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Analysis of Different Low Complexity
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Linear filters are often employed in most signal pro-
cessing applications. As a matter of fact, they are well
understood within a uniform theory of discrete linear
systems. However, many physical systems exhibit some
nonlinear behaviour, and in certain situations linear filters
perform poorly.

One case is the problem of acoustic echo cancellation,
where the digital filter employed has to identify as
close as possible the acoustic echo path that is found
to be highly nonlinear. In this situation a better system
identification can be achieved by a nonlinear filter. The
problem is to find a nonlinear filter structure able to re-
alize a good approximation of the echo path without any
significant increase of the computational load. Conven-
tional Volterra filters are well suited for modelling that
system but they generally need too many computational
resources for a real time implementation.

In this paper we consider some low complexity nonlinear
filters in order to find out a filter structure able to achieve
performances close to those of the Volterra filter, but
with a reduced increase of the computational load in
comparison to the linear filters commonly employed in
commercial acoustic echo cancellers.

Keywords: acoustic echo cancellation, nonlinear filters,
Volterra filters

1. Introduction

The growth of the cellular phone market in the
last years has led to an increase on the quality
of handset receivers. In particular, the quality
of the audio is one of the features the cellular
vendors take in high consideration. One issue
related to the audio quality is the need for an
acoustic echo suppression device which elimi-
nates the feedback of the far end speech signal
that propagates between the loudspeaker and the
microphone.
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Fig. 1. Acoustic echo canceller.

Acoustic echo cancellers �AECs��Figure 1� are
the solution commonly employed for this pour-
pose. They consist of digital adaptive filters
which estimate the echo signal in order to can-
cel it by subtraction. Usually most commercial
AECs are linear, even though it has been found
that the acoustic echo path is highly nonlinear
�1�. The nonlinearities arise mainly from non-
linear distorsions of the loudspeaker and the
amplifier and from nonlinear effects in vibra-
tions of the enclosure. In this situation often a
nonlinear filter can achieve a better system iden-
tification �and, by consequence, a greater echo
suppression� than a linear one. In particular, it
has been found that with a second order Volterra
filter a significant improvement in acoustic echo
cancellation can be achieved �2�. However, in
most cases the implementation of these filters
is computationally expensive due to the large
number of coefficients required for represent-
ing the system. In fact, the AEC filter mem-
ory should have the same length of the acoustic
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echo path response, which is commonly very
long �with a sampling rate of 8 kHz, we have
impulse responses typically of 128 samples for
handset receivers, 256 samples for handsfree
receivers and 1024-2048 samples for telecon-
ference systems�.

Here we study different nonlinear filters in or-
der to find a low complexity structure able to
model the nonlinear acoustic echo path with
a low number of coefficients. In particular,
we consider MMD filter structures �3�, Parallel-
Cascade structures �4�, Simplified Volterra Fil-
ters �5� and bilinear Volterra filters �6�.

The paper is organized as follows: in Section 2
we briefly describe Volterra filters. In Section 3
we describe the low complexity filter structures
we have studied, and we analyze the behaviour
of these filters on the perspective of the im-
plementation of an acoustic echo canceller. In
Section 4 we present some experimental results
that were obtained in acoustic echo cancellation
applications.

2. Volterra Filters

The Volterra series is espressed by �7�:

y�n� �
�X

k�1

ĥk�x�n�� �1�

where

ĥk�x�n�� �
�X

i1�0

� � �

�X

ik�0

hk�i1� � � � � ik�x�n� i1� � � � x�n� ik� �2�

is the kth-order Volterra operator. Volterra fil-
ters are nonlinear filters resulting from double
truncation of the Volterra series: a memory trun-
cation, by limiting the memory of the filters, i.e.
the number of terms in the summations in �2�,
and an order truncation by limiting the number
of Volterra operators in �1�.

The quadratic filters are a special case of Volterra
filters that involve only two terms of the summa-
tion of �1�. The filter output can be expressed
in vector form as:

y�n� � hT
1 x�n� � xT�n�Hx�n� �3�

where h1 is the vector formed with the coeffi-
cients of the linear filter, H is the upper trian-
gular matrix �7� representing the second order
Volterra kernel, and x�n� is the vector of the
past input samples. Although Volterra filters are
well suited for echo path modelling, the com-
putational requirements even for a second order
filter are too high for a real-time application
as AEC. While the implementation of a linear
adaptive filter requires a number of multiplica-
tions proportional to N �where N is the memory
of the filter which is strictly related to the lenght
of the acoustic echo path�, the implementation
of a quadratic filter requires a number of multi-
plications proportional to N2. In acoustic echo
canceller applications, N is often greater than
100 and the computational load becomes re-
ally high. For this reason some low complexity
nonlinear filters have been proposed in the last
years. We considered some of them and we an-
alyzed their capability to be implemented in a
commercial AEC.

3. Low Complexity Nonlinear Filters

Let us consider the Multi-Memory-Decomposi-
tion �MMD� filter structure �3�, realized by the
interconnections of three linear filters, as re-
ported in Figure 2. The output of the filter is
given by:

y�n� �
Np�1X

k�0

hp�k�
Na�1X

i�0

h1�i�x�n� i� k�

Na�1X

j�0

h2�j�x�n� j� k�� �4�

where Na is the memory length of the filters h1
and h2, and Np is the memory length of the filter
hp. This MMD structure is a quadratic filter
whose kernel matrix has nonzero coefficients
only in Na diagonals near the main diagonal
�3�. The complexity associated with the imple-
mentation of this kind of filter is very low if
compared to that of a Volterra filter. In par-
ticular, the number of multiplications needed is
equal to 2Na � Np � 1, and thus substantially
proportional to the memory N � Na � Np of
the filter. However, the MMD structure can just
roughly approximate the generic second order
nonlinear system because of the low number of
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Fig. 2. MMD filter.

parameters involved. Furthermore, some prob-
lems arise with the adaptive version of that fil-
ter. In particular, the complexity significantly
increases because of the adaptation procedure,
and it becomes proportional to Na �Np. More-
over, the adaptation procedure suffers from the
existence of local minima due to the fact that
the filter output is not linear with respect to its
coefficients. For this reason the approximation
achieved with that filter is not adequate.

3.1. Parallel-Cascade Filter

In Figure 3 the Parallel Cascade filter structure
for a second order nonlinear system approxi-
mation is reported �4�. This structure is based
on the assumption that any symmetric matrix
of rank r can be decomposed in the sum of r
symmetric matrices of order 1 �4�. This implies
that a second order Volterra filter whose kernel
matrix has rank equal to r can be realized by a
parallel structure of r linear filters each one fol-
lowed by a squaring function and a multiplier.

It is often possible to obtain a good approx-
imation of the second order Volterra filter by
implementing m �with m �� r� linear filters
in parallel �4�. In this way a significantly high
computational saving is obtained.

Two problems arise with the adaptation proce-
dure applied to this type of filter. The first one
is that there is not a unique solution, and the
filter coefficients can oscillate between the dif-
ferent solutions. The second one is the presence
of some local minima. These local minima are
caused by the fact that the output of the filter is
not linear with respect to its coefficients.

One remedy for the first problem has been pro-
posed �4�. It consists in constraining the first
i� 1 coefficients of the i-th branch to zero and
setting the i-th coefficient to 1. These coeffi-
cients do not need updating. The decomposition
obtained in this way is called LDLT decomposi-
tion. However, the second problem associated
with the adaptive procedure of the filter remains
still unresolved to the author’s knowledge. For
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Fig. 3. Parallel-Cascade filter.
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this reason the quality of the approximation we
can reach is always limited, even when we im-
plement a large number of branches.

3.2. Simplified Volterra Filters

By analyzing the second order kernel of several
acoustic echo paths �an example is reported in
Figure 4� we observe that the coefficients with
the most significant amplitude lay on the diag-
onals near the main one. Similar behaviours
have been found by other researchers �8�. For
this reason a good approximation of the second
order system can be achieved by setting to zero
some coefficients far from the main diagonal.
This is the basic idea underlying the Simplified
Volterra Filter �SVF� structure �5� reported in
Figure 5. Each branch of this structure real-
izes a quadratic filter whose kernel matrix has
non zero coefficients only in one diagonal. By
implementing N of these filters in parallel, one
for each diagonal of the upper triangular ker-
nel, we implement the complete second order
Volterra filter. By cutting some branches of this
realization, i.e. those representing diagonals far
from the main one, we obtain the SVF structure
that corresponds to a second order Volterra filter
whose kernel has nonzero coefficients only in
some diagonals. Due to the echo path features
presented above, it is possible to realize a good
approximation of the echo path system with a
small number of branches, thus resulting in high
computational resource savings.
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Fig. 4. Triangular second order kernel of a typical
acoustic echo path.
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Fig. 5. Simplified Volterra filter structure.

3.3. Bilinear Filter

Just as linear IIR filters can represent many lin-
ear systems with far fewer coefficients than their
FIR counterparts, recursive polynomial mod-
els can accurately represent many nonlinear
systems with greater efficiency than truncated
Volterra series representation. In particular, we
considered the bilinear model �9�, whose input-
output relationship is given by:

y�n� �
N1X

i�0

h1�i�x�n� i� �
N2X

i�1

h2�i�y�n� i�

�

N3X

j�0

N4X

i�1

ci�jy�n� i�x�n� j�� �5�

It is worth noting that this type of system not
only has infinite memory, but also may repre-
sent very large orders of nonlinearity �9�. On
the contrary, there are some problems related to
the implementation of this type of filter in the
adaptive version:

� The stability is not guaranteed �due to the
recursive nature of this kind of structure�.

� The adaptive procedure suffers from the
local minima problem, due to the nonlin-
earity of the filter output with respect to
the coefficients.
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Fig. 6. Equation error adaptive bilinear filter.

For these two reasons we considered the Equa-
tion Error Adaptive Bilinear Filter, whose sche-
me is reported in Figure 6. The output of this
filter can be expressed by the relation:

y�n� � hT
1 x�n� � hT

2 d�n� � dT�n�Cx�n� �6�

where the third term of the summation repre-
sents the nonlinear part of the filter. By using
this structure, we overcome both problems re-
ported above. In fact, in this way, the process of
recursive estimation becomes a non-recursive
estimation made on two channels. Moreover,
the filter output becomes linear with respect to
its coefficients. However, the estimation proce-
dure leads to a biased estimate of the optimum
solution �6�, thus limiting the performances in
the identification procedure.

4. Experimental Results

We tested all the structures considered in Sec-
tion 3 in acoustic echo cancellation applications.
For this purpose we first considered an artifi-
cial acoustic echo path model extracted from
the acquisition of the response of a commercial
handset receiver. In this way we tested the per-
formances of all the filters we had considered
with different level of nonlinear distorsions. We
used a set of sequences of coloured noise whose
spectral shaping was chosen very similar to the
power spectral density of the voice signal. In
Figure 7 the level of echo cancellation is plotted
for some of the filters we considered versus the
nonlinear distorsion level. The echo cancella-
tion is expressed as OP�MSE, that is the ratio
between the average echo signal power and the
average residual echo signal power. Note that
the maximum reduction achievable is 30 dB,
because we added a random noise to the echo

signal whose average power was 30 dB below
the echo itself. The ratio L�N represents the ra-
tio between the average power of the linear part
of the model and the average power of the sec-
ond order part of the model. The second order
Volterra filter �VOLT� behaves well for all the
levels of distorsion. As we can see, SVFs are the
filters with higher performance, even for high
level of distorsion. This is particularly true of
SVF20 which has 20 branches. Performances
of the linear filter �LIN� decay almost linearly
with the increase on the nonlinear distorsion,
whereas the bilinear filter �BILIN� with only
5 branches has performances close to those of
the SVF5 for low levels of distorsion. How-
ever, these performances degrade significantly
for higher order of nonlinearity.
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Fig. 7. Echo cancellation obtained by some significant
filters, in dB, plotted versus nonlinear second order

distorsion in dB.

Then we acquired many echo signals generated
by two commercial handset receivers and we
compared the performances of different echo
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cancelling filters in terms of the Echo Return
Loss Enhancement defined as:

ERLE�n� � 10log10
E�d2�n��
E�e2�n��

� �7�

where d�n� is the echo signal picked up by the
microphone and e�n� is the residual echo after
cancellation. In Table 1 the results relative to
different kinds of filters are reported, in term
of steady state average ERLE, obtained with
some speech sequences. Due to high nonlin-
ear distorsions that we noticed in the acoustic
echo path �as reported in Figure 8�, we noticed
a significant improvement �more than 5 dB� in
acoustic echo cancellation by implementing a
second order Volterra filter. The memory of the
second order part of the filter was chosen signifi-
cantly lower than that of the linear part, without
compromising the performances. The results
reported in Table 1 refer to the case of 100 co-
efficients for the linear filter and a memory of
30 samples for the quadratic filter. However, as
we can see, the complexity still remains high,
and unacceptable for a real time application as
AEC.

The MMD performances reported are the best
we found for all the different choices of Na and
Np, keeping fixed the memory length of the fil-
ter �in particular Na � 21 and Np � 9�. The
bad performances found are due to the presence
of local minima.
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Fig. 8. Second order harmonic distorsion of the echo
path plotted versus fundamental frequency.

Filter ERLE�dB� Mult.
LINEAR 17.0 202
VOLTERRA 2 22.1 1599
MMD 17.5 456
PAR-CASCADE 17.9 528
SVF �5� 19.7 487
SVF �10� 20.8 722
SVF �15� 21.5 907
SVF �20� 21.8 1042
BILINEAR �2� 19.1 267
BILINEAR �5� 20.0 363

Table 1. Echo cancellation obtained by different filters
with high level of conversation and corresponding

number of multiplications per sample time.

The PAR-CASCADE performances reported re-
fer to the results obtained by implementing 10
branches. We did not accomplish a signifi-
cant gain by implementing a larger number of
branches.

The SVF structures employed have a memory of
30 samples; the number of branches employed
is reported in the brackets. Note that there is a
significant gain over the linear structure, even
with a low number of branches employed.

The BILINEAR structures have a memory of
15 samples with respect to the input signal x�n�.
We found that the best choice is to implement
a filter with low memory with respect to the
reference signal d�n�, and higher memory with
respect to the input signal x�n�. In particular,
the results in Table 1 refer to the cases of mem-
ory equal to 2 and 5 samples, respectively, as
reported in the brackets.

5. Conclusions

Often linear filters perform poorly in acoustic
echo cancellation applications due to the non-
linear nature of the acoustic echo path. We an-
alyzed the behaviour of some low complexity
filters in order to find a structure able to reach
performances in acoustic echo cancellation near
to that of the second order Volterra filter with
reduced computational resources. Some of the
structures we considered performed poorly be-
cause of the presence of local minima. How-
ever, two structures satisfied our issues: the
SVF structure and the equation error bilinear



Analysis of Different Low Complexity Nonlinear Filters for Acoustic Echo Cancellation 339

structure. The former requires a number of
multiplications relatively high, but obtains re-
sults close to those of Volterra filters. On the
contrary, bilinear filters obtain sligthly worse
results, but need less computational resources.
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