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This paper describes the design and implementation of
ATMOL: a domain-specific language for the formulation
and implementation of atmospheric models. ATMOL was
developed in close collaboration with meteorologists at
the Royal Netherlands Meteorological Institute �KNMI�
to ensure ease of use, concise notation, and the adoptation
of common notational conventions. ATMOL’s expressive-
ness allows the formulation of high-level and low-level
model details as language constructs for problem re-
finement and code synthesis. The atmospheric models
specified in ATMOL are translated into efficient numerical
codes with CTADEL, a tool for symbolic manipulation
and code synthesis.
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1. Introduction

The simulation of realistic atmospheric pro-
cesses is computationally intensive. A typical
weather forecast for the next day, for example,
requires about a trillion �1012� arithmetic op-
erations. Even with the immense processing
power of today’s supercomputers, a short-term
weather forecast can take hours to complete on a
high-performance machine. Atmospheric mod-
els, such as climate models, ocean circulation
models, and numerical weather forecast models
are notorious for their demand for computing
power. These scientific applications make a
trade-off between the accuracy of the numerical
solution and the maximum amount of comput-
ing time that can be alloted to produce a solu-
tion.

Because processing power has significantly in-
creased by the development of new high-per-
formance architectures such as massive SMP

machines, this has lead to new opportunities for
improving atmospheric models. In particular,
the discretization and solution methods can be
improved and grid resolutions can be increased.
However, improvements in the model formu-
lation and solution methods require significant
programming efforts, because a simple “plug-
and-play” development paradigm with software
components �24� does not yet exist for scientific
applications.

In addition, it is difficult to develop new scien-
tific software for high-performance machines or
to port existing scientific software to these ma-
chines �21�. This is mainly due to the shortage
and weakness of available development tools.
Even the most advanced restructuring and paral-
lelizing compilers cannot effectively restructure
low-level source codes, see e.g. �6, 10, 20, 25�.

Several software tools and problem-solving en-
vironments �PSEs� �16� have been built that aid
the development of applications for solving sci-
entific problems �4�. Most PSEs do not actu-
ally generate code but primarily offer an envi-
ronment for simulation. Well-known examples
of these are ELLPACK �22�, its parallel version
��ELLPACK �17�, and various simulation tools
programmed in MATLAB �18�. The computa-
tional kernels of these PSEs consist of a large
library of routines containing many numerical
solution methods.

This paper describes the design and implemen-
tation of ATMOL: a domain-specific language
for the formulation and implementation of at-
mospheric models. ATMOL is translated and
compiled into efficient numerical codes with
CTADEL �29, 31, 27�. Code synthesis tools such
as DEQSOL �26�, ALPAL �12�, SCINAPSE �2�, and
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CTADEL generate code from higher-level speci-
fications of PDE-based models. The numerical
knowledge of these systems is determined by
the expressiveness of the problem specification
language and the underlying translation tech-
niques. The many advantages of code synthesis
from a higher-level specification are summa-
rized below.

Increased Productivity

One of our design goals for ATMOL was to ease
the task of developing new codes for atmo-
spheric models and to alleviate the burden of
maintaining these codes. A “plug-and-play”
implementation with software components and
libraries does not exist in the field of scien-
tific computing yet, although several attempts
have been made at this, see e.g. �11�. There-
fore, it is quite common that the simulation
code of a model is written almost entirely from
scratch. Also, the model and its simulation code
require several design and implementation it-
erations before the code can be employed in
a production environment. In each iteration,
the code is modified or completely rewritten
depending on the improvements. Because the
modification of previous versions of code is er-
ror prone and writing new codes for each model
improvement is prohibitively expensive, auto-
mated code synthesis is a valuable approach that
could increase the productivity of implement-
ing atmospheric models. For example, code
synthesis of the “dynamics” part of the HIRLAM
model �9� took about one hour. This is extremely
fast compared to the original implementation of
this code by hand which took several months.
In addition, the generated codes outperformed
the original hand-written codes on several high-
performance machines �29�. The specification
of a model requires some effort when a user is
not familiar with ATMOL. However, the effort to
write a specification of a larger model such as a
weather forecast model in ATMOL is not nearly
as high as writing the full numerical code.

Enhanced Maintainability

Scientific software is subject to a lot of changes
during its lifetime. New methods and tech-
niques are frequently added and existing nu-
merical solution methods are improved over

time. This requires code maintenance, which
is greatly alleviated by automatic code synthe-
sis. Whenever changes are made to the model
description or solution methods, a new code
can be synthesized that reflects these changes.
However, this assumes that the specification
language is powerful enough to enable these
changes to be made to the model description
without too much effort.

Increased Reliability

The construction of numerical models and their
codes by hand involves the use of certain transla-
tions that are based on mathematical principles.
We formalized these rules and implemented
them as transformation rules in a term rewriting
system which drives CTADEL’s code synthesis.
For example, synthesis of the HIRLAM “dynam-
ics” code requires the application of these rules
hundreds of thousands of times. We have veri-
fied that the individual translation rules are cor-
rect. Therefore, the resulting synthesized code
can be assumed to be correct if the model spec-
ification is correct. This had a major impact on
reliability of the model and its code. After com-
paring the synthesized codes for the HIRLAM
system with the original hand-written produc-
tion HIRLAM code, we discovered the differ-
ences which were due to several errors made by
programmers in the original hand-written code.
One error was a programming mistake related
to updating the values at the boundaries of cer-
tain array variables. Another error was found in
the numerical scheme: the forecast model can
deal with spherical grids only, while the model
was originally intended to handle more general
curvi-linear grids. A third problem was found
in the model description involving the wrong
units of dimensionality �the hand-written code
was correct in this respect� and the model for-
mulation was corrected accordingly. Also, we
found that certain assumptions were made in the
original hand-written code which have not been
documented as requirements for the correct use
of the code. By coincidence, these mistakes did
not affect quality of the forecast �a case of luck
rather than wisdom�. Based on these experi-
ences, we believe that formal methods, and in
particular code synthesis from domain-specific
abstract problem specifications, have great ad-
vantages in terms of correctness, reliability, and
consistency of model codes and documentation.
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Flexibility

ATMOL’s extensibility is essential, because it is
impossible to anticipate new model implemen-
tation developments that use specialized and
application-specific solution methods. These
methods may be substantially different from
those used in the specification of other mod-
els, e.g. weather forecast models. Also, a code
synthesis system with hardwired language con-
structs hampers maintainability when new oper-
ators, methods, and algorithms cannot be added
to the system.

The remaining part of this paper is organized
as follows. In Section 2 we present the at-
mospheric modeling language ATMOL and we
illustrate its special features using an example
atmospheric model. Section 3 discusses the de-
sign and implementation of ATMOL and its uni-
form notational conventions for aggregate oper-
ations from which CTADEL derives its power to
translate high-level specification into low-level
program constructs. Finally, some concluding
remarks are given in Section 4.

2. ATMOL

The ATmospheric MOdeling Language �ATMOL�
was developed in close collaboration with me-
teorologists at the Royal Netherlands Meteo-
rological Institute �KNMI� to ensure the ease
of use, concise notation, and the adoptation
of common notational conventions. The high-
level constructs in ATMOL are declarative and
side-effect free which is required for the appli-
cation of transformations to translate and opti-
mize the intermediate stages of the model and
its code. ATMOL is strict and requires the typing
of objects before they are used. Three different
type systems are used to check the model and
to pinpoint problems with the specification at
an early stage. In this section we will introduce
PDE-based scientific models, describe the spec-
ification of those models in ATMOL, and present
example specifications.

2.1. PDE-Based Models

A scientific model can be written generally as a
system of n time-dependent �coupled� PDEs of
the form

�

�t
Li�ui� � Fi�u1� � � � � un� i � 1� � � � � n�

�1�
together with a set of initial conditions and
a set of boundary conditions which are said
to hold on the boundary �Ω of the domain
Ω � IRd �or ICd� with dimension d. Here,
ui � ui�x� t�, i � 1� � � � � n, are called the de-
pendent variables of the PDE problem which
are functions of the space coordinates x � Ω,
and time t. The space coordinates x and time
t are called the independent variables of the
PDE problem. Variables are often referred to
as fields in association with mapping them on
grids. In the sequel we will use the phrase vari-
able and field interchangeably. Fi is a function
involving the ui as well as their space and time
derivatives and Li is a space differential opera-
tor which in most cases is the identity operator,
i.e., Li�ui� � ui, or the Laplacian operator, i.e.,
Li � ∆ � r2. So-called steady-state prob-
lems are time-independent problems in which
the time derivative �

�t on the left-hand side of
Eq. �1� is removed.

2.2. The Specification of the Model
Variables in ATMOL

A model specification starts with the declaration
of independent variables. These are declared
with the construct

space �vars� �time var��

where vars is a comma-separated list of spatial
coordinates with optional index parameters and
var is the time variable. The time variable dec-
laration can be omitted1 to specify a steady state
problem. For example

space �x�i��y�j��z�k�� time t�

declares a three-dimensional model space with
spatial coordinates x, y, and z, discretized on a
grid indexed by variables i, j, and k.

Dependent variables of a model are declared
with the construct

1 We will use the informal meta-notation � � to denote optional constructs throughout this paper.
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var �� � type��lb��ub�� �dim �unit�� � �field coord�

�monotonic mono� �on domain��

This declares a dependent variable var with
its model-specific properties. The type of a
variable is either integer, float, complex, or
boolean, with float the default. The bounds
lb and ub optionally specify the lower bound
and upper bound on the values for the variable.
The unit of a variable is a string that specifies the
dimensional unit, which can be expressed as SI-
units and the most common derivative units and
the “�”, “�” and “�” operators �e.g. �km�s���
and �J�kg�K��. The coord part specifies the de-
pendencies of the variable on the independent
variables �spatial coordinates� and also the type
of grid for each spatial dimension is specified.
The optional mono part declares monotonicity
properties of the variable in one or more spatial
dimensions. The optional domain specifies the
discretized grid domain of the variable.

A scalar variable is declared with only a type
and an optional unit. For example,

r �� float dim �m��

A field is a dependent variable that is mapped
on a grid. It is specified with spatial coordinates
and a discrete grid domain. For example, the
first component of the velocity vector field of
the HIRLAM weather forecast model �9� is de-
clared as

u �� float dim �m�s�
field �x�half��y�grid��z�grid��

on i����n by j����m by k����l�

where the x, y, and z coordinates span the
three dimensional atmospheric space and the
grid and half coordinate annotations specify
the type of grid in each dimension. Value range
and monotonicity information of a variable can
be specified. For example, the pressure field
that can be found in the HIRLAM weather fore-
cast model is declared as

p �� float�	���	
			� dim �Pa�
field �x�grid��y�grid��z�grid��

monotonic k��� on i����n by j����m by k����l�

The pressure variable p can range between 0
and 107000 and increases with the increasing
vertical grid index k �k runs towards the earth
surface�. Monotonicity information is useful

to derive efficient code for certain search func-
tions on grids �28�. The specification of value
ranges is important for the optimization of con-
ditional expressions that implement boundary
conditions.

2.3. The Specification of the Model
Equations in ATMOL

The notational conventions adopted by ATMOL
allows the PDEs of an atmospheric model to be
specified in concise vector notation. Each equa-
tion of the set of coupled PDEs of a model is
defined using the infix “�” operator. The PDE
right-hand sides are arithmetic expressions that
can use any of the PDE operators shown in Ta-
ble 1. The boundary conditions are given as
conditional expressions of the form “E ifL”,
where E is an expression and L is a logical ex-
pression.

Operator Description Alternative Notation

grad E Gradient rE nabla � E

div E Divergence r � E nabla �� E

curl E Curl r� E nabla � E

lapl E Laplacian r2E nabla�� � E

d E�dV Partial derivative �E
�V

int�E� B� Integration
R

B E

�� Dot product �

� Cross product �

Table 1. PDE Operators.

Macros can be defined for convenience in AT-
MOL using the “��” operator. Macros are also
used for specifying the components of vectors
necessary for the formulation of a model in vec-
tor notation. The automatic translation of the
equations to scalar form requires the application
of the chain-rule to compute symbolic deriva-
tives. The chain-rule depends on the coordinate
system used by a model. The coordinate sys-
tem is set by assigning the coordinates and
coefficients macro vectors. For example, the
macro definitions

coordinates �� �x� y�� coefficients �� ��� ���

set a two-dimensional Cartesian coordinate sys-
tem for the model.
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2.4. Declaration of PDE Operators
in ATMOL

New PDE operators can be added to ATMOL.
The syntax of an operator declaration is

op �� � type��lb��ub�� �dim unit� � �field coords� ���E��

The operator op is a functional of the form
F�E1� � � � � En�. Declarations of the arguments
E are of the form
arg �� � type��var��var�� �dim unit� � �field coords�

where arg is a variable name, a wildcard “ ”, or
a symbolic expression that serves as a pattern.
The types are optional and can be any existing
type, including a type variable. When omit-
ted, the type of the arguments are assumed to
be the same as the result type of operator. The
bounds lb and ub specify the lower bound and
upper bound of the return value of the operator,
which can be a symbolic expression using the
variables that are part of the value ranges of the
arguments expressed with variables var��var.
The unit of a variable is a string that specifies
the dimensional unit expressed in SI-units and
most common derivatives of an expression that
calculates the unit from the units of the argu-
ments. The coord part specifies dependencies
of the variable on the independent variables �co-
ordinates� and the type of grid.

Figure 1 depicts the declarations of pre-defined
and most commonly used PDE-operators: de-
rivatives, differences, integrals, and midpoint
quadratures. The derivative operator “df” is the
“inert” variant of the dE�dV partial derivitive
operator. The latter operator applies symbolic
derivation using the chain-rule to obtain the

df�� �� float dim U�� � �� coordinate dim U��
�� float dim �U��U���

df��� ��	grid�overloaded �
 �df�g� df�h� df�c��
df�h�� �� field x�half�� x� �� field x�grid��
df�h�� �� field y�half�� y� �� field y�grid��
df�h�� �� field z�half�� z� �� field z�grid��
df�h�E �� float dim U�� X �� coordinate dim U��

�� float dim �U��U�� �
 �EE��X
X����delta X�
int�� �� float dim U�� � �� domain�coordinate� dim U��

�� float dim �U��U���
int��� ��	grid�overloaded �
 �mid�g� mid�h� trap��
mid�h�� �� field x�half�� x
����� �� field x�grid��
mid�h�� �� field y�half�� y
����� �� field y�grid��
mid�h�� �� field z�half�� z
����� �� field z�grid��
mid�h�E �� float� X 
 L �� U �� domain�coordinate��

�� float �
 sum�E � delta X� X
L��U���

Fig. 1. Derivatives, Differences, Integrals, and
Quadratures.

derivative of E, which results in a form that uses
the inert “df” operator. Notice that U� and U�
are unit variables and U��U� denotes the result-
ing dimensional unit of the “df” operator. The
“df” derivative operator is overloaded and will
be replaced by a concrete operator in the equa-
tions. In this case the concrete operators are the
finite difference operators “df g”, “df h”, and
“df c” that implement three different centered
differences depending on the grid location �at
grid points or at half points�. The implementa-
tion of df h is shown in Figure 1. Similarly, the
integral “int” operator is overloaded and has
three different concrete implementations. The
first two are midpoint quadratues and the third
is the trapezoidal quadrature.

2.5. Specification of the HIRLAM Model

In this section, we illustrate the ATMOL specifi-
cation language with realistic examples from the
“dynamics” and “physics” parts of the HIRLAM
weather forecast system. Due to limitations in
space, only the essential subsets of the “dynam-
ics” and “physics” will be shown. The speci-
fication and code synthesis of the HIRLAM “dy-
namics” and “physics” can be found in �27�.

The atmospheric models adopted by climate
and weather forecast systems are characterized
by two main computational components: the
“dynamics” and the “physics”. The “dynam-
ics” is primarily concerned with the fluid dy-
namics of the atmosphere, while the “physics”
is concerned with the computation of physi-
cal parameterizations. In the “dynamics” part
of a weather forecast system, the Primitive
Equations �14�, which describe the behavior
of the prognostic variables, are solved. In
the “physics” part, the aggregate effect of sub-
grid processes and of the processes not de-
scribed by the PDEs of the primitive equations
is computed, such as the effect of solar radi-
ation on the atmosphere. Both the “dynam-
ics” and “physics” operate on the same three-
dimensional grid that contains a simulated part
of the atmosphere.

Examples of climate and weather forecast sys-
tems with the structure described above are: the
HIRLAM numerical weather forecast system de-
veloped by the HIRLAM project group �7, 9�, the
IFS model of ECMWF and its parallelized ver-
sion �8�, the CCM2 Community Climate Model



294 ATMOL: A Domain-Specific Language for Atmospheric Modeling

Fig. 2. HIRLAM Weather Forecast and Grid Mapping.

developed by the National Center for Atmo-
spheric Research �NCAR� �5�, and the CSIRO
Atmospheric General Circulation Model devel-
oped by the CSIRO Division of Atmospheric Re-
search �19�.

The HIRLAM �HIgh Resolution Limited Area
Model� system �9� is a production code written
in Fortran 77. The HIRLAM system comprises
a so-called “limited area model” that encom-
passes a local part of the globe which is logi-
cally of rectangular shape, see Figure 2 �forecast
shown with Vis-5D �15��. The “dynamics” of
the HIRLAM system is one of the most compu-
tationally intensive numerical routines. In the
“dynamics” a set of three-dimensional coupled
non-linear hyperbolic partial differential equa-
tions is solved.

2.5.1. Dynamics

The surface pressure tendency equation and the
equation for the auxiliary horizontal wind ve-
locity vector field of the HIRLAM “dynamics” �9�
are respectively

�ps

�t
� �

Z 1

0
r � V dz �2�

V �
�

u
v

� �p
�z

�3�

Eq. �2� describes the tendency of the surface
pressure ps and Eq. �3� describes the auxiliary
horizontal wind velocity vector field V with two
components uaux and vaux. These PDEs are dis-
cretized by using finite differences on a logically
rectangular grid.

Arrangements of variables in the horizontal do-
main of atmospheric models were first classi-
fied by Arakawa �3�. The u, v, and p fields are
arranged on a staggered Arakawa-C grid as de-
picted in Figure 3. Variable ps is located on the
staggered grid at the p points, uaux and vaux are
located at the u and v points, respectively.

Fig. 3. Horizontal Arrangement of Variables on an
Arakawa-C Grid.

The first line of the specification of the “dynam-
ics” in ATMOL shown in Figure 4 declares the x,
y, z, and t independent variables and the index
variables i, j, and k that span the entire discrete
region of the domain Ω of the model. Variables
n, m, and l are scalar positive integers which
hold the grid size in the longitudinal, latitudi-
nal, and vertical directions, respectively. The
vertical grid is at least two points high, which
is a useful information for optimal code syn-
thesis. This ensures that the lower and upper
boundary conditions of the model do not apply
simultaneously. Next, two macros are defined
for use in field declarations: atmosphere spans
the entire grid domain and surface spans the
horizontal grid domain on the surface. Finally,
model fields are declared followed by the two
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% Declare spatial and time dimensions:
space �x�i��y�j��z�k�� time t�
% Declare grid size variables n, m, and l:
n �� integer����infinity�� m �� integer����infinity�� l �� integer����infinity��
% For convenience, define macros for two grid domains spanning (i,j,k):
atmosphere �� i����n by j����m by k����l� surface �� i����n by j����m�
% Set coordinate system for symbolic derivation with chain-rule:
coordinates �� �x� y�� coefficients �� �h x� h y��
% Declare the model fields:
u �� float dim �m�s� field �x�half��y�grid��z�grid�� on atmosphere�
v �� float dim �m�s� field �x�grid��y�half��z�grid�� on atmosphere�
u�aux �� float dim �Pa m�s� field �x�half��y�grid��z�half�� on atmosphere�
v�aux �� float dim �Pa m�s� field �x�grid��y�half��z�half�� on atmosphere�
p �� float�	���	
			� dim �Pa� field�x�grid��y�grid��z�grid�� monotonic k��� on atmosphere�
p�s�t �� float dim �Pa�s� field �x�grid��y�grid�� on surface�
% Define macro for the horizontal wind velocity vector components:
V �� �u�aux� v�aux��
% Equations:
p�s�t � �int�nabla �� V� z����l�� % Eq. (2)

V � �u� v� � d p�d z� % Eq. (3)

Fig. 4. Specification of the Surface Pressure Tendency in ATMOL.

equations. Field declarations with the Arakawa-
C grid arrangements shown in Figure 3 and
the equations of the submodel, are specified in
CTADEL as depicted in Figure 4. The half and
grid grid types are declared in ATMOL and are
available as pre-defined types.

2.5.2. Physics

In the so-called cloud routine of the HIRLAM
“physics” �9�, three layers of clouds are calcu-
lated from the “cloudiness” where the layers
are defined between four air pressure �p� levels:
surface pressure p � ps, p � 200 hPa, p � 500
hPa, and p � 800 hPa, respectively, see Fig-
ure 5. In HIRLAM, the vertical coordinate of the
global three-dimensional coordinate system is
determined by levels of equal air pressure. For
each pressure layer, the maximum value in the

Fig. 5. Schematic Illustration of Three Cloud Layers.

vertical direction �z� of the cloudiness parame-
ter �c� defines the low cloud �cl�, medium cloud
�cm�, and high cloud �ch� parameters. Vertical
ranges of the layers vary with horizontal posi-
tion because the air pressure p varies.

The specification in ATMOL is shown in Figure 6.
For this model, the two-dimensional horizontal
domain has collapsed to one dimension consist-
ing of nm � n � m grid points, which is con-
sistent with the implementation of the physics
in HIRLAM. The maxval operator is a reduction
operator that returns the maximum value of an
expression on a grid, here for k����l �see also
Table 3 in Section 3.4�. More details can be
found in �28�.

3. Design and Implementation

In this section we will discuss ATMOL’s de-
sign choices and their implementation. The
expressiveness of ATMOL allows specification
of most atmospheric models. However, ATMOL
is not limited to high-level model specifications
and allows the specification of lower-level con-
structs such as discretizations and Fortran-like
program code for the numerical solution algo-
rithms. New user-defined PDE-based opera-
tions can be defined, new aggregate operations
can be added and their implementation can be
described by a procedural algorithm in Fortran-
like code. ATMOL is basically a transformation
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% Declare spatial (collapsed to one-dimension) and time dimensions:
space �xy�ij��z�k�� time t�
% Declare grid size variables nm and l:
nm �� integer����infinity�� l �� integer����infinity��
% Declare the model fields:
p �� float�	���	
			� dim �Pa� field monotonic k��� on ij����nm�
c �� float on ij����nm by k����l�
cl �� float on ij����nm�
cm �� float on ij����nm�
ch �� float on ij����nm�
% Equations:
cl � max�maxval�c if p��				� k����l�� ����
cm � max�maxval�c if p��				 and p���				� k����l�� ����
ch � max�maxval�c if p��				 and p���				� k����l�� ����

Fig. 6. Determination of Cloud Layers in ATMOL.

language with which the operational semantics
of the model operators is defined. In fact, all
built-in PDE-operators, solution methods and
algorithms are written in ATMOL and provided
as pre-defined constructs.

3.1. Levels of Abstraction

ATMOL language constructs can be distinguished
at five different levels of abstraction and they
present a separation of concerns for the imple-
mentation of a model. From the highest to the
lowest level these are, respectively:

Meta-level programming for symbolic manip-
ulation of algebraic expressions is one of the
key technologies in mathematical software.
The user interacts with CTADEL by issuing
commands to symbolically translate ATMOL
constructs.

Model declarations are specified in ATMOL, as
described in the previous sections.

A coordinate-free scalar PDE problem is ob-
tained from the model declaration by con-
verting vector notation into scalar notation.

The numerical schemes are obtained by ap-
plication of the grid type system to coerce
continues operators such as partial derivative
into discrete operators such as finite differ-
ences. Further symbolic manipulation on the
results yield optimized numerical solution
schemes involving array variables instead of
model fields.

Program code is generated from the optimized
schemes.

ATMOL allows specification of a model at mixed
abstraction levels. This is useful for models
that incorporate lower-level non-PDE-based op-
erators, such as the operations in the typical
“physics” part of an atmospheric model. A
mixed high- and low-level specification can also
be used to bypass CTADEL’s automatic transla-
tions for �parts of� the model. This gives a
user more control over the implementation of
the synthesized solutions by allowing replace-
ment of higher-level constructs with lower-level
constructs in the model declaration. CTADEL’s
translation is deterministic, but optimal transla-
tion results are not unique due to the nature of
the problem at hand. In some cases, the trans-
lation process may produce an intermediate op-
timal solution that the user wants to modify to
match certain requirements, e.g. based on nu-
merical properties.

Model descriptions are translated into code thro-
ugh several problem refinement stages. Refine-
ment takes place by the application of com-
mands to create new intermediate solutions.
These commands can be run automatically in
a script or they can be applied by a user. Com-
mands are available for every refinement stage:
type checking and coercion of the model equa-
tions and fields, unit analysis to verify the
consistency of the model, grid conversion and
discretization of the continuous equations by
second-order finite differences and replacement
of integrations with midpoint quadratures, sim-
plify the discrete equations, determine array
bounds of discretized variables, eliminate com-
mon-subexpressions and optimize the interme-
diate code for a target computer architecture,
generate code in Fortran 77, data-parallel For-
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tran 90, HPF �High-Performance Fortran�, or
parallel code in Fortran 77 with MPI �13�. To
generate distributed parallel code in Fortran 77
with MPI, CTADEL implements a domain split-
ting technique for parallelizing the model �30,
27�.

3.2. Expression Syntax for PDEs,
Intermediate Constructs, and
Program Codes

The syntax of ATMOL is defined as an operator
precedence grammar �1� which provides a sim-
ple and convenient mechanism to dynamically
extend the syntax, e.g. while processing prob-
lem specification source files. A single operator
precedence grammar is used by the CTADEL sys-
tem which defines the basic grammar for sym-
bolic expressions E:

E � V j C j �E j E� j E � E j

F �E� � � � � E� j �E� � � � � E� j �E� � � � � E�

with variables V , literal constants C, functionals
F, prefix operators �, postfix operators �, and
infix operators �. 	 
 denotes a tuple and � �

denotes a list �possibly empty�.

3.3. Type Systems

ATMOL is typed because the simple syntax al-
lows too much freedom for the formulation of
expressions. For example, it would be syntac-
tically legal to embed a Fortran-like program
statement in a numerical expression, while such
uses should be prohibited. Instead of imposing
constraints at the syntactic level, we choose to
use type checking to enforce constraints on the
formation of well-formed expressions. In ad-
dition, type inference and coercion are used to
apply dimensional analysis and grid conversion
for model verification and translation.

An ATMOL specification is verified using three
different type systems:

Basic types for object types, see Table 2. The
types coordinate and index distinguish ob-
jects that can be used as coordinates and
objects that can be used to index a grid.
Fortran-like programming constructs are of
the statement type.

Unit types are used in the dimensional analy-
sis of a model. The unit types are internally
stored as lists of powers of the basic SI-units.
For convenience, units are given by the user
as strings that are parsed into the internal
SI-unit power lists.

Type Description Examples
array�τ� num� array with num elements of type τ “A” in “A�i�j”
associative�ρ��σ��τ� associative operator “�”, “�”, and “or”
boolean logical values “false” and “true”
complex IC “complex�������”
coordinate a coordinate variable, a subtype of float “x” and “t”
domain�coordinate� a coordinate domain “x � 	�����”
domain�index� an index domain “i � ����	”
float IR “���”
index an index variable, a subtype of integer “i”
integer ZZ “
”
interval�integer� integer interval “����	 step �”
interval�float� float interval “	������� step �	��”
iteration�coordinate� a coordinate iteration “x � 	��� step ���”
iteration�index� an index iteration “i � ����	 step k”
list�τ� list of τ “�����”
lvalue�τ� assignable τ object, a subtype of τ “v” in “v���”
range�integer� integer range “����	”
range�float� float range “	�������”
rational IQ “���”
reference�coordinate� a coordinate reference “x�	�	”
reference�index� an index reference “i�j��”
statement programming statement “a��	” and “a��a�i for i�����	”
string string “�converged�”
σ��τ operators and λ -abstractions “�a��a���”

Table 2. Basic Types.
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Grid types define the type of a grid with respect
to a given dimension. Grid types are, for ex-
ample, staggered finite-difference Arakawa
grids �3�, finite-volume cells, and spectral
grids.

The three type systems are polymorphic, sup-
port subtyping, and allow parameterized types
and type variables. The type systems are sep-
arately applied, because the differences in sub-
typing and the application of type coercions
makes it nearly impossible to integrate them into
one type system. Type coercions can take place
with user-defined type conversion operations.
For example, a user might want to automati-
cally convert one type of grid into another by
polynomial fitting, which is specified as a con-
version operator in the grid type system. The
type inference algorithm that implements the
three type systems follows a forward�backward
scheme �1� and exploits an iterative deepening
search algorithm �23� to find the “shortest con-
version path” for the expression which yields
an optimal solution �but one that might not be
necessarily unique�.

3.4. Aggregate Operators

A novel design choice for ATMOL’s syntax and
semantics was made with respect to aggregate
operations, which are operations performed on
the collection of values of a �sub� grid instead
of on the value of a single grid point. Such
choice of design has an important consequence:
all of the typical operators used in scientific
models, such as integrations, quadratures, re-
ductions, scans, sums, FFTs, maxval, maxloc,

etc., and also certain low-level constructs such
as Fortran-like do-loops, are expressed with a
uniform notation that involves the use of a local
scope of a variable in a construct. The effect of
our choice of design is comparable to the effect
of variable bindings in λ -expressions.

The syntax has the look-and-feel of Maple’s
notation of integrals and sums. For example,
“sum	f	i
i������
” has a local binding of a
variable to a range of values. However, the no-
tation used in ATMOL is more fundamental as
it adopts this convention for all aggregate op-
erators that exhibit local bindings of variables,
while Maple has an ad-hoc implementation of
bindings that is handled by the code associated
with integrals and sums.

More formally, an n-ary functional F, �n � 1�,
has a local scope with variable bindings B for
arguments E1� � � � � Ek�1 when the functional is
of the form

F�E1� � � � � Ek�1� B� Ek� � � � � En�1�

with expressions Ei, i � 1� � � � � n� 1, for some
k � 2� � � � � n, where the binding expression B is
of the form

B � B1 byB j B1
B1 � B2 # B1 j B2
B2 � V �E j �B�

Likewise, a dyadic operator� of the form E�B
has a local scope with variable bindings B for
expression E. The by operator can be viewed
as a sequential construct for composing bind-
ings for multiple variables, while the # operator

Operation Description
int�E� B� Integration

R
B E

sum�E� B� Summation
P

B E
prod�E� B� Product

Q
B E

all�E� B� Logical conjunction of Boolean-typed E over B: �B : E
any�E� B� Logical disjunction of Boolean-typed E over B: �B : E
maxval�E� B� Maximum value of E over B
minval�E� B� Minimum value of E over B
maxloc�E� B� Grid location of maximum value of E over B
minloc�E� B� Grid location of minimum value of E over B
loc�E1� B� E2� Grid location where Boolean-typed E1 is first true over B, return E2 if not found
FFT�E� B� Fourier transform E over B
E for B Loop over program statement E for iterations B
E forall B Parallel do-all loop over program statement E for iterations B
block�E1� E2� B� Program statement block E1 with local variables B �returns value of E2�
E@B Substitution of variable bindings B in E

Table 3. Operators with Local Bindings.



ATMOL: A Domain-Specific Language for Atmospheric Modeling 299

FV��V �� :� fVg � V�dependencies BV��V �� :� �

FV��C�� :� � BV��C�� :� �

FV��V :� E�� :� FV��E�� BV��V :� E�� :� fVg

FV��E1 ; E2 �� :� �FV��E2�� n BV��E1��� � FV��E1�� BV��E1 ; E2 �� :� BV��E1�� � BV��E2��

FV���E�� :� FV��E�� BV���E�� :� BV��E��

FV��E��� :� FV��E�� BV��E��� :� BV��E��

FV��E1 	 E2 �� :� FV��E1�� � FV��E2�� BV��E1 	 E2 �� :� BV��E1�� � BV��E2��

FV��F�E1� � � � � En��� :�
Sn

i�1 FV��Ei�� BV��F�E1� � � � � En��� :�
Sn

i�1 BV��Ei��

FV���E1� � � � � En��� :�
Sn

i�1 FV��Ei�� BV���E1� � � � � En��� :�
Sn

i�1 BV��Ei��

FV���E1� � � � � En ��� :�
Sn

i�1 FV��Ei�� BV���E1� � � � � En ��� :�
Sn

i�1 BV��Ei��

FV��E 	 B�� :� �FV��E�� n BV��B��� � FV��B�� BV��E 	 B�� :� BV��E�� � BV��B��

FV��F�E1� � � � � Ek�1� B� Ek� � � � � En��� :� �
Sk�1

i�1 FV��Ei�� n BV��B��� �
Sn

i�k FV��Ei�� � FV��B��

BV��F�E1� � � � � Ek�1� B� Ek� � � � � En��� :�
Sk�1

i�1 FV��Ei�� �
Sn

i�k BV��Ei�� � BV��B��

FV��B1 byB2 �� :� �FV��B1�� n BV��B2��� � FV��B2�� BV��B1 byB2 �� :� BV��B1�� � BV��B2��

FV��B1 #B2 �� :� FV��B1�� � FV��B2�� BV��B1 #B2 �� :� BV��B1�� � BV��B2��

FV��V � E�� :� FV��E�� BV��V � E�� :� fVg

Fig. 7. Free and Bound Variables.

serves as a cross operation or parallel construct
for binding variables. The scope of bindings is
limited to the arguments at the left of the binding
expression B. See Table 3 for examples.

3.5. Free and Bound Variables

The notion of a scope of bindings is formalized
by the sets of free and bound variables of an
expression E shown in Figure 7.

In the figure, “V�dependencies” denotes the set
of variables on which V depends as declared
by the coord part of the declaration of V . For
example, the variable u declared in

u �� float dim �m�s�
field �x�half��y�grid��z�grid��

on i����n by j����m by k����l�

has u�dependencies � fx� y� zg. As a result,
expressions with aggregate operations such asR 1

0 u dx now make sense, because variable u de-
pends on variable x.

ATMOL’s substitution algorithm replaces free
variables in expressions with new values. A
substitution is specified with the @-operator,
see Table 3. For example, “E�	i�i��
” re-
places all free occurrences of i in E by i��.
This substitution algorithm may rename bound
variables in expressions to avoid name clashes,
which is comparable toα -conversion as applied
by β -reduction in λ -calculus. The substitution
algorithm is frequently used for partial evalua-
tion and in the simplification of expressions.

3.6. Array Variables

The sets of free and bound variables provide
a means to check the dimensionality of multi-
dimensional objects returned as a result of an
expression. The numerical codes of scientific
models frequently make use of arrays for stor-
age. Synthesis of numerical codes requires in-
troduction of �temporary� arrays with proper el-
ement types, dimensionality, and accurate array
bounds. This is a non-trivial problem for the im-
plementation of numerical schemes in program
code. The concept of local bindings and free
variables can be used to accurately establish the
dimensionality of �temporary� arrays and their
array bounds.

Array Index Analysis The set of free index
variables of an expression E, denoted IV��E��,
is defined by

IV��E�� :� FV��E�� 	 fVjV is an index variableg

This set describes the index space in which
the expression is evaluated, which typically
constitutes the grid space of the PDE prob-
lem. To generate code for E for numerical
evaluation, a loop is constructed that assigns
the value of E to an array variable, say u:

u�i�j�k �� E forall i����n by j����m by k����l

where we assumed that FV��E�� � fi� j� kg.
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Array Bound Analysis Consider for exam-
ple the free index variables of the sym-
bolic expression

Pl
k�1 Ai�kBk�j which is the

set IV��sum�A : i : k 
 B : k : j� k � 1��l��� �
fi� jg Hence, the result can be stored in a
two dimensional array, e.g. C as in the fol-
lowing program fragment

C�i�j �� sum�A�i�k�B�k�j� k����l�
forall i����n by j����m

which computes the matrix product of A and
B and assigns the result to C. A domain in-
ference and value range propagation �6� al-
gorithm based on the substitution algorithm
derives the array bounds of array variables
in the target code. In the example code frag-
ment, the array bounds A�	���n
�	���l
,
B�	���l
�	���m
, and C�	���n
�	���m
 are
derived.

The initial grid domains declared for the
fields of a model may be extended by the
domain inference to ensure that in the gen-
erated codes no references will be made to
grid points outside of the domain.

3.7. Dynamic Semantics, Rewrites, and
Partial Evaluation

A classification mechanism in CTADEL allows
for defining a hierarchy of objects and function-
als with algebraic properties. Figure 8 depicts
the predefined hierarchy of operator classes.
This framework allows for the automatic sim-
plification of an operator belonging to a class of
objects without the need for specifying individ-
ual rewrites for this operator.

Example instances of reduction op are int,
sum, prod, all, any, maxval, and minval. An

operator of the differentiation op class in-
herits properties of the self commuting op, com�
muting op, operator, and linear op classes.
Examples are the partial derivative dE�dV op-
erator and all finite difference operators. An
example integration operator is int and also
quadratures are considered integration opera-
tors.

An abstract operator abstract op is an over-
loaded operator with no implementation. In-
stead, the operator will be replaced by a concrete
operator from a list of choices that matches the
types used in the context of the operator. Ex-
amples are the “df” and “int” operators.

CTADEL’s term rewriting system �TRS� is im-
plemented modulo associativity and commuta-
tivity �AC�, i.e. associativity and commutativity
of operators are implicitly exploited in match-
ing rewrite rules. CTADEL’s TRS is also im-
plemented modulo operator commuting from
operator commuting diagrams. Many oper-
ators in scientific models are linear and ex-
hibit commuting properties, such as integrals,
quadratures, derivatives, finite differences, in-
terpolations, sums, FFTs, etc. The commuting
relationships between these operators is often
graphically described using operator commuta-
tivity diagrams. These commuting properties
can be declared in ATMOL and are implicitly
used by CTADEL for pattern matching in the ap-
plication of rewrite rules. For example, when
functionals F
 and F

 are declared to commute,
then

F
�F

�E� E

1� � � � � B

� � � � � E

m�� �4�

E
1� � � � � B
� � � � � E
n�

� F

�F
�E� E
1� � � � � B
� � � � � E
n��

E

1� � � � � B

� � � � � E

m�

if �
Sm

i�1 FV��E

i �� � FV��B

��� 	 BV��B
�� � � and
�
Sn

i�1 FV��E
i �� � FV��B
��� 	 BV��B

�� � � and
BV��B
�� 	 BV��B

�� � �. This constraint is

Fig. 8. Operator Class Hierarchy.
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imposed to prevent variable name clashes af-
ter the interchange. For example, the rule to
simplify aggregate linear operators of the lin�
ear op class is

F�E1 
 E2� E3� � � � � B� � � � � En� �5�
 E1 
 F�E2� E3� � � � � B� � � � � En�

if F is a linear op and FV��E1�� 	 BV��B�� � �.
Consider for example the application of rule �5�:

sum�sum�f�i� j� 
 i� i � 1��n�� j � 1��m�
sum�i 
 sum�f�i� j�� j � 1��m�� i � 1��n�

The commuting properties of sums are exploited
to interchange the sums when the rule is applied.

3.8. Code Synthesis with Templates

All higher-level functional operators of ATMOL
are translated to procedural program code con-
structs in ATMOL that resemble Fortran program-
ming statements. This intermediate program
representation is output in Fortran by a pretty
printer. The translation to intermediate code
takes place through the application of template
definitions for operators. For example, the tem-
plate definition of the higher-order “reduce”
operator in ATMOL is:

reduce�E �� �T� B �� domain�index��
Op �� associative��T���T���T�� �� �T function
� reduce �� unit�element�Op��

reduce �� apply�op�Op� reduce� E� for B
��

Templates are type checked to ensure that the
code they contain is statically correct. They
are not checked for dimensional units or grid

compatibility, as the templates are applied at a
later stage of the translation after discretization
through grid inference and coercion. The ex-
ample template above uses a type variable T

to define the type of the expression, the type
of the associative operator, and the type of the
result of the operator. This essentially defines
the following rewrite rule:

reduce�E� B��� block�V:�U ; �6�
V:�V � E forB� V� V � E�type�

with a new variable V such that V �� FV��E��,
where U is the unit element of the group with
operator �. Note that the set of free variables
is not changed by the rewrite. The “block”
construct forms a “codelet”. When templates
are applied the codelets are combined and op-
timized to form a sequence of program state-
ments. An example of code generation with
templates and optimization of codelets is shown
in Figure 9.

The process shown in Figure 9 is lengthy and
requires “smart” rules to discover that the dou-
ble summation can be performed in one loop.
The recognition of opportunities for optimiza-
tion at the low-level program code is limited as
the code gets more complicated and side-effects
get in the way of an accurate analysis. In most
cases however, optimizations can be performed
at a higher level much more easily and this can
have a significant impact on the quality and ef-
ficiency of the synthesized codes. For example,
consider the rewrite

reduce�reduce�E�B1����B2���  �7�
reduce�E�B1 byB2���

reduce�reduce�f�i�� i � 1��j� ��� j � 1��n� ��

� reduce�block�S :� 0; S :� S � f�i� for i � 1��j� S� S � integer�� j � 1��n� ��

� block�S :� 0; block�S� :� 0; S� :� S
� � f�i� for i � 1��j� S :� S� S

�
� S

� � integer� for j � 1��n� S� S � integer�

� block�S :� 0; ��S� :� 0; S� :� S� � f�i� for i � 1��j�; S :� S � S�� for j � 1��n� S� S � integer by S� � integer�

� block�S :� 0; S :� S� f�i� for i � 1��j for j � 1��n� S� S � integer�

INTEGER S
S�	
DO �	 j���n
DO �	 i���j
S�S�f�i�

�	 CONTINUE

Fig. 9. Example Template Expansion, Codelet Optimization, and Fortran Output.
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which translates multiple reductions into a sin-
gle reduction with combined domains and could
be applied to the first line of Figure 9. It is easy
to verify that this rewrite does not change the
set of free variables:

FV��reduce�reduce�E�B1����B2�����

� �FV��E�� n BV��B1��� n BV��B2��

and

FV��reduce�E�B1 byB2�����

� FV��E�� n �BV��B1�� � BV��B2���

which are identical sets. This rule enables a
mapping to code in one step using rule 6:

reduce�f�i�� i � 1��j by j � 1��n� ���

block�S :� 0; S :� S � f�i�

for i � 1��j by j � 1��n� S� S � integer�

This example illustrates the importance of high-
level optimizations to avoid potential difficulties
with low-level optimizations. The TRS formed
by the translation rules is not confluent which is
intentional as its purpose is to enable code opti-
mizations instead of code normalization which
are often contradictory goals.

4. Conclusions

In this paper, we highlighted the features of
ATMOL, discussed its design and implementa-
tion, and demonstrated the importance of its use
in the code generation process of atmospheric
models. To our knowledge, the ATMOL lan-
guage and the code synthesis approach are novel
and is a first attempt to integrate high-level op-
timizations with low-level optimizations in a
unified language and framework for problem
refinement and code synthesis.
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