
Journal of Computing and Information Technology - CIT 10, 2002, 2, 133–147 133

Towards Multi-Paradigm
Software Development

Valentino Vranić
Department of Computer Science and Engineering, Faculty of Electrical Engineering and Information Technology,
Slovak University of Technology in Bratislava, Slovakia

Multi-paradigm software development is a possible an-
swer to attempts of finding the best paradigm. It was
present in software development at the level of intuition
and practiced as the “implementation detail” without a
real support in design. Recently it is making a twofold
breakthrough: several recent programming paradigms
are encouraging it, while explicit multi-paradigm ap-
proaches aim at its full-scale support. In order to
demonstrate this, a survey of selected recent software
development �programming� paradigms �aspect-oriented
approaches and generative programming� and multi-
paradigm approaches �multi-paradigm programming in
Leda, multi-paradigm design in C��, and intentional
programming� is presented.

The survey is preceded and underpinned by the analysis
of the concept of paradigm in computer science in the
context of software development, since there is no com-
mon agreement about the meaning of this term, despite
its wide use. The analysis has showed that there are two
meanings of paradigm: large-scale and small-scale.

Keywords: software development, programming, large-
scale, small-scale paradigm; commonality, variability
analysis; multi-paradigm, aspect-oriented, generative,
Leda, intentional programming; metaparadigm.

1. Introduction

The way software is developed is changing. En-
forced by the need for mass production of qual-
ity software and enabled by the grown experi-
ence of the field, software development is mov-
ing towards industrialization. The question is
no longer which single tool is the best one, but
how to select the right tools for each task to be
accomplished.

This article maps the state of the art in the field
of post-object-oriented software development.
Most notably, it is devoted to the promising

concepts of aspect-oriented programming, gen-
erative programming and, particularly, to multi-
paradigm software development.

The move towards multi-paradigm software de-
velopment can be felt not only in new soft-
ware development paradigms — e.g. aspect-
oriented programming, which is bound to other
paradigms from the first principles — it is
present already in object-oriented programming.
It is even more notable at the language level.
It is hard to find a language that is pure in
the sense of prohibiting any other than its pro-
claimed paradigm to be used in it.

What has been described is the implicit form of
multi-paradigm software development. There
are several approaches which make this idea ex-
plicit by enabling a developer not only to com-
bine multiple paradigms, but also to choose the
most appropriate one for the given feature of a
system or family of systems.

The rest of this article is organized as follows.
Section 2 explores the concept of paradigm in
computer science in the context of software de-
velopment. Section 3 is an overview of selected
recent post-object-oriented paradigms, namely
aspect-oriented programming approaches and
generative programming. Section 4 proceeds
with recent post-object-oriented approaches that
exhibit explicitly the multi-paradigm character.
Section 5 closes the article with conclusions and
proposals for further work.



134 Towards Multi-Paradigm Software Development

2. The Concept of Paradigm in Software
Development

Paradigm is a very often used — and even more
often abused — word in computer science in
the context of software development. Its impor-
tance arose significantly with the appearance
of so-called multi-paradigm approaches. Be-
fore discussing them, the concept of paradigm
in software development requires a deeper ex-
amination. We must consider both the well-
established meaning of paradigm in science and
the actual meaning of the word in order to find
out when its use in computer science is justi-
fied, and also to gain a better understanding of
the concept of paradigm itself.

The term paradigm in science is strongly re-
lated to Thomas Kuhn and his essay �Kuh70�,
where it is used to denote a consistent collec-
tion of methods and techniques accepted by the
relevant scientific community as a prevailing
methodology of the specific field.

In computer science, the term paradigm denotes
the essence of a software development process
�often referred to as programming, see Sec-
tion 2.1�. Unfortunately, this is not the only
purpose this term is used for. Probably no sci-
ence has accepted this term with such an enthu-
siasm as computer science has; there are a lot
of methods whose authors could not resist the
temptation to raise them to the level of paradigm
�just try a keyword “paradigm” in some citing
index or digital library, e.g. �NEC��. Although
not contradictory to the original meaning of the
word paradigm, such an overuse causes confu-
sion.

The basic meaning of paradigm is example, es-
pecially a typical one, or pattern, which is in
a direct connection to its etymology �Greek “to
show side by side”� �Mer�. The meaning and et-
ymology pose no restriction to the extent of the
example or pattern it refers to. This is reflected
in the common use of the word paradigm today:
on the one hand, it has the meaning of a whole
philosophical and theoretical framework of sci-
entific school �akin to Kuhn’s interpretation�,
while on the other hand, it is simply an example
as in linguistics where it has the meaning of an
example of conjugation or declension showing
a word in all its inflectional forms �Mer�.

Computer science, being a science whose great
part is devoted to a special kind of languages

intended for programming, hosts well both of
these two interpretations of paradigm covered
in more detail in the following text.

2.1. Large-Scale Paradigms

The notion of paradigm in the context of soft-
ware development is used at two levels of gran-
ularity. Let us first discuss the large-scale
meaning of paradigm, which, as it has already
been mentioned, denotes the essence of a soft-
ware development process. Coplien used the
term large-scale paradigm to denote program-
ming paradigms in, as he said, a “popular”
sense �Cop99a�.

Besides software development paradigm and
software engineering paradigm, at least two
more terms are used to refer to large-scale
paradigm of software development: program-
ming paradigm or, simply, programming. Al-
though in common use �for historical reasons�,
one must be carful with these terms because
of possible misunderstanding: programming
sometimes stands for implementation only, as
other phases of a software development process
can also be referred to explicitly �e.g., object-
oriented analysis, object-oriented design, etc.�.

The name of a paradigm reveals its most signif-
icant characteristic �Vra00�. Sometimes it is de-
rived from the central abstraction the paradigm
deals with, as it is a function to functional
paradigm, an object to object-oriented paradigm
�according to �Mey97� it is not object but class
that is the central abstraction in object-oriented
paradigm�, etc.

Lack of a general agreement on which name
denotes which paradigm is a potential source
of confusion. For example, although the term
functional paradigm is usually used to denote
a kind of application paradigm, as opposed to
procedural paradigm, in �Mey97� it is used to
denote exactly the procedural paradigm. It is
hard to blame the author for misuse of the term
knowing that the procedure is often being de-
noted as function.

It must be distinguished between the software
development paradigm itself and themeans used
to support its realization. Unfortunately, this is
another source of confusion. For example, any
paradigm can be visualized by means of a vi-
sual environment and thus it makes no sense to



Towards Multi-Paradigm Software Development 135

speak about the visual paradigm �as in �Bud95��.
Making a complete classification and compar-
ison of the software development paradigms
is beyond the scope of this text; see �Náv96�
for the comparison of selected programming
paradigms regarding the concepts of abstraction
and generalization.

A software development paradigm is constantly
changing, improving, or better to say, refining.
The basic principles it lays on must be pre-
served; otherwise it would evolve into another
paradigm. Consider, for example, the simpli-
fied view on the evolution of object-oriented
paradigm. First, there were commands �im-
perative programming�. Then named groups
of commands appeared, known as procedures
�procedural programming�. Finally, procedures
were incorporated into the data it operated on
yielding objects�classes �object-oriented para-
digm�.

However, according to Kuhn, paradigms do not
evolve, although it could seem so; it is the sci-
entific revolution that ends the old and starts a
new paradigm �Kuh70�. A paradigm is domi-
nant by definition and thus there can be only
one at a time in a given field of science unless
the field is in an unstable state. According to
this, simultaneous existence of several software
development paradigms indicates that the field
of software development is either in an unstable
state, or all these paradigms are parts of the one
not yet fully recognized nor explicitly named
paradigm. That paradigm is beyond the com-
monly recognized paradigms and it is about the
�right� use and combination of those paradigms.
Therefore it can be denoted as metaparadigm.

2.2. Small-Scale Paradigms

The notion of paradigm in computer science
can also be considered at the small-scale level
based on the programming language perspec-
tive. This perception of paradigm is appar-
ent in James O. Coplien’s multi-paradigm de-
sign �Cop99b� �covered in more detail in Sec-
tion 4.2�. According to Coplien et al. �CHW98�,
we can factor out paradigms such as procedures,
inheritance and class templates. We can iden-
tify the common and variable part which to-
gether constitute a paradigm. A paradigm is
then a configuration of commonality and vari-
ability �Cop99b�. This is analogous to conjuga-
tion or declension in natural languages, where

the common is the root of a word and variability
is expressed through the suffixes or prefixes �or
even infixes� added to the root in order to obtain
different forms of the word.

Scope, commonality and variability (SCV) ana-
lysis �CHW98� can be used to describe these
language level paradigms. Here are the defi-
nitions of the three cornerstone terms in SCV
analysis �instead of entities the word objects
was used in �CHW98�, but this could lead to a
confusion with objects in the sense of object-
oriented paradigm�:

Scope (S): a set of entities;

Commonality (C): an assumption held uniformly
across a given set of entities S;

Variability (V): an assumption true for only
some elements of S.

SCV analysis of procedures paradigm illus-
trates the definition �based on an example from
�CHW98��:

S: a collection of similar code fragments, each
to be replaced by a call to some new pro-
cedure P;

C: the code common to all fragments in S;

V: the “uncommon” code in S; variabilities are
handled by parameters to P or custom code
before or after each call to P.

In the context of the small-scale paradigms,
it is hard to find a single-paradigm program-
ming language. The relationship between the
small- and large-scale paradigms is similar to
that between the programming language fea-
tures and programming languages; the large-
scale paradigms consist of the small-scale ones.
We can revise here the source of the name of a
large-scale paradigm: the name of a large-scale
paradigm sometimes comes from the most sig-
nificant small-scale paradigm it contains. For
example, object-oriented �large-scale�paradigm
consists of several �small-scale� paradigms: ob-
ject paradigm, procedure paradigm �methods�,
virtual functions, polymorphism, overloading,
inheritance, etc. Lack of a common agreement
what are the exact characteristics of object-
oriented paradigm makes it impossible to intro-
duce the exact list of the small-scale paradigms
that object-oriented paradigm consists of.



136 Towards Multi-Paradigm Software Development

Having an expressive programming language
that supports multiple paradigms introduces an-
other issue: a method is needed for selecting the
right paradigms for the features that are to be im-
plemented. Such a method is a metaparadigm
with respect to the small-scale paradigms. The
small-scale paradigms metaparadigm is there-
fore a less elusive concept than the large-scale
paradigms metaparadigm. One such small-
scale metaparadigm, multi-paradigm design for
C��, is described in Section 4.2.

One can understand small-scale paradigms as a
programming language issue exclusively, while
large-scale programming paradigms seem to
have a broader meaning as they are affecting all
the phases of software development. Actually,
small-scale paradigms have an impact on all the
phases of software development as well; either
with or without an explicit support in analysis
and design.

3. Recent Software Development
Paradigms

Among the recent software development para-
digms there is a significant group of those that
appeared as a reaction to the issues tackled
but not satisfactorily solved by object-oriented
paradigm. Many of these paradigms actually
build upon object-oriented paradigm. Despite
some of them are claimed not to be bound to
object-oriented paradigm �and, indeed, they are
more generally applicable�, they are still widely
applied in connection with it.

3.1. Beyond Object-Oriented Programming

Humanperception of theworld is to the great ex-
tent based on objects. Object-oriented program-
ming, well-known under the acronym OOP, is
based precisely on this perception of the world
natural to humans. But what is OOP exactly?
This question seems to be an answered one. Ac-
tually, there are plenty of answers to this ques-
tion, but the trouble is that they are all different.
OOP has passed a very long way of changes
to reach the form in which it is known today.
Yet, there is no general agreement about what
its essential properties are �to some, even inher-
itance is not an essential property of OOP, or it is

being denoted as a minor feature �Bud95��. Per-
haps Bertrand Meyer’s viewpoint that “‘object-
oriented’ is not a boolean condition” �Mey97� is
the best characterization of this issue.

OOP is not always the best choice among all the
paradigms. This is recognized even in the OOP
literature. Thus Booch points out that there is
no single paradigm best for all kinds of appli-
cations. But, according to Booch, OOP has an-
other important feature: it can serve as “the ar-
chitectural framework inwhich other paradigms
are employed” �Boo94�. Although this state-
ment is probably overestimated in its applica-
bility to all the paradigms, the truth is that some
multi-paradigm languages �like Leda, see Sec-
tion 4.1� are designed in this fashion. This re-
veals that OOP is multi-paradigmatic in its very
nature and leaves not much space for the object-
oriented purism.

The object-oriented purism comes from the
dogma that everything should be modeled by
objects. But not everything is an object; neither
in the real world, nor in programming. Con-
sider synchronization as a well-known example
of a non-object concept; in natural language, we
would probably refer to it as aspect. The aspects
crosscut the structure of objects �or functional
components, in general� making the code tan-
gled. The pieces of code are either repeated
throughout different objects or unnatural inher-
itance must be involved. Among other inconve-
niences, this “code scattering” has a bad impact
on reuse.

There are also other problems with OOP, in-
cluding those it was supposed to solve, which
are mainly in the areas of reuse �discussed
in �SN97��, adaptability, management of com-
plexity and performance �CE00�. In the sense
of the means for solution at the developer’s dis-
posal— that can be denoted as solution universe
— OOP is not a universal paradigm. For exam-
ple, OOP is not a universal paradigm either in
C�� because it is not capable of making a full
use of all of its features, or in C�� which is
just a part of the solution universe of software
development. OOP encompasses only a few
interesting kinds of commonality and variabi-
lity �Cop99a�. Other kinds are needed as well,
so the non-object-oriented features of program-
ming languages are often used even though the
analysis and design were object-oriented.



Towards Multi-Paradigm Software Development 137

class Point � class Line �
int x�y� int x��y��x��y��
Point�int x� int y������ Line�int x�� int y�� int x�� int y�������
void set�int x� int y������ void set�int x�� int y�� int x�� int y�������
void setX�int x������ int getX��������
void setY�int y������ int getY��������
int getX������� int getX��������
int getY������� int getY��������

� �

aspect ShowAccesses �
before��	 execution�
 �Point �� Line��set
����� �System�out�println��Write����
before��	 execution�
 Point�get
����� �System�out�println��Read����
before��	 execution��Point �� Line��new����� �System�out�println��Create����

�

Fig. 1. Tracking access in AspectJ.

3.2. Aspect-Oriented Programming and
Related Approaches

According to one of those who stood upon
the birth of the aspect-oriented programming,
Gregor Kiczales, aspect-oriented programming
�AOP� is a new programming paradigm that
enables the modularization of crosscutting con-
cerns �KLM�97�. We’ll take a closer look at
four main AOP approaches.

Xerox PARCAspect-Oriented Programming

Most of the AOP terminology �as well as its
name� later adopted by others was coined by
Xerox PARC AOP group. Their research effort
is concentration mainly on AspectJ �Xera�, a
general purpose AOP extension to Java �LK98�.

AOP appeared as a reaction to the problem
known from the generalized procedure langua-
ges �KLM�97�, i.e. languages that use the con-
cept of procedure to capture functionality �be-
sides procedural languages, this includes func-
tional and object-oriented languages as well�.
In such languages some program code frag-
ments that implement a clearly separable aspect
of a system �such as synchronization� are scat-
tered and repeated throughout the program code
that becomes tangled. AOP aims at factoring
out such aspects into separate units. Aspects
crosscut the base code in join points. These
must be specified so aspects could be woven
into the base code by a weaver.

A simple example written in AspectJ v1.0.0
�similar to the example in �LK98�� in Fig. 1
illustrates the idea. Two classes are presented
there, Point and Line, whose methods are of

three kinds: creating, writing and reading �im-
plementation of the methods is omitted�. Sup-
posewewant to be informedwhat kind of access
to these classes has been performed. In ordinary
Java we would have to modify each method of
both Point and Line. Moreover, this would re-
sult in a tangled code. In AspectJ both problems
can be avoided using aspects. In our example
it is the aspect ShowAccesses that solves the
problem. Note that the original code remains
unchanged.

The solution with aspects is undoubtedly more
elegant than the tangled one would be. How-
ever, the information where an aspect is to be
woven �i.e., join points� is included in the as-
pect itself. This complicates the aspect reuse.
AspectJ addresses this problem with abstract
aspects and named sets of join points, so-called
pointcuts.

Adaptive Programming

Adaptive programming �AP�, proposed by De-
meter group �Dem� at Northeastern University
in Boston, deals mainly with the traversal strate-
gies of class diagrams. Demeter group has used
the ideas of AOP several years before the name
aspect-oriented programming was coined. Af-
ter the collaboration with the Xerox PARC AOP
group had begun, Demeter group redefined AP
as “the special case of AOP where some of
the building blocks are expressible in terms of
graphs and where the other building blocks refer
to the graphs using traversal strategies” �build-
ing block stands for aspect or component� �Lie�.



138 Towards Multi-Paradigm Software Development

Fig. 2. Traversal strategies �from �Lie97�, c�1997 Northeastern University�.

The traversal strategies are partial graph speci-
fications through mentioning a few isolated cor-
nerstone nodes and edges, and thus they cross-
cut the graphs they are intended for.

An example of AP is presented in Fig. 2. The
left part of the figure presents a UML class
diagram of a system. Assume we would like
to count the people waiting at the bus sta-
tions along the bus route. In ordinary OOP
this would require either the implementation of
small methods in all of the affected classes �de-
picted shaded� or rough breaking of the encap-
sulation by exposing someof the classes’ private
data.

If we use a traversal strategy, as it is proposed in
AP, there is no need for a change in the existing
classes. In this case, the traversal strategy:

from BusRoute through BusStop to Person

solves the problem of getting to objects of the
class Person along the bus route, which is suf-
ficient to count them. The right part of Fig. 2
demonstrates the robustness of this technique:
the traversal strategy mentioned above applies
in this case as well although the class diagram
it was constructed for has changed.

Composition Filters

Composition filters �CF� is an aspect-oriented
programming approach in which different as-
pects are expressed as declarative and orthogo-
nalmessage transformation specifications called
filters �AT98�.

A message sent to an object is evaluated and
manipulated by the filters of that object, which
are defined in an ordered set, until it is dis-
carded or dispatched �i.e., activated or dele-
gated to another object�. A filter behavior is
simple: each filter can either accept or reject
the received message, but the semantics of the
operations depends on the filter type. For ex-
ample, if an Error filter accepts the received
message, it is forwarded to the next filter, but if
it was a Dispatch filter, the message would be
executed. A detailed description of CF can be
found in �AWB�93, Koo95�.

In Fig. 3 two sets of filters �written in Sina lan-
guage �Koo95�, which directly adopts the CF
model �AT98, AWB�93��, are shown. These

Point
acc	 ShowAccess�
inputfilters

WriteAccess	 Dispatch  �set� acc�WriteAccess� inner�
��
ReadAccess	 Dispatch  �getX� getY� acc�ReadAccess� inner�
��
CreateAccess	 Dispatch  �Point� acc�CreateAccess� inner�
��
Execute	 Dispatch  �true � inner�
��

Line
acc	 ShowAccess�
inputfilters

WriteAccess	 Dispatch  �set� acc�WriteAccess� inner�
��
ReadAccess	 Dispatch  �getX� getY� getX�� getY�� acc�ReadAccess� inner�
��
CreateAccess	 Dispatch  �Line� acc�CreateAccess� inner�
��
Execute	 Dispatch  �true � inner�
��

Fig. 3. Tracking access example implemented using composition filters approach.



Towards Multi-Paradigm Software Development 139

filters are attached to the Point and Line classes
from Fig. 1. The existence of the class
ShowAccess is presumed. ShowAccess provides
three methods — WriteAccess, ReadAccess

and CreateAccess�— that simply write out the
type of the access. They are called by the three
corresponding Dispatch filters, in case the mes-
sage was accepted. Afterwards, the method of
the inner object, which has actually been called,
is executed �inner���.

From the perspective of AOP, the class
ShowAccess implements the aspect, while the
filters represent the join points. Thus, the join
points in this case are separated from the aspect,
which is better regarding the aspect reuse.

Subject-Oriented Programming

A concept can be defined by naming its prop-
erties. This is sufficient to precisely define and
identify mathematical concepts, but the same
does not apply to natural concepts. Their def-
initions are subjective and thus never complete
�more details about conceptual modeling can be
found in �CE00��.

Subject-oriented programming �SOP�, devel-
oped at IBM as an extension to OOP �IBM�,
is based on subjective views, so-called subjects.
A subject is a collection of classes or class frag-
ments whose hierarchy models its domain in its
own, subjective way. A complete software sys-
tem is then composed out of subjects by writing
the composition rules, which specify correspon-
dence of the subjects �i.e., namespaces�, classes
and members to be composed and how to com-
bine them.

As a result of the research effort in SOP, theWat-
sonSubjectCompilerwas developed �KOHK96�,

which allows partial �subjective� definitions of
C�� programelements and automates the com-
position required to produce a running program.
There are also other platforms SOP support was
built for, such as IBM VisualAge for C�� Ver-
sion 4, HyperJ and Smalltalk.

The example fromFig. 1 reimplemented inWat-
son Subject Compiler-like syntax �the actual
syntax could by slightly different� is presented
in Fig. 4. We assume that the class ShowAccess
is implemented in Access namespace and that
the classes Point and Line are implemented
in the Graphics namespace. The join-points,
represented by composition rules, are separated
from the aspect and represented by a separate
class �as in CF approach�. The composition
rules for the methods getY, getX�, getY� and
getX� are omitted in Fig. 4 �indicated by el-
lipsis� since they are analogous to the rules for
getX or getY�.

This is not a characteristic case of the applica-
tion of SOP �such can be found in �OHBS94,
KOHK96, IBM��; it is presented here in order to
show how a well-known AOP example can be
easily transformed into its SOP version. Never-
theless, there is no general agreement whether
SOP is AOP. In �CE00� SOP is viewed as a spe-
cial case of AOP where the aspects according
to which the system is being decomposed are
chosen in such a manner that they represent dif-
ferent, subjective views of the system. On the
other hand, Kiczales et al. reject the very idea
that SOP �which they call subjective program-
ming� could be AOP, arguing that the methods
from different subjects, which are being auto-
matically composed in SOP, are components in
the AOP sense, since they can be well localized
in a generalized procedure �routine� �KLM�97�.

namespace GraphicsWithAccess�
class Point�
class Line��

GraphicsWithAccess�Point�Point 	 Merge�Graphics�Point�Point� Access�ShowAccess�CreateAccess��
GraphicsWithAccess�Line�Line 	 Merge�Graphics�Point�Line� Access�ShowAccess�CreateAccess��

GraphicsWithAccess�Point�set 	 Merge�Graphics�Point�set� Access�ShowAccess�WriteAccess��
GraphicsWithAccess�Line�set 	 Merge�Graphics�Line�set� Access�ShowAccess�WriteAccess��

GraphicsWithAccess�Point�getX 	 Merge�Graphics�Point�getX� Access�ShowAccess�ReadAccess��
� � �

GraphicsWithAccess�Line�getY� 	 Merge�Graphics�Line�getY�� Access�ShowAccess�ReadAccess��

Fig. 4. Tracking access example implemented using subject-oriented approach.



140 Towards Multi-Paradigm Software Development

But this seems to be a more general issue, since
it applies to AspectJ, too, where it has been
identified as aspectual paradox by Liebrherr et
al. �LLM99�:

An aspect described in AspectJ, the
Xerox PARC’s AOP language, which
has a construct for specifying aspects,
is by definition no longer an aspect,
as it has just been captured in a �new
kind of� generalized routine.

As observed in �Cza98�, SOP is close to Gen-
Voca �BG97�, a successful approach to software
reuse. In GenVoca, systems are composed out
of layers according to design rules: GenVoca
layers can be easily simulated by subjects.

3.3. Generative Programming

Krysztof Czarnecki and Ulrich Eisenecker pro-
pose a comprehensive software development
paradigm which brings together the object-ori-
ented analysis and design methods with domain
engineering methods that enable development
of the families of systems: generative program-
ming �CE00�:

Generative programming �GP� is a
software engineering paradigmbased

on modeling software systems fami-
lies such that, given a particular re-
quirements specification, a highly cus-
tomized and optimized intermediate
or end-product can be automatically
manufactured on demand from ele-
mentary, reusable implementation
components by means of configura-
tion knowledge.

GP is a unifying paradigm—it is closely related
to four other paradigms �see Figure 5�:

� object-oriented programming, providing ef-
fective system modeling techniques,

� generic programming, enabling reuse through
parameterization,

� domain-specific languages, increasing the
abstraction level for a particular domain, and

� aspect-oriented programming, used to achi-
eve the separation of concerns.

In order to be used, GP first has to be tailored
to a particular domain. This process will yield
a methodology for the families of systems to be
developed, which can be viewed as a paradigm
in its own right. This gives a certain meta-
paradigm flavor to GP.

In the solution domain, GP requires metapro-
gramming for weaving and automatic config-
uration. To support domain-specific notations,
syntactic extensions are needed. Active libraries

Xerox PARC Aspect-
Oriented Programming

Composition Filters

Demeter�Adaptive
Programming

Subject-Oriented
Programming

S
S
S
S
S
S
SSw

Q
Q
Q
Q
QQs�

�
�
�
�
���

Object-Oriented
Programming

Generic
Programming

Domain-Specific
Languages

Aspect-Oriented
Programming

Q
Q
Q
Q
QQs�

�
�
�
�
���

�
�
�
�
�
�
���

Generative
Programming

Fig. 5. Generative programming and related paradigms. The arrows represent “is incorporated into” relationship.



Towards Multi-Paradigm Software Development 141

are proposed in �CE00�, which can be viewed
as knowledgeable agents interacting with each
other to produce concrete components, as ap-
propriate to cover this requirement.

4. Multi-Paradigm Approaches

In the survey of recent post-object-oriented soft-
ware development paradigms presented in the
previous section a spontaneous move towards
the integration of paradigms became apparent.
This section proceeds with explicit multi-para-
digm approaches.

4.1. Multi-Paradigm Programming in Leda

The question how to support multi-paradigm
programming at the language level can be an-
swered simply: create a multi-paradigm lan-
guage. Timothy Budd took this route by cre-
ating a multi-paradigm programming language
called Leda.

According to Budd, Leda supports four pro-
gramming paradigms �Bud95�: imperative �pro-
cedural, to be more precise� logic, functional,
and object-oriented. The term paradigm, as
used by Budd, denotes a large-scale paradigm
�with respect to the classification of paradigms
introduced in Section 2�. This means that Leda
actually supports more than four small-scale
paradigms. This is clear having in mind that,
for example, object-oriented paradigm breaks
down into six or more small-scale paradigms,
as has been shown in Section 4.2. Nevertheless,
in order not to digress from the intent of this
approach, just the mechanisms by which each
of the four proclaimed paradigms is supported
in the language will be discussed.

Leda has a Pascal-like �i.e., Algol-like� syntax
and, moreover, in Leda the mechanism upon
which all the four supported paradigms realiza-
tion is based on are functions �procedures that
return values�. This makes a good background
for procedural paradigm, denoted by Budd as
imperative.

Logic paradigm is supported by a special type
of function that returns relation data type and
by a special assignment operator ��. These in-
dicate when the inference mechanism, inherent
to logic programming, is to be activated.

Functional paradigm requires no special mech-
anism other than those provided by functions,
because Leda permits a function to be an argu-
ment of another function and to return a func-
tion. Thus, functional paradigm is achieved by
using functions in the recursive fashion while
refraining from assignments.

In addition to the basic mechanisms of object-
oriented paradigm, such as classes, inheritance,
encapsulation etc., Leda also supports parame-
terized types �considered by some authors a part
of object-oriented paradigm �Mey97��.

Despite Leda is not widely used, it is worth con-
sideration because it demonstrates the combina-
tion of paradigms. For example, the inference
mechanism of logic programming can be used
inside of a procedure.

Of course, creating a language that supports
multiple paradigms and expecting it to be the
best language for programming is similar to
a search for the best programming paradigm.
No matter how many paradigms are supported
in a programming language, the number is fi-
nite and, obviously, it does not embrace future
paradigms. One can argue that it is possible
to extend the language with new programming
mechanisms in order to support new paradigms.
This is not only possible, but often practiced.
Unfortunately, due to limitations set by parsing
methods, programming languages cannot be ex-
tended indefinitely.

Leda is an example of a language created �from
scratch� in order to support multiple paradigms.
We can study existing interconnecting languages
that support different paradigms through an in-
terface instead of making a completely new lan-
guage �a sort of language reuse�. There is also
a possibility of implementing one language on
top of the other, but this leads to a certain degra-
dation of performance. An example of intercon-
necting object-oriented and logic programming
�Loops andXeroxQuintus Prolog� can be found
in �KE88�.

There are lots of approaches that fall into this
category. Yet another approach and an overview
of similar approaches, together with the discus-
sion of the problems of paradigms integration,
can be found in �VS95�. Such approaches are
popular especially in the field of artificial in-
telligence because of the need to combine the



142 Towards Multi-Paradigm Software Development

two paradigms traditionally used in this field,
logic and functional programming, both with
each other and together with OOP.

Different paradigms are expressed using differ-
ent syntax. BETA language �Mad00� is sup-
posed to overcome this inconvenience through
a unified syntax achieved by introducing the so-
called pattern as an abstraction of all other pro-
gramming language constructs appearing in the
paradigms it supports. The approach is there-
fore denoted as unified paradigm, but it is not
fundamentally different from other “created to
be multi-paradigm” languages.

4.2. Multi-Paradigm Design for C++

Multi-paradigmdesign forC++ �MPD�, as pro-
posed by Coplien �Cop99b, Cop00�, has its roots
in the multi-paradigm features of C��. De-
spite these multi-paradigm features, C�� is of-
ten considered to be just an object-oriented lan-
guage. As such, C�� is used to implement the
systems designed according to object-oriented
paradigm. However, non-object-oriented fea-
tures of C�� are widely used, but without a
support in the �object-oriented� design.

MPD is a metaparadigm intended for develop-
ing families of systems, therefore akin to do-
main engineering approaches. It deals with
choosing the appropriate paradigm for a fea-
ture being designed and implemented. MPD
is based on SCV analysis �discussed in Sec-
tion 2.2� or, to be more precise, SCVR analysis,
where R stands for the relationship between the
domains �Cop00�, which are covered by vari-
ability dependency graphs �explained further in
this section�. On the other hand, neither SCV,
nor SCVR analysis is mentioned in �Cop99b�;
the term commonality and variability analysis
is used instead to denote the same thing. Com-
monality analysis concentrates on common at-
tributes while the aim of variability analysis is
to parameterize the variation.

The major steps in MPD are: commonality and
variability analysis of the application domain,
commonality and variability analysis of the so-
lution domain, transformational analysis and
translation from the transformational analysis to
the code. These steps need not to be performed
sequentially. They can be performed in par-
allel �to some extent� and revisited as needed.

Before starting the actual MPD, it is recom-
mended to evaluate the possibility to reuse an
existing �similar� design. If the commonali-
ties and variabilities of the application domain
do not fit any existing solution domain struc-
tures, creation of a new application-oriented
�i.e., domain-specific� language should be con-
sidered.

Application domain analysis. Commonality
analysis of the application domain �usually de-
noted as problem domain� starts with finding
commonality domains and creating domain dic-
tionary. It then proceeds in parallel with vari-
ability analysis, whose results — the parame-
ters of variationof a given commonality domain
and their characteristics — are being summa-
rized in variability tables �one per each com-
monality domain�, as depicted in the upper part
of Fig. 6.

As already mentioned, variability dependency
graphs �denoted also as domain dependency
graphs or diagrams� are used to capture the rela-
tionship between domains and their parameters
of variation,which are also domains. Variability
dependency graphs are directed graphs whose
nodes represent domains and the edges repre-
sent “depends on” relationship �in the direction
indicated by an arrow� between the domains and
their parameters of variation. Despite the sim-
ple notation, variability dependency graphs are
quite useful in identifying overlapping domains
�such domains can be merged� and codepen-
dent domains, i.e. the domains with circular
dependencies �which must be resolved�.

Solution domain analysis. The same com-
monality and variability analysis as applied to
the application domain is applied to the solu-
tion domain, i.e. the programming language.
First, a description with an example is provided
of the identified small-scale paradigms, mani-
fested through the language features, structured
according to commonality, variability and bind-
ing. The analysis proceeds with exploring the
negative variability, a variability that violates
the rule of variation by attacking the underlying
commonality. Apositive variability, as opposed
to the negative one, can be parameterized. The
negative variability has to be kept small. If it be-
comes larger than the commonality, the design



Towards Multi-Paradigm Software Development 143

� � � � � � � � � �

��

�����������	����
�	����	�����������	������	����	���������	

�����������	 �����������	 �������	 �������������	 �������
	�
�������	
�		�		�	

�		�		��
�������	
�
�����������
����������
��������������������
������������������
�����

��
�����
��
��

��������� ��	���������
��������
��������������
�
�����������
���������
�������������

�������	
�����������
����������������
������������������

������
�� ��������� �����������������

�

 ����
�
��	�	!��������	 �
�����	 "�����	 �������	 "
����	
�������
����
�
�����������	
�������

#	  ����������!�������
""#��$%�&������

������
�� $%�&������

"�'��(�������������������������������

����������
���)�
"(&"�( �"�%*�+$,,(�!���������
���������������������������

$�����	����
	����	��������	������	����	���������	

Fig. 6. Transformational analysis in MPD �according to an example from �Cop99b��.

should be refactored to reverse the commonality
and variability.

The results of the solution domain commona-
lity and variability analysis are summarized in
the family table, as shown in the lower part of
Fig. 6, and in the table used to express features
for negative variability, where for each combi-
nation of the kind of commonality and the kind
of variability the language feature for positive
variability and the one for the corresponding
negative variability are introduced.

Transformational analysis. The tables ob-
tained in the preceding analyses are used in
transformational analysis, which is, roughly
speaking, a matching of application domain
structures described in variability tables, with
solution domain structures, i.e. paradigms, de-
scribed in family tables. Figure 6 shows how
this matching is performed. Prior to the match-
ing, the commonality domain has to be genera-
lized �e.g., TEXT EDITING BUFFERS: behavior,
structure�, as well as the parameters of variation
�e.g., output medium: structure, algorithm�.

MPD emphasizes the solution domain analysis
whose underestimation in contemporary soft-
ware development methodologies results in a
gap between design and implementation.

To a certain extent, MPD enforces the reuse of
design: both application and solution domain
analysis can be reused independently; however,
transformational analysis is not reusable. This
brings MPD close to design patterns, as dis-
cussed in �Cop99b�. On the very cover of the de-
sign patterns cornerstone book �GHJV95� Steve
Vinoski points out that a reusable design is “the
real key to software reuse”. This claim is being
justified in the ongoing research on reuse with
design patterns �SN00�.

Indeed, MPD and design patterns seem to be
complementary; design patterns capture design-
ers’ experience by documenting the recommend-
ed solutions for common problems in software
development, while MPD relies on this expe-
rience. However, to make a full use of design
patterns in MPD, and in software development
in general, a better way of their representation
is needed �SNB98�.



144 Towards Multi-Paradigm Software Development

Although the design patterns from �GHJV95�
are inspired by Alexandrian patterns �Ale79�,
not all of them are the patterns in the Alexan-
drian sense: some of them can be formalized as
configurations of commonality and variability
�unlikeAlexandrian patterns�. As such they can
be incorporated directly into MPD �by adding
them to the family table�, as anything else that
can be formalized as a configuration of com-
monality and variability �i.e., other paradigms
and solution domain tools that are not sup-
ported by the main programming language, like
databases or parser generators� �Cop99b�.

One of the problems with MPD is the unsui-
tability of the notation used: only a few types
of tables and variability diagrams with a lot of
relevant details expressed as informal text. With
a better notation, like feature modeling �Vra01�,
transformational analysis could become more
transparent. A better notation could also ease
the transition to the actual program code �the
program skeleton�.

4.3. Intentional Programming

Programming languages with fixed syntax are
limiting otherwise unlimited number of pro-
gramming abstractions. Intentional program-
ming group at Microsoft Research offered a so-
lution to this problem as a new software deve-
lopment paradigm called intentional program-
ming �IP� �Sim99, Sim96� �the project is on hold
from Spring 2001 �Roe��. The idea behind IP is
that programming abstractions, which are in IP
denoted as intentions, could live better without
their hosts, �fixed-syntax� programming lan-
guages, because of their limits in the accepted
notations �due to underlying grammars�.

A program in IP is represented by a so-called
intentional tree, whose nodes represent inten-
tion instances. Each intention instance points
to the corresponding intention declaration node
providing a method which specifies the process
of transforming the subtree headed by the in-
tention instance. The executable program is
obtained in a process called reduction in which
the intentional tree is traversed and transformed
according to the rules indicated by intention
declarations until it consists only of executable
nodes. Such a reduced tree is represented in an
intermediate language. The executable code is
generated from this representation.

It would be inconvenient for a human to directly
maintain the intentional tree. This is being per-
formed in a programming environment with a
special graphic editor instead of the usual text
editor. It enables each intention to have its own
graphic representation. Of course, entering a
program in such an environment is quite differ-
ent from entering it in a classic text editor. A
program text, as we are used to it, is a complete
and an unambiguous representation of the pro-
gram. In IP environment this is not so. What
is presented in IP editor is only a view of the
actual program. To illustrate this, consider one
peculiarity: two distinct variables can have the
same name �even if they reside the same scope�.
This is possible because the intentional tree does
not rely on the names to identify intentions; the
names are provided only for developers’ conve-
nience.

Although it can seem so, IP is not intended to
push out the existing programming languages
from the scene. It can import any program in
any programming language if a parser for that
language — in the form of a library — is added
to IP environment.

4.4. Multi-Paradigm Approaches
Compared

The three multi-paradigm approaches presented
in this section are compared in Table 1 ac-
cording to the selected criteria: the concept of
paradigm the approach enforces, a program-
ming language the approach is bound to, and
whether the approach supports the language ex-
tension.

It is important to note that these three approaches
are not antagonistic; they are complementary.
Multi-paradigm design arms us with techniques
for dealing with multiple paradigms when a
multi-paradigm environment is available. In-
tentional programming enables such an envi-
ronment to be created and maintained easier
than it is the case with classical programming
languages. Finally, multi-paradigm program-
ming in Leda demonstrates how four specific
programming paradigms can be combined.



Towards Multi-Paradigm Software Development 145

Paradigm Language Language extension
MP in Leda large-scale Leda no
MPD small-scale any not applicable
IP small-scale none yes

Table 1. The three multi-paradigm approaches compared.

5. Conclusions and Further Work

The concept of paradigm in computer science
in the context of software development has been
analyzed in this article. Two distinct meanings
of paradigm in software development have been
identified and discussed: large-scale and small-
scale.

A survey of selected post-object-oriented para-
digms, namely aspect-oriented approaches and
generative programming, has been presented.
A growing multi-paradigm tendency has been
identified in these approaches. This tendency
has materialized into explicit multi-paradigm
approaches. Three such approaches have been
discussed and compared: multi-paradigm pro-
gramming in Leda, multi-paradigm design for
C��, and intentional programming.

Multi-paradigm approach to software develop-
ment makes the question which paradigm is
the best �and therefore should replace all other
paradigms� a meaningless one. It has a poten-
tial of incorporating all the paradigms at dis-
posal of the solution domain. It is a paradigm
of paradigms: a metaparadigm.

However,multi-paradigm software development
must be further improved and refined if it is
to be used in its full strength. Among the
multi-paradigm approaches considered, multi-
paradigm design �for C���, described in Sec-
tion 4.2, seems to be the most appropriate as
the basis for the future form of multi-paradigm
software development.

Multi-paradigm design can be tailored to any
programming language by applying common-
ality and variability analysis to it. It would
be particularly interesting to establish multi-
paradigm design for AspectJ �see Section 3.2�
since it could help to understand better the re-
lationship between multi-paradigm design and
aspect-oriented programming �although, of co-
urse, AspectJ is not the same as aspect-oriented

programming in general�, which Coplien de-
noted as “the most fully general implementation
of multi-paradigm design possible” �Cop00�.
An initialwork towards establishingmulti-para-
digm design for AspectJ has been reported in
�Vra01�.

The notation used in multi-paradigm design,
which besides informal description embraces
only two types of tables and a kind of sim-
ple graphs, is not appropriate. This is appa-
rent especially during transformational analysis.
Similarly to commonality and variability analy-
sis of multi-paradigm design, feature modeling
also expresses commonalities and variabilities
explicitly, but using a more sophisticated no-
tation �see �CE00� for more details on feature
modeling and feature diagrams�. Both solu-
tion and application domains can be represented
as feature models, as has been demonstrated
in �Vra01�. This eases transformational analysis
and brings multi-paradigm design and genera-
tive programming closer to each other.

Acknowledgments

This work was partially supported by Slovak
Science Grant Agency, grant No. G1�7611�20.
I would like to thank Pavol Návrat for his valu-
able suggestions.

References

�Ale79� C. ALEXANDER. The Timeless Way of Building.
Oxford University Press, 1979. Cited in �Cop99b�.

�AT98� M. AKSIT AND B. TEKINERDOGAN. Solving the
modeling problems of object-oriented languages by
composing multiple aspects using composition fil-
ters. In Proc. of the Aspect-Oriented Programming
Workshop at ECOOP’98, 1998. Available at �Twe�.

�AWB�93� M. AKSIT, K. WAKITA, J. BOSCH,
L. BERGMANS, AND A. YONEZAWA. Abstracting
object-interactions using composition-filters. In



146 Towards Multi-Paradigm Software Development

Proc. of 7thEuropean Conference on Object-
Oriented Programming (ECOPP’93) Workshop,
LNCS 791, pages 152–184, Kaiserslautern, Ger-
many, 1993. Springer. Available at �Twe�.

�BG97� D. BATORY AND B. J. GERACI. Composition vali-
dation and subjectivity inGenVoca generators. IEEE
Transactions on Software Engineering (special is-
sue on Software Reuse), pages 67–82, February
1997. Available at �Pro�.

�Boo94� G. BOOCH. Object-Oriented Analysis and De-
sign with Applications. Addison-Wesley Publishing
Company, second edition, 1994.

�Bud95� T. A. BUDD. Multiparadigm Programming in
Leda. Addison-Wesley, 1995.

�CE00� K. CZARNECKI AND U. EISENECKER. Generative
Programing: Principles, Techniques, and Tools.
Addison-Wesley, 2000.

�CHW98� J. COPLIEN, D. HOFFMAN, AND D. WEISS.
Commonality and variability in software engi-
neering. IEEE Software, 15�6�, November 1998.
Available at �Cop�.

�Cop� J. O. COPLIEN. Home page. http���www�bell�
labs�com�people�cope. Accessed on Novem-
ber 15, 2001.

�Cop99a� J. O. COPLIEN. Multi-paradigm design and im-
plementation in C��. Slides and notes of the
tutorial given at 1st International Conference on
Generative and Component-Based Software Engi-
neering (GCSE’99), Erfurt, Germany, September
1999. Available at �Cop�.

�Cop99b� J. O. COPLIEN. Multi-Paradigm Design for
C++. Addison-Wesley, 1999.

�Cop00� J. O. COPLIEN. Multi-Paradigm Design. PhD
thesis, Vrije Universiteit Brussel, Belgium, 2000.
Available at �Cop�.

�Cza� K. CZARNECKI. Home page.
http���www�prakinf�tu�ilmenau�de��czarn.
Accessed on November 15, 2001.

�Cza98� K. CZARNECKI. Generative Programming:
Principles and Techniques of Software Engineering
Based on Automated Configuration and Fragment-
Based Component Models. PhD thesis, Technical
University of Ilmenau, Germany, 1998. Partially
available at �Cza�.

�Dem� Demeter group. Home page.
http���www�ccs�neu�edu�research�demeter.
Accessed on October 30, 2001.

�GHJV95� E. GAMMA, R. HELM, R. JOHNSON, AND
J. VLISSIDES. Design Patterns: Elements of
Reusable Object-Oriented Software. Addison-
Wesley, 1995.

�IBM� IBM Research. Subject-Oriented Programming
home page.
http���www�research�ibm�com�sop. Accessed
on August 15, 2000.

�KE88� T. KOSCHMANN AND M. W. EVENS. Bridging the
gap between object-oriented and logic program-
ming. IEEE Software, 60:36–42, July 1988.

�KLM�97� G. KICZALES, J. LAMPING, A. MENDHEKAR,
C. MAEDA, C. V. LOPES, J.-M. LOINGTIER, AND
J. IRWIN. Aspect-oriented programming. In M. Ak-
sit and S. Matsuoka, editors, Proc. of 11th Euro-
pean Conference on Object-Oriented Programming
(ECOOP’97), LNCS1241, Jyväskylä, Finland, June
1997. Springer. Available at �Xerb�.

�KOHK96� M. KAPLAN, H. OSSHER, W. HARRISON, AND
V. KRUSKAL. Subject-oriented design and the wat-
son subject compiler. In 11th Annual ACM Con-
ference on Object-Oriented Programming Systems,
Languages and Applications (OOPSLA’96), 1996.
Available at �IBM�.

�Koo95� P. S. KOOPMANS. On the definition and imple-
mentation of the Sina�st language. Master’s thesis,
Dept. of Computer Science, University of Twente,
The Netherlands, August 1995. Available at �Twe�.

�Kuh70� T. S. KUHN. The Structure of Scientific Revolu-
tions. University of Chicago Press, Chicago, 1970.
Czech translation, OIKYMENH, 1997.

�Lie� K. J. LIEBERHERR. Connections between Deme-
ter�adaptive programming and aspect-oriented pro-
gramming. Web document, College of Computer
Science, Northeastern University, Boston, USA.
Available at �Dem�.

�Lie97� K. J. LIEBERHERR. Demeter and aspect-oriented
programming: Why are programs hard to evolve?
Presentation slides, 3rd Conference Smalltalk und
Java in Industrie und Ausbildung (STJA 97), Erfurt,
Germany, 1997. Available at �Dem�.

�LK98� C. V. LOPES AND G. KICZALES. Recent de-
velopments in AspectJ. In Proc. of 12th Eu-
ropean Conference on Object-Oriented Program-
ming (ECOPP’98) Workshops, Demos, and Posters,
LNCS 1543, Brussels, Belgium, July 1998.
Springer. Available at �Xerb�.

�LLM99� K. J. LIEBERHERR, D. LORENZ, AND
M. MEZINI. Programming with aspectual com-
ponents. Technical Report NU-CCS-99-01, Col-
lege of Computer Science, Northeastern University,
Boston, MA, March 1999. Available at �Dem�.

�Mad00� O. L. MADSEN. Towards a unified program-
ming language. In J. L. Knudsen, editor, Proc.
of 14th European Conference on Object-Oriented
Programming(ECOOP 2000), Sophia Antipolis and
Cannes, France, June 2000. Springer LNCS 1850.

�Mer� Merriam-Webster OnLine. Merriam-Webster’s
Collegiate Dictionary. http���www�m�w�com. Ac-
cessed on November 15, 2001.

�Mey97� B. MEYER. Object-Oriented Analysis Software
Construction. Prentice Hall, second edition, 1997.

�NEC� NEC Research Institute. ResearchIndex: The
NECI Scientific Digital Research Library.
http���citeseer�nj�nec�com. Accessed on
November 15, 2001.



Towards Multi-Paradigm Software Development 147

�Náv96� P.NÁVRAT.Acloser look at programming exper-
tise: Critical survey of some methodological issues.
Information and Software Technology,38�1�:37–46,
1996.

�OHBS94� H.OSSHER, W.HARRISON, F. BUDINSKY, AND
I. SIMMONDS. Subject-oriented programming: Sup-
porting decentralized development of objects. In
Proc. of 7th IBM Conference on Object-Oriented
Technology, July 1994. Available at �IBM�.

�Pro� Product-Line Architecture Research group. Home
page. http���www�cs�utexas�edu�users�
schwartz. Accessed on November 15, 2001.

�Roe� L. ROEDER. Home page.
http���www�aisto�com�roeder. Accessed on
November 21, 2001.

�Sim96� C. SIMONYI. Intentional programming — inno-
vation in the legacy age, June 1996. Presented at
IFIP WG 2.1 meeting, available at �Roe�.

�Sim99� C. SIMONYI. The future is intentional. IEEE
Computer, 32�5�:56–57, May 1999.

�SN97� M. SMOLÁROVÁ AND P. NÁVRAT. Software reuse:
Principles, patterns, prospects. Journal of Comput-
ing and Information Technology, 5�1�:33–48, 1997.

�SN00� M. SMOLÁROVÁ AND P. NÁVRAT. Reuse with de-
sign patterns: Towards pattern-based design. In
Y. Feng, D. Notkin, and M. Gaudel, editors, Proc.
Software: Theory and Practice, pages 232–235,
Beijing, China, 2000. PHEI - Publishing House of
Electronics Industry.

�SNB98� M. SMOLÁROVÁ, P. NÁVRAT, AND M. BE-
LIKOVÁ. Abstracting and generalising with design
patterns. In A. G. U. Güdükbay, T Dayar and
E. Gelenbe, editors, Proc. of 13th International
Symposium on Computer and Information Sciences
(ISCIS’98), pages 551–558, Belek-Antalya, Turkey,
1998. IOS Press.

�Twe� Twente Research and Education on Soft-
ware Engineering �TRESE� group. Home page.
http���trese�cs�utwente�nl. Accessed on
November 15, 2001.

�Vra00� V. VRANIĆ. Multiple software development
paradigms and multi-paradigm software develop-
ment. In J. Zendulka, editor, Proc. of 3rd Inter-
national Conference on Information Systems Mod-
elling (ISM 2000), pages 191–196, Rožnov pod
Radhoštěm, Czech Republic, May 2000. MARQ.

�Vra01� V. VRANIĆ. AspectJ paradigm model: A basis
for multi-paradigm design for AspectJ. In J. Bosch,
editor, Proc. of 3rd International Conference on
Generative and Component-Based Software Engi-
neering (GCSE 2001), LNCS 2186, pages 48–57,
Erfurt, Germany, September 2001. Springer.

�VS95� S. VRANEŠ AND M. STANOJEVIĆ. Integrating
multiple paradigms within the blackboard frame-
work. IEEE Transactions on Software Engineering,
21�3�:244–262, 1995.

�Xera� Xerox PARC. AspectJ home page.
http���aspectj�org. Accessed onNovember 15,
2001.

�Xerb� Xerox PARC. Software Design Area home page.
http���www�parc�xerox�com�sda. Accessed on
November 15, 2001.

Received: February, 2001
Revised: November, 2001

Accepted: December, 2001

Contact address:

Valentino Vranić
Department of Computer Science and Engineering,

Faculty of Electrical Engineering and Information Technology
Slovak University of Technology in Bratislava, Slovakia

Ilkovičova 3
812 19 Bratislava

Slovakia
Phone: �421 �2� 602 91 548

Fax: �421 �2� 654 20 587
e-mail: vranic�elf�stuba�sk

WWW: http���www�dcs�elf�stuba�sk��vranic

VALENTINO VRANIĆ received his Bc. �BSc.� in 1997, and his Ing.
�MSc.� in 1999, both in information technology, and both from the
Slovak University of Technology in Bratislava. Since 1999 he is a
PhD student at the Department of Computer Science and Engineering,
Faculty of Electrical Engineering and Information Technology of the
Slovak University of Technology in Bratislava. His main research in-
terests are multi-paradigm software development and aspect-oriented
programming. He is a member of the Slovak Society for Computer
Science.



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Dot Gain 20%)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.3
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams false
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveEPSInfo true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth 8
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /FlateEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth 8
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /FlateEncode
  /AutoFilterGrayImages false
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputCondition ()
  /PDFXRegistryName (http://www.color.org)
  /PDFXTrapped /Unknown

  /Description <<
    /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000500044004600200064006f007400e900730020006400270075006e00650020007200e90073006f006c007500740069006f006e002000e9006c0065007600e9006500200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200061006d00e9006c0069006f007200e90065002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
    /JPN <FEFF3053306e8a2d5b9a306f30019ad889e350cf5ea6753b50cf3092542b308000200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
    /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e0020006d00690074002000650069006e006500720020006800f60068006500720065006e002000420069006c0064006100750066006c00f600730075006e0067002c00200075006d002000650069006e0065002000760065007200620065007300730065007200740065002000420069006c0064007100750061006c0069007400e400740020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
    /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d00610020007200650073006f006c007500e700e3006f00200064006500200069006d006100670065006d0020007300750070006500720069006f0072002000700061007200610020006f006200740065007200200075006d00610020007100750061006c0069006400610064006500200064006500200069006d0070007200650073007300e3006f0020006d0065006c0068006f0072002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e0030002000650020007300750070006500720069006f0072002e>
    /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f8006a006500720065002000620069006c006c00650064006f0070006c00f80073006e0069006e006700200066006f00720020006100740020006600e50020006200650064007200650020007500640073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
    /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e0020006d00650074002000650065006e00200068006f0067006500720065002000610066006200650065006c00640069006e00670073007200650073006f006c007500740069006500200076006f006f0072002000650065006e0020006200650074006500720065002000610066006400720075006b006b00770061006c00690074006500690074002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
    /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006e0020006d00610079006f00720020007200650073006f006c00750063006900f3006e00200064006500200069006d006100670065006e00200070006100720061002000610075006d0065006e0074006100720020006c0061002000630061006c006900640061006400200061006c00200069006d007000720069006d00690072002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
    /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f0069006400610061006e0020006c0075006f006400610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e002000740075006c006f0073007400750073006c00610061007400750020006f006e0020006b006f0072006b006500610020006a00610020006b007500760061006e0020007400610072006b006b007500750073002000730075007500720069002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a00610020004100630072006f006200610074002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
    /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000500044004600200063006f006e00200075006e00610020007200690073006f006c0075007a0069006f006e00650020006d0061006700670069006f00720065002000700065007200200075006e00610020007100750061006c0069007400e00020006400690020007300740061006d007000610020006d00690067006c0069006f00720065002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
    /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f80079006500720065002000620069006c00640065006f00700070006c00f80073006e0069006e006700200066006f00720020006200650064007200650020007500740073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
    /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e00740020006d006500640020006800f6006700720065002000620069006c0064007500700070006c00f60073006e0069006e00670020006f006300680020006400e40072006d006500640020006600e50020006200e400740074007200650020007500740073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
    /GRE <FEFF03A703C103B703C303B903BC03BF03C003BF03B903AE03C303C403B5002003B103C503C403AD03C2002003C403B903C2002003C103C503B803BC03AF03C303B503B903C2002003B303B903B1002003BD03B1002003B403B703BC03B903BF03C503C103B303AE03C303B503C403B5002003AD03B303B303C103B103C603B10020005000440046002003BC03B5002003C503C803B703BB03CC03C403B503C103B7002003B103BD03AC03BB03C503C303B7002003B503B903BA03CC03BD03C903BD002003B303B903B1002003B203B503BB03C403B903C903BC03AD03BD03B7002003C003BF03B903CC03C403B703C403B1002003B503BA03C403CD03C003C903C303B703C2002E0020039C03C003BF03C103B503AF03C403B5002003BD03B1002003B103BD03BF03AF03BE03B503C403B5002003C403B1002003AD03B303B303C103B103C603B10020005000440046002003BC03AD03C303C9002003C403BF03C50020004100630072006F006200610074002003BA03B103B9002000520065006100640065007200200035002E0030002003BA03B103B9002003BC03B503C403B103B303B503BD03AD03C303C403B503C103C903BD002003B503BA03B403CC03C303B503C903BD002E>
    /ARA <FEFF06270633062A062E062F0645002006470630064700200627064406360648062706280637002006440625064606340627062100200648062B06270626064200200050004400460020062806230639064406490020062F06420629002006440644063506480631062900200645064600200623062C06440020062A062D0633064A06460020062C0648062F062900200627064406370628062706390629002E0020064A064506430646002006440648062B06270626064200200050004400460020062306460020064A062A064500200641062A062D064706270020064506390020004100630072006F0062006100740020064800520065006100640065007200200035002E003000200648062706440623062D062F062B002E>
    /CZE <FEFF005400610074006F0020006E006100730074006100760065006E00ED00200070006F0075017E0069006A007400650020006B0020007600790074007600E101590065006E00ED00200064006F006B0075006D0065006E0074016F0020005000440046002000730020007600790161016100ED006D00200072006F007A006C006901610065006E00ED006D0020006F006200720061007A016F002C002000610062007900730074006500200064006F007300E10068006C00690020007600790161016100ED0020006B00760061006C0069007400790020007400690073006B0075002E00200044006F006B0075006D0065006E007400790020005000440046002000620075006400650020006D006F017E006E00E90020006F007400650076015900ED007400200076002000700072006F006700720061006D0065006300680020004100630072006F00620061007400200061002000520065006100640065007200200035002E0030002000610020006E006F0076011B006A016100ED00630068002E>
    /HUN <FEFF0045007A0065006B006B0065006C0020006100200062006500E1006C006C00ED007400E10073006F006B006B0061006C00200068006F007A0068006100740020006C00E9007400720065002000610020006A006F006200620020006E0079006F006D00740061007400E1007300690020006D0069006E0151007300E90067002000E9007200640065006B00E900620065006E0020006D00610067006100730061006200620020006B00E9007000660065006C0062006F006E007400E1007300FA002000500044004600200064006F006B0075006D0065006E00740075006D006F006B00610074002E00200041002000500044004600200064006F006B0075006D0065006E00740075006D006F006B00200061007A0020004100630072006F006200610074002000E9007300200061002000520065006100640065007200200035002E0030002C00200069006C006C00650074007600650020006B00E9007301510062006200690020007600650072007A006900F3006900760061006C0020006E00790069007400680061007400F3006B0020006D00650067002E>
    /POL <FEFF0055017C0079006A0020007400790063006800200075007300740061007700690065014400200064006F002000740077006F0072007A0065006E0069006100200064006F006B0075006D0065006E007400F3007700200050004400460020007A002000770079017C0073007A010500200072006F007A0064007A00690065006C0063007A006F015B0063006901050020006F006200720061007A006B00F30077002C0020007A0061007000650077006E00690061006A0105006301050020006C006500700073007A01050020006A0061006B006F015B0107002000770079006400720075006B00F30077002E00200044006F006B0075006D0065006E0074007900200050004400460020006D006F0067010500200062007901070020006F007400770069006500720061006E00650020007A006100200070006F006D006F00630105002000700072006F006700720061006D00F300770020004100630072006F0062006100740020006F00720061007A002000520065006100640065007200200035002E00300020006C007500620020006E006F00770073007A007900630068002E>
    /RUS <FEFF04180441043F043E043B044C04370443043904420435002004340430043D043D044B04350020043F043004400430043C043504420440044B00200434043B044F00200441043E043704340430043D0438044F0020005000440046002D0434043E043A0443043C0435043D0442043E04320020044100200431043E043B0435043500200432044B0441043E043A0438043C00200440043004370440043504480435043D04380435043C00200441002004460435043B044C044E0020043F043E043B044304470435043D0438044F0020043B04430447044804350433043E0020043A04300447043504410442043204300020043F04350447043004420438002E0020005000440046002D0434043E043A0443043C0435043D0442044B0020043E0442043A0440044B04320430044E04420441044F002004320020043F04400438043B043E04360435043D0438044F04450020004100630072006F00620061007400200438002000520065006100640065007200200035002E003000200028043800200431043E043B043504350020043F043E04370434043D04380445002004320435044004410438044F04450029002E>
    /TUR <FEFF004400610068006100200069007900690020006200610073006B01310020006B0061006C006900740065007300690020006900E70069006E002000640061006800610020007900FC006B00730065006B0020006700F6007200FC006E007400FC002000E700F6007A00FC006E00FC0072006C00FC011F00FC006E0065002000730061006800690070002000500044004600200064006F007300790061006C0061007201310020006F006C0075015F007400750072006D0061006B00200061006D0061006301310079006C006100200062007500200061007900610072006C0061007201310020006B0075006C006C0061006E0131006E002E002000500044004600200064006F007300790061006C0061007201310020004100630072006F006200610074002000520065006100640065007200200035002E003000200076006500200073006F006E00720061007301310020007300FC007200FC006D006C0065007200690079006C00650020006100E70131006C006100620069006C00690072002E>
    /HEB (Use these settings to create PDF documents with higher image resolution for improved printing quality. The PDF documents can be opened with Acrobat and Reader 5.0 and later.)
    /ENU <FEFF005500730065002000740068006500730065002000730065007400740069006e0067007300200074006f0020006300720065006100740065002000500044004600200064006f00630075006d0065006e0074007300200077006900740068002000680069006700680065007200200069006d0061006700650020007200650073006f006c007500740069006f006e00200066006f007200200069006d00700072006f0076006500640020007000720069006e00740069006e00670020007100750061006c006900740079002e0020005400680065002000500044004600200064006f00630075006d0065006e00740073002000630061006e0020006200650020006f00700065006e00650064002000770069007400680020004100630072006f00620061007400200061006e0064002000520065006100640065007200200035002e003000200061006e00640020006c0061007400650072002e>
  >>
>> setdistillerparams
<<
  /HWResolution [300 300]
  /PageSize [595.276 841.890]
>> setpagedevice


