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Abstract 

The creation of highly efficient and eco-friendly energy sources such 

as hydrogen energy systems is one of main vectors for the sustaina-

ble development of human society. Proton-conducting ceramic mate-

rials can be applied as one of the main components of such hydrogen- 

fueled electrochemical devices, including protonic ceramic fuel cells. 

The oxyanion doping strategy is a promising approach for improving 

transport properties of proton-conducting complex oxides. In this 

paper, this strategy was applied to proton-conducting layered perov-

skites for the first time. The phosphorus-doped protonic conductors 

based on BaLanInnO3n+1 (n = 1, 2) were obtained, and their electrical 

conductivity was thoroughly investigated. It was found that the 

phosphorous doping leads to an increase in the electrical conductivi-

ty values by ~0.7 orders of magnitude.   
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Key findings 

● The oxyanion doping strategy is a promising method for improving transport properties of proton-

conducting layered perovskites. 

● The phosphorous-doping leads to a considerable increase of electrical conductivity of the 

BaLaIn0.9P0.1O4.1 and BaLa2In1.9P0.1O7.1 compared to the P-free materials. 

 

1. Introduction 

The creation of high-efficiency and eco-friendly energy 

source is one of main objectives for the sustainable global 

development of human society [1−8]. Hydrogen energy 

belongs to the renewable energy industry and includes the 

systems for storage, transport and using of hydrogen for 

power generation [9−12]. Proton-conducting ceramic ma-

terials can be applied as the one of main component of 

such hydrogen-based electrochemical devices for various 

purposes, including electricity generation in protonic ce-

ramic fuel cells, PCFCs [13−25]. The most studied protonic 

conductors have perovskite or perovskite-related struc-

tures [26−30]. Doping of cationic sublattices is a common 

way for improving their transport properties. However, 

the anion [31−35] and oxyanion [36, 37] doping methods 

can increase proton conductivity in the complex oxides as 

well. The oxyanion doping strategy is based on the dis-

placement of the [BO6] octahedra to the [B'O4] tetrahedra 

such as phosphate, sulphate and silicate (Figure 1). Slater 

et al. proved the validity of this strategy for the proton-

conducting materials, studying barium indate, Ba2In2O5, as 

an example [36]. This confirms that substitution [PO4] → 

[InO6] is fundamentally possible, and the proton conduc-

tivity in such compositions can be improved by phospho-

rus doping.  

 
Figure 1 The scheme of oxyanion doping strategy of layered per-

ovskites. 
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Barium lanthanum indates, BaLaInO4 and BaLa2In2O7, 

have a layered perovskite structure and can be written 

using a general formula, BaLanInnO3n+1 (n = 1, 2). They 

belong to the newly opened class of proton-conducting 

solid oxide materials [38−49]. It was proved that they 

are nearly pure (~95–98 %) protonic conductors under 

wet air below 350–400 °C [50]. Different ways of cation-

ic (iso- and heterovalent) doping lead to increasing the 

protonic conductivity up to ~1.5 orders of magnitude 

(from 2∙10–7 S cm–1 for BaLaInO4 to 8∙10–6 S cm–1 for 

Ba1.1LaInO3.95 at 400 °C) [51−56]. Based on this fact, the 

other doping strategies, such as oxyanion (phosphorus) 

doping, can be applied to these materials. The reason of 

this materials search is necessity to create high-

conductive proton conductors with the layered perov-

skite structure because the promising cathode materials 

based on nickelates lanthanides [57−60] belong to the 

layered perovskites as well.   

In the present study, the oxyanion doping strategy 

was applied to the proton-conducting layered perovskites 

for the first time. The phosphorus-doped protonic con-

ductors based on BaLanInnO3n+1 (n = 1, 2) were obtained, 

and electrical conductivity of ceramic samples was inves-

tigated.  

2. Experimental 

The complex oxides of BaLaIn0.9P0.1O4.1 and 

BaLa2In1.9P0.1O7.1 were obtained by a solid state method. 

Firstly, high-purity starting powder materials were 

dried and the stoichiometric amounts of the reagents 

were weighed on a Sartorius analytical balances 

(Goettingen, Germany). The chemical reactions can be 

presented in as: 

BaCO3 + 0.5La2O3 + 0.45In2O3 + 0.1NH4H2PO4 →  

BaLaIn0.9P0.1O4.1 + 0.1NH3 + 0.15H2O + CO2 
(1) 

BaCO3 + La2O3 + 0.95In2O3 + 0.1NH4H2PO4 →  

BaLa2In1.9P0.1O7.1 + 0.1NH3 + 0.15H2O + CO2 
(2) 

Further, the milling of all reagents in an agate mortar 

followed by calcination of the obtained mixtures was 

made. The calcination was performed in a temperature 

range from 800 to 1300 °С with a step of 100 °С and 24 h 

of time treatments. 

The X-ray diffraction (XRD) studies were performed by 

a Bruker Advance D8 diffractometer (Rheinstetten, Ger-

many) with a Cu Kα radiation with a step of 0.01o and at a 

scanning rate of 0.5o min–1. The morphology and chemical 

composition of the samples were studied using a Phenom 

ProX Desktop scanning electron microscope (Waltham, 

MA, USA) (SEM) integrated with an energy-dispersive X-

ray diffraction (EDS) detector. 

For the investigations of the electrical properties, the 

pressed cylindrical pellets (1300 °C, 24 h, dry air) were 

obtained. The samples had a relative density of ~90% 

(density of the sintered samples was determined by the 

Archimedes method). The AC conductivity measurements 

were performed by a Z-1000P (Elins, RF) impedance 

spectrometer within a frequency range of 1–106 Hz. Elec-

trical measurements were performed using Pt paste elec-

trodes (sintering at 1000 °C for 2 h). The temperature 

dependencies of electrical conductivity were obtained in 

a temperature range 200–1000 °C (step 10–20 °C, 

1 °C min–1 cooling rate). These investigations were per-

formed under “dry” and “wet” air atmospheres. The dry 

air was produced by circulating the gas through P2O5 

(pH2O = 3.5·10−5 atm). The wet air was obtained by bub-

bling the gas at room temperature first through distilled 

water and then through a saturated solution of KBr 

(pH2O = 2·10−2 atm). The humidity of the gas was con-

trolled by a Honeywell HIH-3610 H2O-sensor (Freeport, 

USA). 

3. Results and discussions 

The XRD analysis of the powder samples BaLaIn0.9P0.1O4.1 

and BaLa2In1.9P0.1O7.1 confirmed the single phase for both 

compositions. The XRD-patterns for the compositions of 

BaLaIn0.9P0.1O4.1 and BaLa2In1.9P0.1O7.1 are presented in the 

Figure 2 and 3 correspondingly.  

Phosphorous-doped BaLaIn0.9P0.1O4.1 and 

BaLa2In1.9P0.1O7.1 samples are isostructural to theirs matrix 

compositions, BaLaInO4 and BaLa2In2O7, correspondingly. 

The monolayer BaLaIn0.9P0.1O4.1 composition belongs to the 

Pbca space group (orthorhombic symmetry), and the two-

layered composition of BaLa2In1.9P0.1O7.1 crystallizes in the 

P42/mnm space group (tetragonal symmetry). The values 

of lattice parameters and unit cell volume are presented in 

Table 1.   

 
Figure 2 The XRD-results for BaLaIn0.9P0.1O4.1 composition. The 

SEM-image is presented in the inset. 
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Figure 3 The XRD-results for BaLa2In1.9P0.1O7.1 composition. The 
SEM-image is presented in the inset. 

Table 1 The lattice parameters and unit cell volume of investigat-

ed compositions. 

Composition a, Å b, Å c, Å V, Å3 

BaLaInO4 [50] 12.932 5.906 5.894 450.19 

BaLaIn0.9P0.1O4.1 12.803 5.939 5.906 449.04 

BaLa2In2O7 [50] 5.891 5.891 20.469 710.520 

BaLa2In1.9P0.1O7.1 5.909 5.909 20.868 728.605 

As can be seen, phosphorous-doping leads to a change 

in these characteristics for both doped compositions com-

pared with undoped. The oxyanion doping for the mono-

layer composition of BaLaInO4 leads to a decrease in the a 

parameter and to an increase in the b and c parameters. 

The applying of this doping strategy to the two-layered 

compositions of BaLa2In2O7 leads to an increase of all (a, b 

and c) lattice parameters. As it is known [61], the ionic 

radius of phosphorous is smaller than ionic radius of indi-

um (r(P5+) = 0.38 Å, r(In3+) = 0.8 Å). However, the dis-

placement of [InO6] octahedra to the [PO4] tetrahedra 

should inevitably lead to the appearance of local distor-

tions and to a redistribution of bond lengths in the crystal 

structure. The microphotography (SEM-image) of the 

BaLa2In1.9P0.1O7.1  powder sample is presented in the inset 

of Figure 3. This composition consists of grains ~5 μm, 

forming agglomerates of ~15−30 μm. 

The electrical conductivity was measured by the im-

pedance spectroscopy method. The Nyquist-plots for 

BaLaIn0.9P0.1O4.1 composition obtained under dry air are 

presented in the Figure 4a, b. The fitting of the spectra 

was made using ZView software, and the obtained results 

are presented in the Table 2. According to the fitting of the 

spectra (red line) with using the equivalent circuit pre-

sented in the Figure 4c, three different electrochemical 

processes can be defined. As it was shown earlier [51], the 

Nyquist-plots for undoped BaLaInO4 composition were 

represented by one visible semicircle with a capacitance of 

around 10–11 F. For the calculation of electrical conductivi-

ty, the bulk resistance values (R1) were used and dis-

cussed below. It can be noted, that due to a small depres-

sion of the semicircles, the constant phase element (CPE) 

was used during the analysis of Nyquist plots. 

The results of the electrical conductivity investigations 

are presented in the Figure 5. As can be seen, phospho-

rous-doping leads to an increase in the conductivity values 

for both monolayer (BaLaInO4) and two-layered 

(BaLa2In2O7) compositions and. The conductivity growth is 

about 0.7 orders of magnitude for both compositions. We 

can assume that such increasing electrical conductivity is 

due to two factors. Firstly, an increase in the lattice pa-

rameters for the layered perovskites of BaLanInnO3n+1 re-

sults in a higher conductivity due to facilitating ionic 

transport [50]. Secondly, the phosphorous-doping can be 

considered as a donor doping (P5+ → In3+) that causes the 

appearance of interstitial (“additional”) oxygen in the 

structure. It is obvious that an increase in the concentra-

tion of charge carriers (oxygen ions) should lead to the 

corresponding increase in the conductivity as well. 

The change in atmospheric humidity also affects the 

electrical conductivity values (Figure 5). The air humudifi-

cation leads to an increase in the conductivity values at 

low temperatures (450 °C).  

 
Figure 4 The Nyquist-plots obtained at the different temperatures 

under dry air for the composition BaLaIn0.9P0.1O4.1: 600 °С (a), 

500 °С (b), and the equivalent circuit of fitting (red line) (c). 



Chimica Techno Acta 2022, vol. 9(4), No. 20229405 LETTER  

4 of 6 

Table 2 Results of Nyquist-plots fitting, where CPE is the constant 

phase element (F) and the R is the resistance (kΩ). 

Element Value (600 °С) Value (500 °С) 

CPE1 2.1∙10−12 3.6∙10−12 

R1 11 280 

CPE2 4.5∙10−10 4.8∙10−10 

R2 4.5 40 

CPE3 3.4∙10−7 5.1∙10−7 

R3 2 70 
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Figure 5 The temperatures dependencies of conductivity for the 

compositions BaLaIn0.9P0.1O4.1 (a) and BaLa2In1.9P0.1O7.1 (b) under 
dry (filled symbols) and wet (open symbols) air. 

Because layered perovskites BaLaInO4 and BaLa2In2O7 

are capable for the dissociative absorption of water from 

the gas phase [50], the reason of better conductivity is the 

appearance of proton contribution of conductivity. It can 

be concluded that the oxyanion doping strategy can be 

applied for layered perovskites for improving their 

transport properties. 

4. Conclusions 

In this paper, the oxyanion doping strategy was purpose-

fully applied to the proton-conducting layered perovskites 

for the first time. The phosphorus-doped protonic conduc-

tors based on BaLanInnO3n+1 (n = 1, 2) were obtained, and 

their electrical properties were investigated. The 

BaLaIn0.9P0.1O4.1 and BaLa2In1.9P0.1O7.1 oxides were obtained 

for the first time. It was found that the phosphorous-

doping leads to an increase in the electrical conductivity 

values by ~0.7 orders of magnitude. The oxyanion doping 

strategy is a promising method for improving transport 

properties of proton-conducting layered perovskites. 
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