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Abstract 

In this work, proton conductivity, morphology and mechanical prop-

erties of (1–x)CsH2PO4–xF-42 (x=0.05–0.3, weight ratio) membranes 

were investigated for the first time. Thin flexible membranes for 

x≥0.15 with the uniform distribution of the components were ob-

tained by a tape casting method. Mechanical properties of the mem-

branes were measured by Vickers microhardness tests for a low pol-

ymer content (x˂0.15), also the tensile strength for membranes with 

high polymer content x=0.2–0.3 were evaluated. Proton conductivity 

of the (1–x)CsH2PO4–xpF-42 composite polymer electrolytes decreas-

es monotonically with increasing x due to the effect of a «conductor-

insulator» percolation. The combination of conductivity, mechanical 

strength and hydrophobic properties of (1–x)CsH2PO4–xF-42 makes 

certain compositions of proton-conducting membranes (x~0.2–0.25) 

promising for their use in intermediate-temperature fuel cells, de-

spite decreased conductivity. 
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1. Introduction 

Solid Acid Fuel Cell (SAFC) is a promising new type of fuel 

cells with a CsH2PO4 acid salt as a membrane [1, 2]. Inter-

est in solid acid compounds, such as alkali metal dihy-

drogenphosphates and dihydrogensulfates, is constantly 

growing, a number of salts of this family is increasing; as 

a result, new compounds with Cs3(H1.5PO4)2 [3–5] and 

Cs7(H4PO4)(H2PO4)8 [6] compositions have been recently 

discovered. However, CsH2PO4 remains the salt with the 

highest value of proton conductivity. The CsH2PO4 phase at 

room temperature is characterized by a low conductivity, 

while at 230 °C there exists its sharp increase by several 

orders of magnitude due to the phase transition to a Pm-

3m superionic phase, which is characterized by a high de-

gree of structural disorder and high proton conductivity, 

6·10–2 S/cm [7]. To achieve a more efficient and stable 

operation of H2/O2 FCs based on CsH2PO4 in a wider tem-

perature range, it is necessary to maintain humidity level 

of pH2O ~0.3 atm. to prevent salt dehydration [8, 9]. The 

disadvantages of the CsH2PO4 membranes (such as a nar-

row temperature range of the existence of a highly con-

ductive state, time-dependent plasticity of acid salt in su-

perionic phase, solubility in water, low mechanical 

strength) can be significantly improved by methods of 

homogeneous and heterogeneous doping. The search for 

polymer additives for the synthesis of thin membranes, 

which combine the flexibility and hydrophobicity of a pol-

ymer additive with a high proton conductivity of the acid 

salt, is being intensively developed. A number of compo-

site membranes based on CsH2PO4 and different polymers 

such as PVDF, SPEEK, epoxy resin, UPTFE, Butvar B98, 

p(VDF/HFP) have been investigated [10–16]. At a high 

concentration of polymer in such systems, the mechanical 

properties of the membranes are improved, while the high 

content of the non-conductive component results in a de-

crease in conductivity due to the effect of the «conductor-

insulator» percolation. The «CsH2PO4 – polymer» compo-

sites can combine the required mechanical, conductive, 

and hydrophobic properties. In addition, the solubility of 

polymer additives in various solvents makes it possible to 

switch from the solid-phase methods of membrane’s syn-

thesis to the production of thin and flexible films by tape 

casting technique. 

Fluoropolymers are considered as a chemically inert, 

thermally stable, effective additive to the acid salt 

CsH2PO4. The previous studies have included PVDF [10], 

ultrafine PTFE [14], and a VDF/HFP copolymer [15]. 

Fluoroplast 42 (F-42, similar to Kynar 7200) copolymer of 

vinylidene fluoride (VDF) with tetrafluoroethylene (TFE) 
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is a promising polymer matrix for CsH2PO4. TFE and VDF 

can be polymerized in any ratio giving rise to a broad va-

riety of copolymers. A composition of F-42 corresponds to 

the approximate TFE:VDF component ratio of 29:71. The 

polymer has a high hydrophobicity due to the high content 

of fluorine atoms 65.8 (wt.%). F-42 is a robust polymer 

with a high tensile strength (~14.6 MPa), high specific 

surface resistance (~1010 Ohm/m). It is chemically re-

sistant in acidic and basic media, and soluble in esters, 

ketones and N,N-dimethylformamide (DMF) [17–19]. F-42 

polymer has high thermal stability with decomposition 

temperatures above 360 °C. Melting of F-42 at tempera-

tures of 150–160 °C corresponds to the crystallites, but the 

polymer does not pass into a viscous state. In present 

work, morphology, mechanical characteristics, transport 

and structural properties of (1–x)CsH2PO4–xF42 polymer 

composite electrolytes have been studied. 

2. Materials and Methods 

The CsH2PO4 salt was obtained by a slow solvent evapora-

tion of an aqueous solution of Cs2CO3 and H3PO4 in a ratio 

of 1:2. Composite electrolytes with a polymer weight ratio 

of x=0.05–0.15 were synthesized by a thorough homogeni-

zation of a suspension of CsH2PO4 particles in a solution of 

p(VDF/TFE) in DMF with a mortar and a pestle with a fur-

ther drying and uniaxial pressing of formed powder at 

300 MPa. For the x=0.2–0.3, a viscous suspension of 

CsH2PO4 particles in polymer solution was spread on a 

fluoroplastic substrate using a TOB-VFC-150 tape casting 

machine and dried to form the film. 

Proton conductivity measurements were carried out on 

the thin films ~150 μm for x=0.2 or pellet (x=0.05–0.15) 

with silver or platinum paste or pressed electrodes. Mem-

branes were subjected to repetitive heating-cooling cycles 

in the temperature range from 50 to 245 °C. Humid condi-

tions (pH2O ~0.3 atm) were used at temperatures higher 

180 °C to prevent the CsH2PO4 dehydration. The conduc-

tivity was measured by electrochemical impedance spec-

troscopy using an P-5X impedance meter (frequency range 

of 1 mHz to 0.5 MHz) and Instek (12 Hz-200 kHz) in a 

cooling regime. 

Scanning electron microscopy (SEM) images of compo-

sites were obtained on the gold sputter-coated membranes 

using a Hitachi TM 1000 microscope. X9ray diffraction 

(XRD) analysis was performed on a Bruker D8 Advance 

diffractometer (λ Cu Kα1 = 1.5406 Å) with a one-

dimensional Lynx-Eye detector and Kβ filter. 

Vickers hardness for (1–x)CsH2PO4–xF42 (x≤0.15) was 

determined using a DuraScan 50 microhardness tester 

EMCO-TEST with an application time of load (0.5 kgf 

(4.9 N)) for 10 seconds. The measurements were repeated 

at least ten times for each sample. Dense tablets (5 mm in 

diameter and 1 mm in thick) were obtained by uniaxial 

pressing at 300 MPa.  

The tensile strength of thin-film polymer composite 

electrolytes with x >0.15 was measured using an Instron 

5944 mechanical testing machine. For the preparation of 

samples, a punching die of certain sizes was used to obtain 

the samples with a form of a double blade with a 5 mm 

wide and 20 mm high working area. The thin-film mem-

brane was stretched at a constant rate of 5 mm/min under 

atmospheric conditions and the applied load and elonga-

tion was recorded. For each x at least six measurements 

were made, and average value was calculated. 

3. Results and Discussion 

For the synthesis of composites, the x<0.38 composition 

range was chosen, since the proton conductivity drops 

sharply with an increase in the ratio of the polymer addi-

tive due to the predominance of the nonconductive com-

ponent in the membrane volume. Composites with a low 

content of F-42 x=0.05–0.15 were obtained in the form of 

pellets. For higher polymer content (x>0.15) it was possi-

ble to produce thin flexible films with a thickness ~150 µm 

by tape casting method. The search for optimal conditions 

for tape casting process such as solvent used, application 

speed, the height of the gap, number of layers and the 

temperature regime of drying has been carried out. DMF 

was used as a solvent with a high boiling point (T=153 °C) 

that provides high quality of films obtained.  

According to X-ray diffraction data, a monoclinic 

CsH2PO4 (P21/m) phase is retained in composite electro-

lytes over the entire range of compositions.  

 
Figure 1 XRD data for the (1–x)CsH2PO4–xF42 membranes of vari-
ous composition. 
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Figure 2 SEM images of (1–х)CsH2PO4–xF-42 for х=0.05 (a, c), 

x=0.1 (b), x=0.15 (d), x=0.25(e), cross-section of x=0.25 (f). 

With an increase in the weight ratio of a polymer addi-

tive, the intensity of the CsH2PO4 reflexes decreases in 

accordance with the change in the mass fraction of the salt 

(Figure 1). The F-42 fluoropolymer has a sufficiently high 

degree of crystallinity; the XRD pattern has reflections in 

a region of 2θ~19 and 40º. The structure of the β-phase of 

PVDF is realized in the F-42 polymer [20]. For composite 

electrolytes with x≥0.1, the most intense F-42 reflex ap-

pears in vicinity of 19°. 

The distribution of components in the volume signifi-

cantly affects the proton conductivity and mechanical 

properties of membranes. CsH2PO4 is practically insoluble 

in most known organic solvents, and composite mem-

branes present a polymer matrix with salt particles dis-

persed in its volume. The study of membrane morphology 

and determination of the size of salt particles in the poly-

mer matrix was performed using SEM. The resulting 

membranes exhibit a uniform distribution of components 

with the salt particles size less than 5 μm (Figure 2). 

The nature of the temperature dependences of the 

composites is close to that of pure salt. The conductivity of 

the high-temperature phase decreases by less than an or-

der of magnitude for compositions with x≤0.15 (Figure 3). 

Compared to the initial salt of CsH2PO4, the proton con-

ductivity of the composites decreases even at a low vol-

ume fraction of the polymer (7.87 vol.% for x=0.05) due 

to its dielectric nature. A further increase in the polymer 

content (x>0.2) results in a close-to-linear decrease of 

conductivity. 

To assess the mechanical properties of the membranes, 

the Vickers microhardness was determined for the acid 

salt CsH2PO4 and hybrid polymer compounds with F-42. 

 
Figure 3 Temperature dependences of conductivity for the  
(1–x)CsH2PO4–xF-42 composites. 

  
CsH2PO4 x=0.05 (7.87 vol.%) 

  
x=0.1 (15.3 vol.%) x=0.15 (22.3 vol.%) 

Figure 4 Microscopic images of the indenter's imprint on the 
surface of (1–x)CsH2PO4–xF42 membranes. 

The Vickers microhardness test evaluates the mechani-

cal properties of composite polymer electrolytes in the 

form of tablets with a low polymer content (x≤0.15) in 

comparison with initial CsH2PO4 salt. The relative density 

of the obtained tablets "CsH2PO4-polymer" was close to 

95%. Vickers hardness (HV) was determined by division of 

the load by the area of the sloping surface of the indenta-

tion. With an increase in the content of the polymer addi-

tive, the diagonals of the indentation from the diamond 

pyramid increase (Figure 4). Thus, the Vickers numbers, 

HV, for the initial salt had the values HV~34, which corre-

sponds to 333.4 MPa, for hybrid membranes containing  
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F-42 polymer x=0.15, the microhardness decreases by 

more than two times reaching value ~13 HV. For hybrid 

compounds, it was shown that with an increase in the 

mass fraction of the polymer, the ability to resist plastic 

deformation and, as a result, the mechanical strength in-

crease. 

For thin-film membranes with x>0.15, the tensile 

strength was measured as the load at which the sample 

failed, referred to the initial cross-sectional area of the 

sample. Films with x=0.2–0.3 and thickness of ~150 μm 

were obtained by applying a two layer of suspension and 

drying until the solvent evaporation. The magnitude of the 

breaking stress increased with the increase in the mass 

fraction of F-42. The maximum value of the breaking 

stress of a thin-film polymer-composite membrane with 

x=0.3 was 0.7 MPa. 

4. Conclusions 

The synthesis method of the (1–x)CsH2PO4–xF-42 compo-

site electrolytes by tape casting technique was developed. 

A study of the proton conductivity, structural properties, 

mechanical characteristics, and morphology of the system 

was carried out for the first time. According to XRD, F-42 

is the chemically inert polymer matrix for CsH2PO4. Com-

posite electrolytes in the form of thin flexible films with 

the thickness 100–150 μm can be obtained for high poly-

mer content. The (1–x)CsH2PO4–x-42 composites are char-

acterized by a decrease in superionic conductivity in com-

parison with the initial salt within 1 order of magnitude 

for x=0.15. A further increase in the polymer content 

(x>0.2) results in a conductivity decrease close to linear. 

Polymer content x˂0.15 results in the low HV values corre-

sponding to the high robustness of the membranes to plas-

tic deformation. The improvement of mechanical proper-

ties and hydrolytic stability makes the investigated com-

posite polymer electrolytes promising for use as proton-

conducting membranes in the medium-temperature range 

fuel cells. 
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