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Abstract 

In this study, titanium dioxide (TiO2) and titanium dioxide – activated 
carbon composite (TiO2–AC) were prepared by sol-gel method for pho-

toelectrochemical (PEC) applications. Characterization of the materi-
als was performed by scanning electron microscope, energy dispersive 
X-ray analysis, Fourier transform infrared spectroscopy, X-ray dif-

fraction, and diffuse reflectance spectroscopy. The results show that 
TiO2 was successfully loaded on activated carbon (AC), producing 

TiO2–AC with 2.61 eV of bandgap energy, lower than that of TiO2 
(3.15 eV). Photoanodes based on TiO2 and TiO2–AC were fabricated and 
applied to PEC experiments for phenol degradation. In comparison 

with the TiO2 photoanode, the TiO2–AC one exhibited superior photo-
catalytic activity, which was indicated by a high current density and 
effective phenol removal. A mechanism of phenol PEC degradation on 

the TiO2–AC photoanode was proposed, which includes interaction be-
tween protonated phenol and active sites bearing oxygen on the pho-
toanode surface. A kinetic model according to this mechanism was also 

established and fitted to experimental findings, resulting in rate con-
stants of elementary reactions. 
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1. Introduction 

Phenol and phenolic compounds are commonly used in 

pharmaceuticals, insecticides, cosmetics, and other indus-

trial substances [1]. Phenol is known as a hazardous pollu-

tant due to its toxicity and high stability for a long period 

of time in the environment [2, 3]. Phenol exposure may 

cause acute and/or chronic diseases on the skin, eye, res-

piratory and nervous systems [4, 5]. There are some tech-

niques for phenol removal from wastewater, as summa-

rized in [6]. Among advanced oxidation processes, photoca-

talysis is described as an effective choice for phenol degra-

dation. Based on TiO2 photocatalyst synthesized by the sol-

gel method, phenol degradation was attained at 58.8% af-

ter 240 minutes of UV illumination [7]. In the presence of 

carbon, photogenerated charge recombination of TiO2 was 

delayed [8], suggesting an improvement in phenol degrada-

tion. Synergy effect between TiO2 and carbon-based mate-

rials was explored in the previous reports on multi-walled 

carbon nanotubes – TiO2 [9], activated carbon – TiO2 [10], 

graphene – TiO2 [11], and carbon fiber – TiO2 [12]. 

Difficult recovery and fast photoexcited electron-hole 

pairs recombination of catalysts are two considerable 

drawbacks of photocatalysis, which can be minimized with 

the photoelectrochemical (PEC) method [13, 14]. According 

to the PEC principle, a photocatalyst is coated onto a pho-

toelectrode, to which a bias voltage is applied to improve 

photogenerated charge carrier separation, thus enhancing 

the activity of the photocatalyst [15, 16]. Therefore, the PEC 

method has attracted considerable interest in water split-

ting [17] as well as organic pollutants degradation [13]. Us-
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ing a TiO2-based photoanode for the PEC experiment, phe-

nol degradation achieved 73.76% after 120 minutes of UV 

illumination under 0.8 V of applied voltage [18]. By adding 

peroxymonosulfate into the PEC system, a photoelectrode 

based on Co3O4-loaded carbon fiber demonstrated 100% 

phenol degradation within 90 minutes under UV radiation 

at 1.5 V of applied voltage [19]. The contribution of carbon 

to PEC behavior of the C/TiO2 composite was explored by 

Haro et al. [20]. It was found out that carbon promoted 

charge transfer reactions on C/TiO2 photoelectrode surface 

through enhancement of charge carrier generation and sep-

aration. However, the application of C/TiO2 in PEC degra-

dation of organic compounds has not been reported in the 

literature. 

In this study, TiO2 and TiO2-activated carbon (TiO2–AC) 

composites were synthesized by a sol-gel method for PEC 

degradation of phenol. Effects of AC on PEC properties of 

the TiO2/AC photoanode for phenol were determined. More-

over, a mechanism of phenol PEC degradation was pro-

posed, revealing a kinetic model describing the surface re-

sponses of the TiO2/AC photocatalyst. 

2. Experiment 

2.1. Materials, chemicals and apparatus 

Pure titanium tetrachloride (TiCl4) (99.99%) was pur-

chased from Shanghai Aladdin Bio-Chem Technology Co., 

Ltd (China). Commercial activated carbon (AC), ethanol 

(99%), phenol (>99%), and hexane (>96%) were obtained 

from Xilong Scientific Co., Ltd (China). Hydrochloric acid 

(HCl, 36.5% w/w), sodium hydroxide (NaOH, >99%) were 

bought from Merck (Germany). Liquid polyester resin was 

collected from En chuan Chemical Industries Co., Ltd (Tai-

wan). 1-Butyl-1-Methylpyrrolidinium hexafluorophosphate 

(BMIM FP6, 97.5%) was supplied by IndianMart. Tap water 

was used to prepare all solutions. 

Characterization of materials was conducted with ana-

lytic methods such as scanning electron microscopy (SEM) 

and energy dispersive X-ray (EDX) using Prisma E SEM, X-

ray diffraction (XRD) recording by D2 PHASER, diffuse re-

flectance spectra carried out by FL-1039 (HORIBA), Fou-

rier-transform infrared spectroscopy (FT-IR) with Nicolet 

iS5, current − voltage (J–V) curve and electrochemical im-

pedance spectroscopy (EIS) using MPG2 Biologic system. 

2.2. Preparation of TiO2, TiO2–AC composite, and 

photoanodes 

10 ml of TiCl4 and 10 g of AC were added into an Erlenmeyer 

flask containing 200 ml of hexane under N2 atmosphere in 

a glovebox. The Erlenmeyer flask was then covered and 

moved to an ultrasonic tank. The mixture was dispersed un-

der 40 kHz of sonication for 15 minutes before adding 500 

ml of distilled water. After 30 minutes of sonication, the 

solid phase was separated and washed with distilled water 

in a vacuum filtration system until the filtrate reached neu-

tral pH. The obtained solid was thermally treated at 550 °C 

for 30 minutes to produce the TiO2–AC photocatalytic com-

posite. 

To prepare the TiO2 photocatalyst, the above procedure 

was applied without AC. 

A coating mixture (consisting of 80% w/w of polyester, 

19% w/w of ethanol, and 1% w/w of BMIM PF6) was de-

posited onto a SUS 304 stainless sheet (0.8 mm of thick-

ness, 100100 mm of dimension) as a photoanode substrate 

by the dip-coating method. Then, an abundant amount of 

photocatalyst was spread on the photoanode surface and 

pressed under 3 N/cm2 of pressure to create contact be-

tween the photocatalyst and the photoanode substrate. The 

obtained photoanodes based on TiO2 and TiO2–AC photo-

catalysts were stored at room temperature for one week be-

fore being utilized in the PEC system. 

2.3. Photoelectrochemical measurements 

A three-electrode cell was used for PEC measurements with 

a Pt grid as a counter electrode, an Ag/AgCl as a reference 

electrode, the photoanode as a working electrode, and a UV-

C mercury lamp (9 W) vertically soaked in a solution. All 

PEC measurements were conducted under fluorescent 

light (400−600 lux of illumination) in a 10 mg/L of phenol 

solution, pH = 5 with UV and non-UV radiation. The J–V 

curves were recorded according to the linear sweep voltam-

metry technique in a potential range of 0 V to +1.5 V at a 

scan rate of 50 mV/s. The EIS characteristics were obtained 

over a frequency range of 10 mHz to 10 kHz with 10 mV 

amplitude. 

2.4. Photoelectrochemical degradation of phenol 

Bath experiments for PEC degradation of phenol under UV 

and non-UV illumination were performed in a stirred PEC 

reactor containing 1 liter of phenol solution. The Pt grid and 

photoanode were vertically dipped into phenol solution and 

connected to a controllable DC voltage source. Between the 

Pt grid and the photoanode, the UV-C lamp was also im-

mersed in the solution. Phenol concentration was deter-

mined by the colorimetric method using HI 3864 phenol 

test kit with the instrumental error up to 0.1 mg·L−1. The 

efficiency of phenol removal was calculated by Equation (1). 

( )
 

− 
 

t

0

C
Phenol removal % = 1 ×100

C

 
(1) 

where Ct, C0 are the concentrations of phenol after contact 

time t and at the start (initial concentration) in mg·L−1, re-

spectively. 

3. Results and Discussion 

3.1. Characterization of materials 

The morphology of TiO2, AC and TiO2–AC can be observed 

in SEM images. As shown in Figure 1a, TiO2 particles are 

irregular polygonal shapes that are less than 25 m in size. 

Porous structure with cavities and pits of AC is disclosed in 

Figure 1b. 

https://doi.org/10.1016/j.dib.2019.103949
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Figure 1 SEM images of TiO2 (a), AC (b), TiO2–AC (c), and EDX spec-

trum of TiO2–AC (d). 

For TiO2–AC, a large number of TiO2 particles was 

loaded on AC structure by filling into the pits instead of the 

surface of cavities, as shown in Figure 1c. Similar observa-

tion was also reported in a previous publication [21]. Lo-

cated in pits, TiO2 particles could avoid being washed out 

from AC in photoanode preparation and utilization. As ex-

pected, C, O, and Ti elements in TiO2–AC were indicated in 

the EDX results, as shown in Figure 1d. 

Crystal phase characteristics of TiO2, AC, and TiO2–AC 

were explored with X-ray diffraction analysis as shown in 

Figure 2. The reflections from the (002) and (100) planes 

of aromatic rings of amorphous carbon structure caused the 

diffraction peaks at 26.2° and 43.5° [22]. For the XRD pat-

tern of TiO2, peaks appearing at 27.7°, 36.1°, 41.2°, 54.2°, 

and 56.7° were indexed as (110), (101), (111), (211), and 

(220) planes of rutile phase, whereas the presence of ana-

tase phase was identified by the peaks at 25.3° and 48.3°, 

according to (101) and (200) planes [23]. However, only 

characteristic peaks of rutile TiO2 exist in TiO2–AC material, 

as shown in the XRD pattern of TiO2–AC. This may be due 

to the effect of carbon on anatase to rutile transformation 

of TiO2 through the formation of oxygen vacancies, as men-

tioned in [24–26]. This is a disadvantage of our TiO2–AC be-

cause rutile TiO2 exhibits lower photocatalytic activity than  

anatase TiO2 [27]. 

Chemical bonds in TiO2, AC, and TiO2–AC were identified 

by FTIR analysis (Figure 3). As shown in the FTIR spectrum 

of TiO2, a strong absorption band at about 500 cm−1 reflects 

the vibration of Ti−O bond, and a band at 1653 cm−1 corre-

sponds to O−H bending in absorbed water molecules [28]. 

Stretching vibrations of C−O and C=C bonds in AC structure 

were identified by bands at 1097 cm−1 and 1554 cm−1, re-

spectively [29]. A band appearing at 3469 cm−1 is associated 

with the stretching vibration of O−H bond and free water 

[28]. It can be observed in the FTIR spectrum of TiO2–AC 

that characteristic bands of the bonds in TiO2 and AC ap-

peared again without a new band, indicating TiO2 did not 

conjugate to AC in TiO2–AC by a chemical bond. A similar 

result could be found in [21, 30]. 

 
Figure 2 XRD patterns of materials. 
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As presented in Figure 4a, UV-V is diffuse reflectance 

spectra of TiO2 and TiO2–AC shows the absorption edge of 

the TiO2 and TiO2–AC at about 370 nm and 420 nm, respec-

tively. It indicates the red-shift of the TiO2–AC towards the 

visible region in comparison with TiO2. Tauc plots, relation-

ships of h vs (h)1/2 of materials, are illustrated in Figure 

4b, revealing band gap energies of 3.15 eV and 2.61 eV for 

TiO2 and TiO2–AC, respectively. Carbon not only promotes 

the 4p → 4s electronic transition at defect points in the ti-

tanium atoms [31], but also improves the electron transfer 

due to the high electronic conductivity of carbon, thereby 

resulting in the lower band gap energy of TiO2–AC com-

pared to TiO2. This result indicates that TiO2–AC can effec-

tively separate electron-hole pairs in the visible region, 

which promotes photocatalytic activity under the solar illu-

mination. 

3.2. Characterization of photoanodes 

A TiO2–AC photoanode was selected for morphological anal-

ysis by the SEM technique. It can be observed in Figure 5a 

that TiO2–AC particles in random shapes were widely spread 

on the photoanode surface generating a rough structure. The 

original morphology of TiO2–AC (Figure 1c) exposed on the 

photoanode surface (as shown in Figure 5b) indicated that 

TiO2–AC particles were not immersed completely in the coat-

ing mixture. It proves that photoactive sites in TiO2–AC were 

disclosed on the photoanode surface, enabling photoexcita-

tion of the TiO2–AC photoanode in the photoelectrochemical 

system. The mean thickness of a coated layer on the pho-

toanode was determined to be 136 m. 

Photoelectrochemical properties of the TiO2 and TiO2–

AC photoanodes were examined using a three-electrode cell 

in phenol solution at pH = 5. Figure 6 demonstrates the cur-

rent density of the TiO2 and TiO2–AC photoanodes under 

non-UV and UV illumination applying linear sweep voltam-

metry. In the absence of UV (non-UV), photoanodes present 

low current density. Under UV radiation, photocurrent den-

sities of photoanodes significantly increase. The TiO2–AC 

photoanodes generated a current density of 283 A/cm2  

(at 1.45 V vs. Ag/AgCl), which is approximately 2.2 times 

higher than that of the TiO2 photoanode. This result may be 

due to the decrease of TiO2 band gap in the presence of AC. 

Photocatalytic activity of a photoanode driving a reaction 

can be evaluated through an onset potential, which is a po-

tential at the intersection point between J-V curve in non-

UV radiation and the tangent line with a maximum slope of 

J-V curve in UV radiation [32, 33]. The onset potential of the 

TiO2 photoanode driving phenol oxidation (~1.0 V vs 

Ag/AgCl) is about 350 mV higher than that of the TiO2–AC 

photoanode (~0.66 V vs Ag/AgCl), indicating heterojunc-

tion formation of TiO2/AC in the TiO2–AC material [34]. The 

low onset potential of the TiO2–AC photoanode demon-

strated an effective charge separation and transfer, mani-

festing a favorable application of the TiO2–AC photoanode 

for PEC degradation of phenol. 

 
Figure 3 FTIR spectra of materials. 

350 400 450 500
0

1

2
A

b
so

rb
a
n

ce

Wavelength, nm

(a)

TiO2

TiO2-AC

 

2,5 3,0 3,5
0

1

2

3

2.6 3.15

(
h


)1/

2
, 

e
V

1/
2

h, eV

(b)

TiO2TiO2-AC

 
Figure 4 Curves of UV-Vis diffuse reflectance spectra (a) and Tauc 

plots of TiO2 and TiO2–AC materials (b). 
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Figure 5 SEM images of TiO2-AC photoanode surface in 80x (a) and 

1200x (b). 

 
Figure 6 Current – voltage (J–V) curves of photoanodes in 10 mg/L 

of phenol solution (pH = 5). 

Figure 7 presents Nyquist plots of TiO2 and TiO2–AC pho-

toanodes under UV and non-UV illumination. There is only 

one semicircle for each Nyquist plot, indicating that PEC 

process on the photoanodes for phenol was controlled by 

trap electron transfer [35]. Smaller diameter semicircle 

demonstrates lower charge transfer resistance [36]. It can 

be observed clearly from Figure 7 that the semicircle in the 

Nyquist plot of the TiO2 and TiO2–AC photoanodes under UV 

radiation is smaller than that under the non-UV excitation. 

This finding proves that the charge transfer of photoanodes 

was improved under UV illumination. The TiO2–AC pho-

toanode exhibited a better charge transfer in comparison to 

TiO2 one because Nyquist plots of the TiO2–AC photoanode 

show smaller semicircles in both UV and non-UV excitation. 

This result indicates that the presence of AC not only did 

not reduce the photocatalytic properties of TiO2, but also 

improved the electrical conductivity of TiO2–AC, advancing 

the applicability of the TiO2–AC photoanode in PEC process. 

3.3. Photoelectrochemical degradation of phenol 

Applied external voltage (Vapp) can improve PEC perfor-

mance of TiO2 by enhancing the generation and separation 

of charge carriers [37]. After 30 minutes of PEC treatment 

under different Vapp in the range of 0−0.7 V, phenol and COD 

removal at the TiO2–AC photoanode were recorded and 

shown in Figure 8a. Phenol and COD removal exhibit simi-

lar trends under Vapp variation. Phenol can be converted to 

organic intermediates during the photocatalysis process be-

fore it is completely oxidized to CO2 [38]. If COD removal 

equates to phenol removal, the total removed phenol is ox-

idized to CO2 without the formation of intermediates. As il-

lustrated in Figure 8a, the ratio of phenol and COD removal 

decreases to approximately 1 with the increase of Vapp, cor-

responding to 15.50, 13.67, 7.45, 2.58, 1.04, and 1.04 for 0, 

0.2, 0.4, 0.5, 0.6, and 0.7 V of Vapp, respectively. Depend-

ences of phenol and COD removal as a function of Vapp pre-

sent a break-like point at 0.4 V and an exhaustion-like point 

at 0.6 V (Figure 8a), which is close to the onset potential of 

the TiO2–AC photoanode, suggesting a decisive contribution 

of the applied external voltage to the PEC degradation of 

phenol. 

Significant improvement of phenol degradation with 

PEC process as compared to photocatalysis is shown in 

Figure 8b. Under UV illumination, electrons and holes 

were photogenerated on TiO2, enhancing charge transfer 

between phenyl ring and photoanodes [39] and promoting 

phenol degradation. However, fast recombination of these 

electron-hole pairs causes a low limit of phenol removal, 

as seen in the TiO2/UV and TiO2–AC/UV curves. The re-

combination time of electron-hole pairs can be longer than 

charge transfer time in the redox reaction under appropri-

ate Vapp. As expected, at Vapp = 0.7 V, TiO2/PEC and TiO2–

AC/PEC curves in Figure 8b exhibit an increase in phenol 

removal. Moreover, the TiO2–AC photoanode presents a 

higher efficiency of PEC degradation of phenol than the 

TiO2 photoanode owing to the contribution of electric con-

ductivity of AC. After 60 min of contact time, phenol PEC 

degradation achieved 75.9% on TiO2–AC, which is lower 

than that on TiO2 nanotubes [40], but significantly higher 

than on TiO2 [18]. 

http://dx.doi.org/10.1134/S1023193515110130
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Figure 7 Nyquist plots from electrochemical impedance measure-

ments on photoanodes in 10 mg/L of phenol solution (pH = 5). 
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Figure 8 Effects of a) applied external voltage and b) PEC degra-

dation of phenol on TiO2–AC photoanode. 

As discussed above, the following experiments for the ki-

netic study of phenol PEC degradation were conducted at the 

TiO2–AC photoanode under Vapp = 0.7 V and UV illumination. 

4. Kinetic of photoelectrochemical degra-

dation of phenol in acidic solution 

Photocatalytic degradation of phenol can be described by 

the following Langmuir – Hinshelwood (L-H) kinetic 

mechanism [41–42], in which phenol is first adsorbed 

onto the photocatalyst surface and then decomposed. 

Therefore, this L-H model (2) was used to fit our experi-

mental data, revealing negative values of KB (as shown 

in Table 1). However, this is unreasonable because the 

adsorption equilibrium constant KB must be positive. 

• L-H model: − A

B

dC K C
r = =

dt 1+K C
 

(2) 

• First-order model: − 1

dC
r = =k C

dt
 (3) 

In the case of chemical reaction control, a first-order ki-

netic model (3) well described the photodegradation of phe-

nol on TiO2/AC [43] as well as ZnO, TiO2 and ZnO–TiO2 pho-

tocatalysts [44]. Photoelectrochemical degradation rate fol-

lowing the first-order model was identified for acidic red 

17 dye on ammonium persulphate [45], and phenol on PbO2 

anode [46]. However, the determination coefficients (R2) 

obtained from fitting our experimental data with this model 

were not close to 1 (as shown in Table 1). It signifies that 

the PEC degradation of phenol occurred in a complex mech-

anism and was not controlled exclusively by a chemical re-

action process. 

We proposed a mechanism of PEC degradation of phenol 

through reactions (4)–(6) based on the previous reports. 

Spallart et al. [47] proved that water competed with aro-

matic compounds in PEC oxidation. Moreover, oxygen at-

oms from water molecules can form O2
•− radicals at photo-

excited points [39]. Hence, the active site on the pho-

toanode surface (∗𝑛+) was suggested to interact with a wa-

ter molecule under the applied external potential and form 

an active site bearing oxygen (∗𝑛+ O2−) following reaction 

(4). In other consideration, phenol (Ph) can be protonated 

into H+Ph form [48] in acid solution, promoting the transfer 

of electron pair of oxygen in −OH group into the aromatic 

ring [49] and resulting in polar structure H+Ph− according 

to reaction (5). We suppose that H+Ph− contacted with 

∗𝑛+ O2− and then oxidized according to reaction (6), yield-

ing the decomposition products and regenerating the active 

site. 

−

− +
+
w

w

kn+ n+ 2 +
2 k

H O + * * O 2H  (4) 


+

−

+ + −+
p

p

k

k
Ph H H Ph  

(5) 

 − −+ − ⎯⎯→ +dk+ n+ 2 n+H Ph * O ze Products *  (6) 

https://doi.org/10.1016/j.mssp.2014.05.031
http://dx.doi.org/10.1016/j.arabjc.2011.03.001
https://doi.org/10.1016/j.electacta.2013.08.080
https://doi.org/10.1021/acs.jpca.8b04446
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Table 1 Calculated parameters of kinetic models at different initial concentrations and pH values. 

Kinetic model Parameters 
Initial concentrations, mg/L (pH = 5)  pH values (C0 = 20 mg/L) 

5 10 15 20  3 4 6 

L-H 

KA 0.011 0.012 0.014 0.016  0.033 0.026 0.003 

KB −18.62 −9.22 −5.05 −2.78  −3.073 −3.143 −4.595 

R2 0.944 0.978 0.995 0.994  0.984 0.998 0.986 

First-order 
k1 0.021 0.021 0.022 0.022  0.034 0.031 0.009 

R2 0.054 0.610 0.884 0.959  0.832 0.901 0.704 

This study 

𝑘𝑤
+ 0.131 0.070 0.204 0.122  0.013 0.241 0.231 

𝑘𝑤
− ∙ 103 5.608 5.321 6.463 6.339  5.792 6.279 6.325 

𝑘𝑝
+ 0.099 0.071 0.045 0.034  0.070 0.061 0.023 

𝑘𝑝
− 0.032 0.024 0.022 0.013  0.009 0.027 0.028 

𝑘𝑑 ∙ 103 0.164 0.158 0.156 0.142  0.168 0.192 0.152 

[∗𝑛+]𝑒𝑥 452 435 438 392  464 589 471 

R2 0.999 0.998 0.994 0.994  0.994 0.998 0.990 

k1 [min–1]; KA [min–1]; KB [L·mmol–1]; 𝑘𝑤
+ ,  𝑘𝑤

− ,  𝑘𝑝
+, 𝑘𝑝

− [min–1]; kd [L·mmol–1·min–1], [∗𝑛+]𝑒𝑥in mmol·L–1 

We assume that reactions (4)–(6) occurred in the pres-

ence of large amounts of H+ ions and H2O. Therefore, the 

rates of these reactions depend on the concentration of phe-

nol (x1),  −+H Ph (x2), and −n+ 2* O  (x3), as shown in equations 

(7), (8), (9). 

d𝑥1

d𝑡
= −𝑘p

+𝑥1 + 𝑘p
−𝑥2, (7) 

d𝑥2

d𝑡
= 𝑘p

+𝑥1 − 𝑘p
−𝑥2 − 𝑘d 𝑥2𝑥3, (8) 

d𝑥3

d𝑡
= 𝑘w

+ [∗𝑛+] − 𝑘w
− 𝑥3 − 𝑘d 𝑥2𝑥3, (9) 

where x1, x2, x3 are in mmol·L−1, and [∗𝑛+] is an apparent 

concentration of active sites in mmol·L−1. 

Under UV illumination, TiO2–AC particles on the pho-

toanode surface were excited to create photoexcited sites (∗). 

Then, under the applied external potential, the photoexcited 

site lost n electrons and became an active site (∗𝑛+). Supposing 

that the total number of ∗𝑛+ does not change with an apparent 

concentration [∗𝑛+]𝑒𝑥, equation (10) is obtained: 

[∗𝑛+]𝑒𝑥 = 𝑥3 + [∗𝑛+].  (10) 

The value of [∗𝑛+] can be determined from (10) and sub-

stituted in to (9) to result in (11): 

d𝑥3

d𝑡
= 𝑘w

+ [∗𝑛+]ex − (𝑘w
+ + 𝑘w

− + 𝑘d 𝑥2)𝑥3. (11) 

The parameters in the proposed model (𝑘𝑤
+ ,  𝑘w

− ,  𝑘p
+, 𝑘p

−, kd, 

and [∗𝑛+]ex) were determined by fitting experimental data 

with the model using the least-square method for x1 objective: 

∑(𝑥1,𝑖 − 𝑥1,�̂�)
2 → min

𝑛

𝑖=1

 (12) 

where, 𝑥1̂ is the phenol concentration predicted by the 

model, i = 1, 2, …, n denotes ith value, and n = 12 is the num-

ber of experimental data points. 

The determination coefficient (R2) is used to evaluate the 

goodness of fit of the model as presented in formula (13). 

𝑅2 = 1 −
SSR

SST
= 1 −

(𝑥1−𝑥1̂)2

(𝑥1−𝑥1̅̅ ̅)2
  (13) 

where SSS = ∑(𝑥1 − 𝑥1̂)2 is the residual sum of squares, 

TSS = ∑(𝑥1 − 𝑥1̅̅̅)2 is the total sum of squares, 𝑥1̅̅̅ =
1

𝑛
∑ 𝑥1

𝑛
𝑖=1  

is the mean value of x1. 

Numerical solutions of ordinary differential equations 

(7), (8), and (11) were carried out using Runge – Kutta 4th 

order method with initial conditions: 𝑥1(0) = [Ph]0 =
𝐶0

94.11
, 

𝑥2(0) = 𝑥3(0) = 0 (94.11 is molecule weight of phenol). The 

minimization problem (12) was solved with the help of the 

Excel Solver tool (ver. 2016) with a GRG non-linear option. 

Figure 9 shows the effects of initial phenol concentra-

tion (C0) and initial pH (pH0) on phenol removal under both 

observations of the experiment and simulation. The pro-

posed model exhibited a good description of the experi-

mental data due to the closeness of R2 to 1, obtaining kinetic 

parameters as summarized in Table 1. 

Experiments of PEC degradation of phenol were performed 

at different C0 from 5 to 20 mg·L−1 at pH0 = 5, revealing kinetic 

behavior as presented in Figure 9a. Phenol exhibits a property 

of UV light interception [39, 50], causing a decrease in the ac-

tive site quantity (*n+) and oxidation rate constant (kd) while 

increasing C0 as shown in Table 1. Consequently, the rate of 

phenol removal is lower with higher C0. Moreover, contact 

time for 99.95% phenol removal was predicted to be 1110, 725, 

490, and 450 minutes at C0 = 5, 10, 15, and 20 mg·L−1, respec-

tively, according to the proposed model. It proves that the PEC 

degradation of phenol on TiO2–AC photoanode did not reach 

equilibrium and tended to complete phenol removal. 

pH0 of the solution is an important parameter in the pho-

todegradation of phenol because of the variation of charge 

properties of phenol at different pH values [51]. In this study, 

PEC degradation of phenol was studied at various pH0 values 

of solution (3, 4, 5, and 6) with C0 = 20 mg·L−1. Phenol is pro-

tonated to H+Ph− in the presence of ion H+ according to re-

action (4). Therefore, the lower pH0 value was, the more 

H+Ph− was produced, resulting in an improvement in phenol 

degradation (as shown in Figure 9b). 
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Figure 9 Simulation (continuous line) and experimental results 

(discrete points) for PEC degradation kinetic of phenol on TiO2–AC 

photocathode at different C0 (a) and pH0 (b). 

Variation of [H+Ph−]/[Ph]0 and [∗𝑛+ O2−] as a function 

of contact time at different C0 was simulated and presented 

in Figure 10. As shown in Figure 10a, [H+Ph−]/[Ph]0 in-

creased in the first stage, then decreased, reaching the max-

ima around 25 minutes of contact time. A similar trend is 

also observed in the inset in Figure 10a, which shows the 

dependence of [H+Ph−] on t. The higher C0, the higher max-

imum value of [H+Ph−] would be, contrary to the 

[H+Ph−]/[Ph]0 relation. Moreover, the rate constant  𝑘p
+ 

was found to be 0.099, 0.071, 0.045, and 0.034 min−1 (Table 

1) at 5, 10, 15, and 20 mg·L−1 of C0, respectively, which proves 

that high C0 is a disadvantage to protonation of phenol.  

The curves in Figure 10b present the relationships be-

tween the amount of *n+O2− and the contact time. In all stud-

ied C0, [*n+O2−] quickly increases to reach the equilibrium 

concentration ([*n+O2−]eq). The ratios of [*n+O2−]eq and [*n+]ex 

are larger than 0.9, as shown in the inset in Figure 10b. It 

means that most photoexcited sites changed to form active 

sites bearing oxygen, which acts as a reactant in PEC degra-

dation of phenol. Although [*n+O2−]eq decreased with the in-

crease of C0, the high value (>350 mmol·L−1) was enough to 

interact entirely with protonated phenol molecules. 

The relationship of [H+Ph−]/[Ph]0 vs contact time at dif-

ferent pH0 (3, 4, 5, and 6) exhibited maxima as shown in 

Figure 11a. The maximum value of [H+Ph−]/[Ph]0 at pH0 = 3 

was the highest. At pH0 = 4, 5, and 6, the maximum values 

of [H+Ph−]/[Ph]0 were similar; however, the maximum 

peaks shifted to longer contact time with the increase of 

pH0. In other consideration from Table 1, the ratio of  𝑘p
+/ 𝑘𝑝

− 

generally decreased with the rise in pH0 (7.8, 2.3, 2.6, and 

0.82 at pH0 = 3, 4, 5, and 6, respectively). These results 

prove that phenol protonation was promoted in low pH0. 

Moreover, pH0 also affected the amount of *n+O2− on  

TiO2–AC photocathode, as shown in Figure 11b. For pH0 = 4, 

5, and 6, [∗𝑛+ O2−] tended to reach [*n+O2−]eq after around 

30 minutes of contact time; and [*n+O2−]eq at pH0 = 4 was 

the highest. Because the point of zero charge of the pre-

pared TiO2–AC was determined at pH = 5.4, TiO2–AC was 

positively charged under acidic conditions, advancing to 

generate *n+O2−. However, the amount of H+ ion was too 

high at pH0 = 3, causing a strong electrostatic force between 

H+ and oxygen in ∗𝑛+ O2−, which dissociated oxygen and ac-

tive site. Consequently, [*n+O2−] cannot reach equilibrium 

concentration after 120 minutes of contact time at pH0 = 3, 

as shown in Figure 11b. 
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Figure 10 Simulation of H+Ph− (a) and *n+O2− (b) variations in PEC 

degradation of phenol on TiO2–AC photoanode at different C0  

(pH0 = 5, Vapp = 0.7 V). 
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Figure 11 Simulation of a) H+Ph− and b) [∗𝑛+ O2−] variations in PEC 
degradation of phenol on TiO2–AC photoanode at different pH0 (C0 

= 20 mg·L−1, Vapp = 0.7 V). 

The inset in Figure 11b presents the effect of pH0 on the 

ratio of [∗𝑛+ O2−]/[∗𝑛+] ex. It can be seen that this ratio at 

pH0 = 5 is the highest (close to 1). It means that more sep-

aration between the point of zero charge and pH0 caused 

lower [∗𝑛+ O2−]/[∗𝑛+] ex. 

5. Conclusions 

In this work, TiO2 and TiO2–AC photocatalysts were success-

fully synthesized by the sol-gel method to apply to the PEC 

degradation of phenol. The TiO2–AC photoanode exhibits 

higher photoactivity for degrading phenol under UV-C illu-

mination than TiO2. Effects of applied external voltage, pH, 

and initial concentration of phenol on the kinetics of phenol 

PEC degradation were also experimentally investigated in 

this study. The interaction mechanism between protonated 

phenol and the active site bearing oxygen was well-demon-

strated for the phenol PEC degradation. The kinetic constants 

and the concentration variations of protonated phenol and 

the active site bearing oxygen were determined by fitting the 

established kinetic model to the experimental data. 
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