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1. Introduction 

Currently, there is an increased interest in the development 

of novel electrical energy storage and production facilities, 

in particular, power plants based on solid oxide fuel cells 

(SOFC) [1, 2]. The advantages of such devices are the 

absence of harmful emissions and thermal pollution, higher 

efficiency, scalability, noiselessness in operation, and low 

energy consumption [3–5]. However, the mass production 

and use of solid oxide fuel cells are constrained by their 

high operating temperatures (1073–1273 К), at which the 

conductivity of the main component of the SOFC – the 

oxygen–ion electrolyte – reaches a sufficient level. At high 

temperatures, degradation processes and chemical inter-

actions among components in the membrane-electrode 

block of fuel cells are accelerated [6]. All this imposes strict 

requirements on the materials used, causes a high cost of 

SOFCs, and significantly limits their further production [7]. 

Application of a thin-film electrolyte based on zirconium 

dioxide stabilized with 3 to 10 mol.% of yttrium oxide is an 

effective solution to the problem of reducing the operating 

temperature of the SOFC since decreasing the thickness of 

the electrolyte leads to a decrease in the internal resistance 

of the element and an increase in its power [8, 9]. One of 

the most rapidly expanding fields in electrochemistry right 

now is the development of fuel cells using a thin-film solid 

oxide electrolyte [10, 11]. The electrophoretic deposition 

(EPD) of a solid electrolyte on the surface of the anode or 

cathode appears to be the most appealing among the 

potential techniques for producing such films because it is 

cost-effective and does not require complicated hardware 

design [12–14]. The cost of obtaining ceramic layers of YSZ 

will be significantly reduced by using precursors from 
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domestic production, such as high-quality powder of the 

DCI-1 brand with an affordable price and large volumes of 

industrial production. The EPD method allows controlling 

the morphology and output parameters of the resulting 

ceramic coatings and obtaining layers with good adhesive 

properties and with a higher density compared to coatings 

obtained by other methods [15, 16]. The purpose of this 

research was to obtain ceramic layers of YSZ and analyze their 

morphology and crystal structure. Electrophoretic deposition 

was carried out on pyrolytic graphite and a porous NiO–YSZ 

anode substrate. 

2. Experimental 

The EPD process includes three main stages. The first stage 

is the preparation of a stable suspension of the applied 

oxide material in a suitable liquid dispersion medium. The 

second one is the application of an electric field to the 

suspension, causing the movement of the particles to the 

electrode and their deposition on it. The last one is the 

drying and sintering of the resulting coating. 

2.1. Preparation of the suspension 

A 1:1 mixture of acetylacetone СН₃СОСН₂СОСН₃ (p.a.) and 

isopropanol CH₃CH(OH)CH₃ (puriss) was used as the 

starting reagent for the preparation of a stable suspension. 

As a polymer binder that prevents cracking, a BMA-5 (butyl 

methacrylate-methacrylic acid copolymer, SRI Polymers, 

Russia) copolymer was added to the prepared mixture, 

which was dissolved in the mixture for 48 h. Commercial 

zirconium dioxide powder stabilized with yttrium oxide 

(Zr0.97Y0.03O2–δ) grade DCI-1, (JSC ChMP, Russia), with an 

average particle size of 75 μm, was milled in a planetary 

mill, FRITSCH PULVERISETTE 7, for 4 h at 500 rpm. 

Grinding with zirconium dioxide balls was carried out in an 

acetone environment. During the grinding process, 

4 samples of YSZ powder were taken at an interval of 1 h. 

Figure S1 shows the X-ray diffraction pattern of the 

commercial powder DCI-1. Then, a portion of the milled 

powder in the amount of 65 g·l–1 was added to the prepared 

dispersion medium and dispersed on a submersible 

ultrasonic disperser UZDN-A at an emitter frequency of 

22 kHz for 15 min. 

2.2. Used substrate material 

Pyrolytic graphite and porous anode substrates based on 

NiO–YSZ with a nickel foil sublayer were used as substrate 

materials for electrophoretic deposition. A nickel substrate 

in the form of a foil with a thickness of 100 μm provided 

the conductive paths, since NiO–YSZ is a non-conductive 

substrate [17] (Figure 1a). Pyrolytic graphite substrates 

were obtained by chemical vapor deposition (CVD). The 

thickness of the substrates was 1 mm. The ohmic resistance 

of the material was 2±0.4 Ω. Graphite substrates were used 

to study the influence of the nature of the substrate 

material on the morphology of the ceramic coating. The 

multilayer joint rolling of films method was used to create 

porous anodic NiO–YSZ substrates (mass ratio of 

precursors NiO:YSZ:starch = 60:40:20). The thickness of 

NiO–YSZ was 0.87 mm. 

2.3. Electrophoretic deposition of YSZ 

Electrophoretic deposition was carried out at 298 K with a 

voltage of 60 V applied between the electrodes in two cycles 

of 10 minutes. The cathode and anode were fixed in a 

specially designed holder at a distance of 10 mm from each 

other and immersed in a reactor with a prepared 

suspension (Figure 1b). Pyrolytic graphite was used as a 

counter electrode. The resulting coatings underwent heat 

treatments at 973 K, 1173 K, and 1573 K for 2 h. 

X-ray phase analysis was performed on a Rigaku 

D/MAX-2200VL diffractometer. The survey was conducted 

in Cu Kα radiation at 10° ≤ 2θ ≤ 90°. On a JEOL JSM-5900 

LV microscope, morphological characteristics of the 

obtained YSZ layers were examined using scanning electron 

microscopy (SEM). The MEASURER software was used to 

process the obtained SEM data in order to establish the 

average particle size. 

 

 
Figure 1 Electric field distribution scheme on the NiO–YSZ surface 

(a), where 1 – nickel foil, 2 – porous anode substrate based on NiO–

YSZ, 3 – electric field lines, 4 – charged ceramic YSZ particles. 
Schematic diagram of an installation for electrophoretic deposition 

(b), where 1 – reactor, 2 – counter electrode, 3 – porous anode 

substrate based on NiO–YSZ, 4 – suspension, 5 – electric current 

source.  
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3. Results and Discussion 

One of the main aspects of obtaining a high-quality coating 

in the EPD process is the presence of a stable dispersion of 

YSZ. The formation of a dense, well-anchored coating is 

possible only if the EPD proceeds in sedimentationally and 

aggregatively stable suspensions [18–20]. The stability of 

the suspension is influenced by the choice of the dispersion 

medium and the ratio of the initial components. According 

to [21–24], it is preferable to carry out electrophoretic 

deposition in non-aqueous organic media, as alcohols, 

ketones, and their mixtures are most often used. When 

conducting EPD in aqueous media, electrochemical reactions 

occur that are accompanied by the release of gasses that 

significantly affect the process [25]. For this reason, an 

anhydrous dispersion medium consisting of acetylacetone 

and isopropanol has proven itself in the best way. This is 

due to the fact that isopropanol is less hygroscopic than 

ethanol, which ensures the stability of the physicochemical 

characteristics of the suspension. Acetylacetone contains the 

carbonyl group, which is capable of donor-acceptor 

interaction with the surface of the oxides [26]. 

Indeed, the stability of such suspensions, according to 

light transmission data at wavelengths of 540, 800, and 

1000 nm, was at least 50 h. The spectral methods, in 

particular, spectrophotometry, quite accurately indicate 

the beginning of the sedimentation process in the suspension 

volume, which is caused by the aggregation and coagulation 

of particles over time. The gradual removal of small particles 

from the suspension leads to an increase in transmission at 

the beginning at small wavelengths, with the gradual 

settling of large particles at large wavelengths. Figure 2a 

shows a plot of the stability of the suspension over time. 

An important condition for successful EPD is the size of 

the YSZ particles in the suspension and the absence of 

aggregation of these particles in the dispersion medium. It 

is worth noting that with a size of less than 1 μm, particles 

can remain in suspension for a long time due to Brownian 

motion [27]. Also, for a positive result in conducting EPD, 

it is necessary that the YSZ powder has a narrow particle 

size distribution. To achieve this, grinding in planetary 

mills and ultrasonic dispersion are used. 

According to the results, an increase in the powder 

grinding time leads to a decrease in the average particle 

size from 4 μm to 0.9 μm with a single-modal 

distribution (Figure 2b). The percentage of particles with a 

size of from 2.5 to 7.5 μm after 1 h of grinding was 84%, 

but after 4 h of grinding, 90% of particles were 

from 0.5 to 2 μm (Figure 2c). 

After dispersing the ground ceramic particles from their 

suspensions by the EPD method, YSZ-based layers with a 

thickness of up to 7 μm on pyrolytic graphite were 

successfully obtained. However, the high-quality coatings 

without cracks and with a small particle size distribution 

were obtained from suspensions containing powder ground 

in a planetary mill for 4 h on NiO–YSZ substrates up to 

5.14 μm thick. 

The X-ray phase analysis showed that the formed 

ceramic coating consists of two phases: zirconium dioxide 

stabilized with yttrium oxide in an amount of 3 mol.% 

(95.68%) and zirconium dioxide in an amount of 4.32%, 

which is apparently due to the presence of residual ZrO2 in 

the initial commercial powder DCI-1. Figure 3 shows the  

X-ray diffraction pattern of the YSZ sample deposited on a 

porous NiO-YSZ anode substrate. According to the XRD 

data, zirconium dioxide, stabilized by 3 mol.% yttrium 

oxide, has a tetragonal structure with crystal lattice 

parameters a = 3.6249(3) Å, c = 5.1275(1) Å with a 

predominant growth direction (101). The phase of 

individual zirconium dioxide has a cubic lattice with a 

parameter a = 5.1522(1) Å and a predominant growth 

direction (111).  

 
Figure 2 Dependence of the light transmission of the suspension 

on time, at wavelength (a), nm: 540 (1), 800 (2), 1000 (3). Average 

YSZ particle sizes with grinding time (b), in h: 1, 2, 3, 4.  
A histogram of the distribution of YSZ particles by size. The 

grinding time of the precursor was 4 h (c). 
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Pyrolytic graphite and a porous anode substrate NiO–

YSZ with a nickel foil sublayer were used as the substrates 

for the deposition of YSZ in order to study the impact of the 

substrate material on the coating structure. It was possible 

to create a uniform coating made of zirconium dioxide with 

a thickness of up to 7 μm thanks to the higher conductivity 

of graphite substrates. After drying for 24 h at room 

temperature, the ceramic layer was fixed and free of visible 

cracks. However, following heat treatment at temperatures 

between 973 and 1173 K, the YSZ layer peeled off the 

substrate material and microcracks as large as 3 μm in 

width appeared. This phenomenon can be attributed to 

significant variations in the thermal expansion coefficients 

of graphite and YSZ [28]. In addition, thin layers of graphite 

deform at high temperatures, and the graphite substrate 

collapses, which leads to direct deformation and cracking 

of the deposited layer of zirconium dioxide stabilized with 

yttrium oxide on this substrate material. 

Deposition of YSZ on porous anode substrates based on 

NiO–YSZ gave different results. The high porosity of the 

material allowed YSZ particles to penetrate into the near-

surface layer during electrophoretic deposition and fix 

themselves on the substrate. The surface of the ceramic YSZ 

layer that was deposited on a non-conductive NiO–YSZ 

coating is depicted in the SEM image in Figure 4a. Since in 

the course of thermal studies it was found that the 

temperature of 1173 K is not sufficient for sintering the 

deposited layer consisting mainly of irregularly shaped 

particles, due to the higher melting point of the NiO–YSZ 

anode substrate [29], the YSZ functional layers were 

annealed at a temperature of 1573 K for 2 h. Figures 4b and 

4c show SEM images of the surface of the ceramic layer and 

the end part of the YSZ layer on the NiO–YSZ substrate after 

heat treatment. The resulting layer had a thickness of 

5.14 μm. The YSZ particles can be seen to have started to 

sinter with one another, losing the distinct grain 

boundaries, and there is also no evidence of the particle 

aggregation that was seen during the deposition on 

graphite. 

4. Conclusions 

In this work, YSZ suspensions based on an isopropanol, 

acetylacetone, and BMA-5 copolymer mixture were 

successfully produced. It was discovered that as the initial 

YSZ powder was ground for longer periods of time, the 

suspensions became more stable as the average particle size 

decreased from 4 to 0.9 μm and the quality of the ceramic 

coatings that were deposited improved. The prepared 

suspension's stability time exceeded 50 h. By using the EPD 

method, ceramic layers on NiO–YSZ and pyrolytic graphite 

substrates were successfully produced. The obtained YSZ 

layers have the crystal lattice parameters a = 3.6249(3) Å, 

c = 5.1275(1) Å and are composed of tetragonal zirconium 

dioxide stabilized by 3 mol.% yttrium oxide.  

 
Figure 3 X-ray diffraction pattern of the YSZ layer deposited on a 

porous NiO–YSZ anode substrate. 

 
Figure 4 SEM images of the obtained YSZ layer on a Ni–YSZ 

substrate before (a) and after heat treatment at 1573 K (b). SEM 

image of the end of the YSZ layer; the heat treatment temperature 

was 1573 K (c). 
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It was determined that the EPD of YSZ undergoes 

successfully on a porous NiO–YSZ anode substrate with a 

nickel foil sublayer, ensuring that the deposited layers of 

YSZ are up to 5.14 μm thick. The thickness of the YSZ layers 

obtained on graphite was 7 μm. The EPD method can be 

used to apply ceramic layers on non-conductive substrates 

by using a nickel plate as a sublayer of NiO–YSZ. The use of 

EPD and inexpensive commercial powders greatly 

simplifies and reduces the cost of the process of obtaining 

ceramic coatings, which allows better integration into the 

green energy agenda. 

Supplementary materials 

This manuscript contains supplementary materials, which 

are available on a corresponding online page. 
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