 22 1001
8 3, 7, 18, 24 1001
9 2, 6, 17, 18 1001
10 10, 14, 19, 20 1001
11 12, 16, 21, 22 1001
12 4, 8, 23, 24 1001

Tab. 1. The initial data for the object decomposition
example.

While the faces f1 – f4 do not share any com-
mon edges, they are assigned to four different
features �Tab. 2 and Tab. 3�.

face edge set feature ID

1 1–4 1
2 5–8 2
3 9–12 3
4 13–16 4

Tab. 2. Changes after testing faces f1 – f4.

feature combinable

1 1
2 2
3 3
4 4

Tab. 3. Feature candidates after testing faces f1 – f4.

The face f5 shares the edge e1 with the face f1,
and therefore belongs to the feature F1 �situa-
tion iii�. While it also shares common edge e5
with face f2, the feature F2 is identified com-
binable with the feature F1 �see Tab. 4 and Tab.
5�.

Feature Extraction and Classification from Boundary Representation 53

face edge set feature ID

1 1–5, 17, 23 1
2 1–8, 17, 23 2
5 1–8, 17, 23 1

Tab. 4. Changes after testing face f5.

feature combinable

1 1
2 1

Tab. 5. Feature candidates after testing face f5.

Similarly, face f6 shares common edge e9 with
the face f3, and therefore belongs to the feature
F3 �situation iii�. It also shares edge e13 with
face f4, and the feature F4 is identified combin-
able with the feature F3 �Tab. 6 and Tab. 7�.

face edge set feature ID

3 9–13, 19, 21 3
4 9–16, 19, 21 4
6 9–16, 19, 21 3

Tab. 6. Changes after testing face f6.

feature combinable

3 3
4 3

Tab. 7. Feature candidates after testing face f6.

The face f7 is combinable with faces f3, f4 and
f6 as well, while we rewrite sets of edges with
unions of two sets. Similarly, the face f8 is com-
binable with faces f1, f2 and f5. The situation
in Tab. 8 and Tab. 9 is obtained.

face edge set feature ID

1 1–5, 7, 17, 18, 23, 24 1
2 1–8, 17, 18, 23, 24 2
3 9–13, 15, 19–22 3
4 9–16, 19–22 4
5 1–8, 17, 18, 23, 24 1
6 9–16, 19–22 3
7 9–16, 19–22 3
8 1–8, 17, 18, 23, 24 1

Tab. 8. Changes after testing faces f7 and f8.

feature combinable

1 1
2 1
3 3
4 3

Tab. 9. Feature candidates after testing faces f7 and f8.

After testing all horizontal faces f9 – f12 we
finally obtain the situation in Tab. 10 and Tab.
11.

face edge set feature ID

1 1–8, 17, 18, 23, 24 1
2 1–8, 17, 18, 23, 24 2
3 9–16, 19–22 3
4 9–16, 19–22 4
5 1–8, 17, 18, 23, 24 1
6 9–16, 19–22 3
7 9–16, 19–22 3
8 1–8, 17, 18, 23, 24 1
9 1–8, 17, 18, 23, 24 1
10 9–16, 19–22 3
11 9–16, 19–22 3
12 1–8, 17, 18, 23, 24 1

Tab. 10. Situation after testing all faces f1– f12.

feature combinable

1 1
2 1
3 3
4 3

Tab. 11. Feature candidates after testing all faces f1– f12.

54 Feature Extraction and Classification from Boundary Representation

Faces are assigned to four different features, but
only two of them are FIEs: the feature F1 and
F3 have values combinable equal to their indices.
The former does not need any corrections, but
for the feature F3, the correction is set to 1 while
it is preceded by one feature �F2� combinable
with some other. The number of features is set to
2. Now, we find the FIE for each face. Finally,
we calculate the correct values of feature ID for
each face, and physically divide lists of faces,
edges and vertices.

Faces f1, f2, f5, f8, f9, f12 and the correspond-
ing edges and vertices are assigned to the feature
F1, and all the rest to the feature F2. The num-
ber of rings for the feature F2 is set to 1 while
the face f3 was created from the ring e9 – e10 –
e11 – e12, and the number of parents is set to 1 as
well. For the feature F1, both values are zero.
The feature F1 is therefore recognised as a main
shape, and the feature F2 is a DP–feature.

References

�1� B. FALCIDIENO AND F. GIANNINI, Automatic Recog-
nition and Representation of Shape–Based Features
in a Geometric Modeling System, Computer Vision,
Graphics and Image Processing, No. 48 �1989�, pp.
93–123.

�2� J. R. WOODWARK, Some speculations on feature
recognition, Computer–Aided Design, Vol. 20, No.
4, 1988, pp. 189–196.

�3� J. C. E. FERREIRA AND S. HINDUJA, Convex hull–
based feature–recognition method for 2.5D com-
ponents, Computer–Aided Design, Vol. 22, No. 1,
1990, pp. 41–48.

�4� D. SANDIFORD AND S. HINDUJA, Construction of
feature volumes using intersection of adjacent sur-
faces, Computer–Aided Design, Vol. 33, 2001, pp.
455–473.

�5� S. MEERAN, J. M. TAIB, A generic approach for
recognising isolated, nested and interacting features
from 2D drawings, Computer–Aided Design, Vol.
31, No. 14, 1999, pp. 891–910.

�6� L. DE FLORIANI, Feature Extraction from Boun-
dary Models of Three–Dimensional Objects, IEEE
Transactions on Pattern Analysis and Machine In-
telligence, Vol. 11, No. 8, 1989, pp. 785–798.

�7� L. DE FLORIANI, E. BRUZZONE, Building a feature–
based object description from a boundary model,
Computer–Aided Design, Vol. 21, No. 10, 1989, pp.
602–610.

�8� R. ANANTHA, G. A. KRAMMER, AND R. H. CRAW-
FORD, Assembly modelling by geometric constraint
satisfaction, Computer–Aided Design, Vol. 28, No.
9, 1996, pp. 707–722.

�9� B. ŽALIK, N. GUID, An approach to applying con-
straints in geometric modelling, Journal of Com-
puting and Information Technology, Vol. 3, No. 4,
1995, pp. 229–244.

�10� D. PODGORELEC, A new constructive approach
to constraint–based geometric design, Computer–
Aided Design, Vol. 34, No. 11, 2002, pp. 769–785.

�11� K. MARTINI, Hierarchical geometric constraints for
building design, Computer–Aided Design, Vol. 27,
No. 3, 1995, pp. 181–191.

�12� J. K. GUI AND M. MÄNTYLÄ, New concepts for
complete product assembly modeling, ACM digital
library, Proceedings of the Second symposium on
solid modeling and applications, 1993, pp. 397–
406.

�13� M. E. MORTENSON, Geometric Modeling, John Wi-
ley, New York, 1985, 763 pp.

�14� P. GAVANKAR, M. R. HENDERSON, Graph–based ex-
traction of protrusions and depressions from bound-
ary representations, Computer–Aided Design, Vol.
22, No. 7, 1990, pp. 442–450.

�15� J. D. FOLEY, A. VAN DAM, S. K. FEINER, J. F.
HUGHES, Computer Graphics — Principles and
Practise, 2nd ed., Addison–Wesley, Reading, 1990,
1174 pp.

Received: June, 2001
Revised: October, 2002

Accepted: December, 2002

Contact address:

David Podgorelec
Faculty of Electrical Engineering & Computer Science

University of Maribor
Smetanova 17, 2000 Maribor, Slovenia.

e-mail: david�podgorelec�uni�mb�si

DAVID PODGORELEC received the BSc degree, MSc degree and PhD in
computer science from the University of Maribor, Slovenia, in 1993,
2000 and 2002, respectively. He is a lecture assistant in the department
of Computer Science, Faculty of Electrical Engineering & Computer
Science �EE&CS�, University of Maribor, Slovenia. His research in-
terests include constraint–based and feature–based geometric design,
computational geometry, visualisation of medical data, and multimedia
applications.

BORUT ŽALIK is currently an associate professor at the Faculty of
EE&CS at the University of Maribor, Slovenia. He also has a posi-
tion of a senior research fellow at the Montfort University, U. K. He
received his BSc in electrical engineering in 1985, MSc and PhD in
computer science, both from the University of Maribor in 1989 and
1993, respectively. His research interests include computational ge-
ometry, geometric modelling, scientific visualisation, GIS applications,
multimedia applications.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth 8
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth 8
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /Unknown

 /Description <<
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000500044004600200064006f007400e900730020006400270075006e00650020007200e90073006f006c007500740069006f006e002000e9006c0065007600e9006500200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200061006d00e9006c0069006f007200e90065002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /JPN <FEFF3053306e8a2d5b9a306f30019ad889e350cf5ea6753b50cf3092542b308000200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e0020006d00690074002000650069006e006500720020006800f60068006500720065006e002000420069006c0064006100750066006c00f600730075006e0067002c00200075006d002000650069006e0065002000760065007200620065007300730065007200740065002000420069006c0064007100750061006c0069007400e400740020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d00610020007200650073006f006c007500e700e3006f00200064006500200069006d006100670065006d0020007300750070006500720069006f0072002000700061007200610020006f006200740065007200200075006d00610020007100750061006c0069006400610064006500200064006500200069006d0070007200650073007300e3006f0020006d0065006c0068006f0072002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e0030002000650020007300750070006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f8006a006500720065002000620069006c006c00650064006f0070006c00f80073006e0069006e006700200066006f00720020006100740020006600e50020006200650064007200650020007500640073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e0020006d00650074002000650065006e00200068006f0067006500720065002000610066006200650065006c00640069006e00670073007200650073006f006c007500740069006500200076006f006f0072002000650065006e0020006200650074006500720065002000610066006400720075006b006b00770061006c00690074006500690074002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006e0020006d00610079006f00720020007200650073006f006c00750063006900f3006e00200064006500200069006d006100670065006e00200070006100720061002000610075006d0065006e0074006100720020006c0061002000630061006c006900640061006400200061006c00200069006d007000720069006d00690072002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f0069006400610061006e0020006c0075006f006400610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e002000740075006c006f0073007400750073006c00610061007400750020006f006e0020006b006f0072006b006500610020006a00610020006b007500760061006e0020007400610072006b006b007500750073002000730075007500720069002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a00610020004100630072006f006200610074002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000500044004600200063006f006e00200075006e00610020007200690073006f006c0075007a0069006f006e00650020006d0061006700670069006f00720065002000700065007200200075006e00610020007100750061006c0069007400e00020006400690020007300740061006d007000610020006d00690067006c0069006f00720065002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f80079006500720065002000620069006c00640065006f00700070006c00f80073006e0069006e006700200066006f00720020006200650064007200650020007500740073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e00740020006d006500640020006800f6006700720065002000620069006c0064007500700070006c00f60073006e0069006e00670020006f006300680020006400e40072006d006500640020006600e50020006200e400740074007200650020007500740073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 /GRE <FEFF03A703C103B703C303B903BC03BF03C003BF03B903AE03C303C403B5002003B103C503C403AD03C2002003C403B903C2002003C103C503B803BC03AF03C303B503B903C2002003B303B903B1002003BD03B1002003B403B703BC03B903BF03C503C103B303AE03C303B503C403B5002003AD03B303B303C103B103C603B10020005000440046002003BC03B5002003C503C803B703BB03CC03C403B503C103B7002003B103BD03AC03BB03C503C303B7002003B503B903BA03CC03BD03C903BD002003B303B903B1002003B203B503BB03C403B903C903BC03AD03BD03B7002003C003BF03B903CC03C403B703C403B1002003B503BA03C403CD03C003C903C303B703C2002E0020039C03C003BF03C103B503AF03C403B5002003BD03B1002003B103BD03BF03AF03BE03B503C403B5002003C403B1002003AD03B303B303C103B103C603B10020005000440046002003BC03AD03C303C9002003C403BF03C50020004100630072006F006200610074002003BA03B103B9002000520065006100640065007200200035002E0030002003BA03B103B9002003BC03B503C403B103B303B503BD03AD03C303C403B503C103C903BD002003B503BA03B403CC03C303B503C903BD002E>
 /ARA <FEFF06270633062A062E062F0645002006470630064700200627064406360648062706280637002006440625064606340627062100200648062B06270626064200200050004400460020062806230639064406490020062F06420629002006440644063506480631062900200645064600200623062C06440020062A062D0633064A06460020062C0648062F062900200627064406370628062706390629002E0020064A064506430646002006440648062B06270626064200200050004400460020062306460020064A062A064500200641062A062D064706270020064506390020004100630072006F0062006100740020064800520065006100640065007200200035002E003000200648062706440623062D062F062B002E>
 /CZE <FEFF005400610074006F0020006E006100730074006100760065006E00ED00200070006F0075017E0069006A007400650020006B0020007600790074007600E101590065006E00ED00200064006F006B0075006D0065006E0074016F0020005000440046002000730020007600790161016100ED006D00200072006F007A006C006901610065006E00ED006D0020006F006200720061007A016F002C002000610062007900730074006500200064006F007300E10068006C00690020007600790161016100ED0020006B00760061006C0069007400790020007400690073006B0075002E00200044006F006B0075006D0065006E007400790020005000440046002000620075006400650020006D006F017E006E00E90020006F007400650076015900ED007400200076002000700072006F006700720061006D0065006300680020004100630072006F00620061007400200061002000520065006100640065007200200035002E0030002000610020006E006F0076011B006A016100ED00630068002E>
 /HUN <FEFF0045007A0065006B006B0065006C0020006100200062006500E1006C006C00ED007400E10073006F006B006B0061006C00200068006F007A0068006100740020006C00E9007400720065002000610020006A006F006200620020006E0079006F006D00740061007400E1007300690020006D0069006E0151007300E90067002000E9007200640065006B00E900620065006E0020006D00610067006100730061006200620020006B00E9007000660065006C0062006F006E007400E1007300FA002000500044004600200064006F006B0075006D0065006E00740075006D006F006B00610074002E00200041002000500044004600200064006F006B0075006D0065006E00740075006D006F006B00200061007A0020004100630072006F006200610074002000E9007300200061002000520065006100640065007200200035002E0030002C00200069006C006C00650074007600650020006B00E9007301510062006200690020007600650072007A006900F3006900760061006C0020006E00790069007400680061007400F3006B0020006D00650067002E>
 /POL <FEFF0055017C0079006A0020007400790063006800200075007300740061007700690065014400200064006F002000740077006F0072007A0065006E0069006100200064006F006B0075006D0065006E007400F3007700200050004400460020007A002000770079017C0073007A010500200072006F007A0064007A00690065006C0063007A006F015B0063006901050020006F006200720061007A006B00F30077002C0020007A0061007000650077006E00690061006A0105006301050020006C006500700073007A01050020006A0061006B006F015B0107002000770079006400720075006B00F30077002E00200044006F006B0075006D0065006E0074007900200050004400460020006D006F0067010500200062007901070020006F007400770069006500720061006E00650020007A006100200070006F006D006F00630105002000700072006F006700720061006D00F300770020004100630072006F0062006100740020006F00720061007A002000520065006100640065007200200035002E00300020006C007500620020006E006F00770073007A007900630068002E>
 /RUS <FEFF04180441043F043E043B044C04370443043904420435002004340430043D043D044B04350020043F043004400430043C043504420440044B00200434043B044F00200441043E043704340430043D0438044F0020005000440046002D0434043E043A0443043C0435043D0442043E04320020044100200431043E043B0435043500200432044B0441043E043A0438043C00200440043004370440043504480435043D04380435043C00200441002004460435043B044C044E0020043F043E043B044304470435043D0438044F0020043B04430447044804350433043E0020043A04300447043504410442043204300020043F04350447043004420438002E0020005000440046002D0434043E043A0443043C0435043D0442044B0020043E0442043A0440044B04320430044E04420441044F002004320020043F04400438043B043E04360435043D0438044F04450020004100630072006F00620061007400200438002000520065006100640065007200200035002E003000200028043800200431043E043B043504350020043F043E04370434043D04380445002004320435044004410438044F04450029002E>
 /TUR <FEFF004400610068006100200069007900690020006200610073006B01310020006B0061006C006900740065007300690020006900E70069006E002000640061006800610020007900FC006B00730065006B0020006700F6007200FC006E007400FC002000E700F6007A00FC006E00FC0072006C00FC011F00FC006E0065002000730061006800690070002000500044004600200064006F007300790061006C0061007201310020006F006C0075015F007400750072006D0061006B00200061006D0061006301310079006C006100200062007500200061007900610072006C0061007201310020006B0075006C006C0061006E0131006E002E002000500044004600200064006F007300790061006C0061007201310020004100630072006F006200610074002000520065006100640065007200200035002E003000200076006500200073006F006E00720061007301310020007300FC007200FC006D006C0065007200690079006C00650020006100E70131006C006100620069006C00690072002E>
 /HEB (Use these settings to create PDF documents with higher image resolution for improved printing quality. The PDF documents can be opened with Acrobat and Reader 5.0 and later.)
 /ENU <FEFF005500730065002000740068006500730065002000730065007400740069006e0067007300200074006f0020006300720065006100740065002000500044004600200064006f00630075006d0065006e0074007300200077006900740068002000680069006700680065007200200069006d0061006700650020007200650073006f006c007500740069006f006e00200066006f007200200069006d00700072006f0076006500640020007000720069006e00740069006e00670020007100750061006c006900740079002e0020005400680065002000500044004600200064006f00630075006d0065006e00740073002000630061006e0020006200650020006f00700065006e00650064002000770069007400680020004100630072006f00620061007400200061006e0064002000520065006100640065007200200035002e003000200061006e00640020006c0061007400650072002e>
 >>
>> setdistillerparams
<<
 /HWResolution [300 300]
 /PageSize [595.276 841.890]
>> setpagedevice

