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Abstract 

The development of technologies for processing oil residues is rele-
vant and promising for Kazakhstan, since the main oil reserves of 
hydrocarbons in the country are in heavy oils. This paper describes 
the study of the influence of technological modes on the yield and 
hydrocarbon composition of products formed because of cracking of 
commercial fuel oil and fuel oil M-100 in the presence of air in the 
reactor. For catalysts preparation, natural Taizhuzgen zeolite and 
Narynkol clay were used. It was found that the introduction of air in-

to the reaction zone, in which oxygen is the initiator of the cracking 
process, significantly increases the yield of the middle distillate frac-
tions. In the presence of air, the yield of diene and cyclodiene hydro-
carbons significantly increases compared to cracking in an inert at-
mosphere. According to the data of IR spectral analysis of M-100 
grade oil fractions, in addition to normal alkanes, the final sample 
contains a significant amount of olefinic and aromatic hydrocarbons. 
On the optimal catalyst, owing to oxidative cracking of fuel oil, the 
following product compositions (in %) were established: Fuel oil M-
100: gas – 0.8, gasoline – 1.1, light gas oil – 85.7, heavy residue – 
11.9, loss – 0.5 and total – 100.0%; commodity Fuel oil (M-100): gas 

– 3.3, gasoline – 8.4, light gas oil – 84.3, heavy residue – 4.0, loss – 0 
and total – 100.0%. 
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1. Introduction 

Recently, there has been an increased interest in technolo-

gies for processing oil residues due to the growing differ-

ence in prices for light and heavy grades of oil. At present, 

the development of technologies for processing oil resi-

dues is relevant and promising, which is associated with 

an increase in the share of hard-to-recover oil reserves: 

heavy and high-viscosity oils in the world. This, in turn, 

forces refineries to select carefully the available technolo-

gies for processing oil residues and increase the share of 

heavy oil raw materials in the total volume of oil-

processing feedstock [1–20]. 40–45% of all high-octane 

gasoline is produced at catalytic cracking plants with a 

steamer. In the classical version, the cracking process of 

heavy hydrocarbons occurs in the vapor phase due to con-

tact with a circulating fluidized catalyst consisting of par-

ticles ranging in size from 50 to 100 microns [4, 21–36]. 

Over the past decades, the world’s leading companies have 

developed a number of new catalytic cracking technologies 

to maximize the yield of light olefins, for example: the use 

of promoted catalysts or increased rigidity of the techno-

logical mode; the addition of light hydrocarbon fractions 

to raw materials; reducing the contact time of raw materi-
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als with the catalyst and, finally, the use of heavy fractions 

to ensure the thermal balance of the installation [33–49]. 

Fuel oil is a residual substance after a simple distilla-

tion of oil, which contains mainly hydrocarbons and oil 

resins of large molecular weight. Fuel oil M-100 belongs to 

the furnace types of fuel oil and can be used as a liquid 

fuel for combustion in boiler furnaces of thermal power 

plants. The fuel oil can be further processed to produce 

gas oil by vacuum distillation [54, 55]. Most scientists in 

the field recognize that the specific properties and com-

plex composition of heavy oils and oil residues do not al-

low the use of classical processing methods for light oils; 

such schemes are ineffective or not suitable at all [1, 2, 4, 

14–16]. One of the actual methods of intensification of 

thermal processes of refining of high-viscosity oils is wave 

action (ultrasonic, acoustic, ultra-frequency) [56–65]. 

Oxidative cracking is a process of cracking petroleum 

fractions carried out at atmospheric pressure in the vapor 

phase. A Soviet petroleum engineer, doctor of technical 

sciences, a specialist in the field of oil production and oil 

refining, one of the founders of thermal methods of oil 

production, A. B. Sheinman (1898–1979) with his col-

leagues (among them, in particular, a famous Soviet and 

Hungarian scientist of Hungarian origin Carl Dubrovay 

(1888–1957)) created the scientific and technical founda-

tions of oxidative cracking [66, 67]. 

The efficiency of processing raw materials with ozone 

to the depth of conversion of fuel oil under the conditions 

of its cracking process and the possibility of lowering the 

temperature to 425–450 °С are described [1, 2, 4, 58–75]. 

In the literature, studies are known of the processes of 

cracking vacuum distillates on a zeolite-containing cata-

lyst and the reforming of gasoline fractions on a modified 

catalyst in the presence of atmospheric oxygen. The au-

thors found that the presence of oxygen contributes to an 

increase in the yield of light fractions, but causes an in-

crease in the yield of hydrocarbon gases and the formation 

of coke on the catalyst. The octane number of the obtained 

gasoline fraction in the presence of oxygen was higher 

(the increase in the number was within 1.5–2.3 units) than 

the octane number of the same fraction obtained in the 

absence of oxygen. This phenomenon can be explained by 

the presence of oxygen-containing hydrocarbon com-

pounds in it, which was confirmed by IR spectroscopy. 

These results, obtained by various authors, indicate the fea-

sibility of processing heavy oil fractions by oxidative crack-

ing. An analysis of the data of various scientific schools al-

lows us to conclude that one of the most promising ways to 

increase the depth of processing of heavy oil fractions is to 

carry out catalytic cracking in an oxidizing medium, for 

example, with controlled air supply to the reactor [58–75].  

In this work, the influence of technological modes on 

the yield and hydrocarbon composition of products formed 

as a result of catalytic cracking of commercial fuel oil and 

fuel oil M-100 in the presence of air in the reactor on cata-

lysts synthesized on the basis of natural raw materials of 

Kazakhstan fields was investigated. 

2. Experimental  

Commercial fuel oil and fuel oil grade M-100 from the 

Amangeldy GPP (Kazakhstan) were used as initial prod-

ucts for studying cracking. Sulfur content is 0.7% in fuel 

oil M-100, and 2.1% – in commercial fuel oil.  

For the preparation of catalytic composites, the frac-

tions of 60–80 μm of natural zeolite from the Taizhuzgen 

deposit (Kazakhstan) and clay from the Narynkol deposit 

(Kazakhstan) were taken (Figure 1, Table 1).  

 

 
Figure 1 Study of physico-chemical properties of natural zeolite 
from the Taizhuzgen deposit (Kazakhstan): X-ray diffraction 

analysis (a), IR spectroscopy (b). 

The chemical composition of the original Narynkol clay 

is (in %): SiO2 – 38.05; CaO – 20.40; Al2O3 – 8.49; MgO – 

6.15; Fe2O3 – 6.15; K2O – 1.80; Na2O – 1.10; TiO2 – 0.44; 

P2O5 – 0.11; MnO – 0.10. 

The zeolite was activated by ionic exchange of zeolite 

framework sodium cations for lanthanum and ammonium 

cations. Then, the zeolite suspension was stirred for two 

minutes with a suspension containing a certain amount of 

clay in distilled water, which was changed in each experi-

ment in order to prepare composites with different con-

centrations of components. 

(a) 

(b) 
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Table 1 Composition of natural zeolite from the Taizhuzgen depos-

it (Kazakhstan) according to X-ray diffraction analysis. 

No. 
Chemical 

element 
Concentration, % Intensity 

1 Fe 49.94 739.15 

2 Ca 1.71 9.16 

3 Sr 0.270 1.98 

4 Mn 0.130 1.82 

5 Al 21.955 0.30 

6 Si 23.115 0.98 

7 Ti 1.902 20.86 

8 K 0.975 1.97 

After that, the mixture was evaporated and molded to 

form a 0.05–0.25 mm fraction. The resulting microspheri-

cal catalyst was dried at 100 °C for 10 hours and hardened 

at 550 °C for 5 hours. Ion exchange for NH4+ and La3+ cati-

ons was carried out at 80 °C for 3 hours in a solution of 

ammonium sulfate and lanthanum nitrate at a ratio of  

5 g-eq. (NH4)2SO4 to 1 g-eq. Na2O and 2 wt.% lanthanum. 

Then the samples were heat-treated and ion exchange was 

repeated in a solution of a mixture of ammonium sulfate 

and lanthanum nitrate. The final residual sodium oxide 

content in the zeolite was about 0.5 wt.%. 

Figure 2 shows the methodology for the catalyst prepa-

ration used in our study.  

 
Figure 2 The scheme of preparation of the catalyst. 

The procedures for selection and adjustment of process 

conditions were also described in more detail in our pre-

vious works [21, 30, 32, 58, 59]. 

The process was carried out in four versions: in an in-

ert atmosphere in the absence of a catalyst (thermal 

cracking), with air supplied to the reactor (oxidative 

thermal cracking), in an inert atmosphere in a 0.2 wt.% 

suspension of a fine catalyst (catalytic cracking), and, fi-

nally, with the simultaneous supply of a catalyst suspen-

sion in fuel oil and air to the reactor (oxidative catalytic 

cracking). Figure 3 shows a principal scheme for imple-

menting the process under study.  

 
Figure 3 Schematic diagram for the implementation of catalytic 
processing of commercial fuel oil and fuel oil grade M-100 from 

the Amangeldy GPP (Kazakhstan): I – catalyst preparation sec-

tion: 1 – section for mixing; 2 – sieves; 3 – temperature-controlled 
container with a stirrer; 4 – kiln for drying and calcining;  

5 – electromagnetic homogenizer. II – section for preparation of a 

catalyst suspension in the feedstock (fuel oil): 1 – a thermostati-
cally controlled vessel with a stirrer; 2 –reactor for electromag-

netic activation of the feedstock-fuel oil. III – section for the im-

plementation of the oxidative cracking process: 1 – thermostati-

cally controlled flow reactor, equipped with devices and valves 
for dosed supply of inert gas, air, as well as a composite catalyst 

in the feedstock – fuel oil, 2 – flow tank with cooling for condens-

ing liquid cracking products; 3 – output of the tar residue mixed 
with the spent catalyst; 4 – system for discharge and combustion 

of gaseous products formed as a result of cracking. IV – section of 

rectification of cracking products: 1 – evaporation column;  
2 – rectification of cracking products. 

The analysis of gaseous cracking products was carried 

out on a chromatograph with a flame ionization detector: 

on a 2-meter column with an inner diameter of 2 mm, 

filled with Poralac sorbent (fraction 8.2–8.3 mm) – for the 

analysis of hydrocarbon gases; on a 1-meter packed col-

umn filled with NaX zeolite (fraction 0.25–0.5 mm) – for 

the analysis of non-hydrocarbon gases. Argon was used as 

the carrier gas.  

The programmed temperature sweep was carried out 

for hydrocarbon gas in the range of 25–165 °C with expo-

sure at 25 °C for 7 minutes; and for non-hydrocarbon –  

40–100 °C, at a speed of 8°/min. Determination of the 

hydrocarbon composition of gasoline fractions was carried 

out by gas chromatography on a chromatograph with a 

flame ionization detector on a 50 m stainless steel capil-

lary column (internal diameter 0.2 mm) filled with 

Squalane sorbent. The carrier gas was argon. The pro-

grammed temperature sweep was carried out in the range 

of 40–110 °C at a speed of 2°/min. 

3. Results and discussion 

The content of components in catalysts affects the activity 

of catalytic composites. The chemical composition of the 

starting materials and catalysts based on them was deter-

mined. Two samples of catalysts were taken for compari-

son; in the 1st sample the content of zeolites was less than 

15%, and in the 2nd – above 15% (Table 2). The SiO2/Al2O3 

ratio in the natural zeolite from the Taizhuzgen deposit is 

4.5, and in the synthesized catalysts it is about 4. It should 

be noted that the content and ratio of silicon and alumi-

num oxides in the catalysts varies in proportion to their 
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concentration in the initial components and their content 

in the catalysts under study. When Narynkol clay is acti-

vated by the ion exchange method, the sodium cations are 

completely replaced by lanthanum cations. The natural 

zeolite of the Taizhuzgen deposit has a higher ion ex-

change activity compared to the used Narynkol clay. For 

this reason, the content of lanthanum varies. 

Table 2 Chemical composition of initial materials-Taizhuzgen 
zeolite and Narynkol clay and samples of catalysts based on them. 

Chemical 

component 

Activated 
Taizhuzgen 

zeolite 

Initial 
Narynkol 

clay 

Zeolite-containing 
composite catalysts 

1 2 

SiO2 67.93 38.05 40.00 47.07 

CaO 1.97 20.40 19.77 15.14 

Al2O3 14.28 8.49 9.97 11.51 

MgO 1.39 6.15 6.27 4.72 

Fe2O3 1.79 6.15 3.75 4.01 

K2O 4.47 1.80 2.29 3.02 

Na2O 1.11 1.10 0.30 0.55 

TiO2 0.29 0.44 0.23 0.41 

P2O5 0.01 0.11 0.15 0.14 

MnO 0.01 0.10 0.15 0.11 

Calcination 

losses 
7.04 19.47 17.43 0.20 

La 0.24 0.0 13.52 0.20 

The effect of the catalyst and air on the process of 

cracking commercial fuel oil was studied at  

wsuspension = 0.1 h–1 and reaction temperature of the process 

is 450 °C; in the presence of 0.2 wt.% – catalyst based on 

Taizhuzgen zeolite and more than 80 wt.% of Narynkol 

clay. The ratio of the catalytic cracking products is shown 

in Figure 4.  

 
Figure 4 Catalytic cracking product ratio at different cracking 

conditions.  

According to the results of chromatographic analysis, 

the quantitative composition of the gaseous products of 

thermal and oxidative thermal cracking is almost identical 

(Table 3, Figure 5).  

Table 3 Composition of gaseous products (%) of M-100 fuel oil 

cracking (wsuspension = 1.0 h–1, T = 470 °C) 

Composition 

of gases 

Cracking conditions 

without 

catalyst 
and air 

without cata-

lyst,  
wair=0.15 h–1 

0.2 wt.% 

zeolite-

containing 
catalyst, 

without air 

0.2 wt.% zeo-

lite-

containing 
catalyst, 

wair=0.15 h–1 

Hydrogen 2.8 3.4 10.7 4.3 

Methane/ 

Ethane 
16.2/15.5 20.1/18.4 68.0/4.9 21.8/20.1 

Ethylene/ 
Butylene 

25.4/9.2 25.7/6.1 11.7/0.2 29.3/2.8 

Propane/ 

Propylene 
5.6/17.6 5.6/14.0 0.1/0.1 5.6/12.2 

Carbon 

Monoxide/ 

Carbon 

Dioxide 

6.3/1.4 6.7/0 4.9/0 3.8/0.1 

 
Figure 5 Composition of gaseous products of M-100 fuel oil cracking.  

The only difference is that in the presence of air slight-

ly more methane is formed, and the content of propylene 

and butylene is reduced, i.e. the depth of destruction of 

gaseous hydrocarbons increases.  

During catalytic cracking, the yield of methane is max-

imum, the resulting ethane is dehydrogenated to ethylene, 

and there are practically no C3–C4 hydrocarbons.  

Consequently, the reactions of destruction and dehy-

drogenation of hydrocarbons proceed on the catalyst. The 

presence of the latter reaction is confirmed by the maxi-

mum hydrogen concentration in the gaseous products 

compared to the other cracking conditions.  

In the presence of air additives, the yield of diene and 

cyclodiene hydrocarbons significantly increases compared 

to cracking in an inert atmosphere if the process is carried 

out at low volumetric feed rates to the reactor. The con-

clusions obtained agree with the data that the yield of the 

reaction of oxidative dehydrogenation of olefins increases 

in the presence of air [5, 12, 22, 26]. The hydrocarbon 

composition of cracking gasolines depends on the condi-

tions of cracking in a similar way (Table 4).  
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Table 4 Influence of process conditions on the hydrocarbon com-

position of gasoline cracking fuel oil M-100 (wsuspension=1.0 h–1,  

T = 470 °C). 

Composition of 

hydrocarbons, 

% 

Cracking conditions 

without 

catalyst 
and air 

without 

catalyst, 
wair=0.15 h–1 

0.2 wt.% 
zeolite-

containing 

catalyst, 
without 

air 

0.2 wt.% 

zeolite-

containing 
catalyst, 

wair=0.15 h–1 

n-paraffins/  
isoparaffins 

23.6/46.2 24.9/45.6 7.15/5.8 17.8/40.2 

Naphthenes 14.8 15.8 15.8 22.8 

Olefins/ Cy-

cloolefins 
4.9/0 5.2/0 6.3/1.1 3.9/0 

Arenes/ Dienes 10.1/0 8.2/0 12.7/0.9 15.1/0 

Octane Number 

(RM) 
71.3 70.5 76.6 76.2 

In the absence of a catalyst, the ratio of hydrocarbons of 

different classes does not change when moving from an 

inert to an oxidizing atmosphere. In the presence of a cata-

lyst, the process of isomerization of n-alkanes sharply in-

tensifies and, to a much lesser extent, so does the dehydro-

genation of the formed light hydrocarbons. The oxygen 

from air changes the course of catalytic cracking reactions: 

the proportion of naphthene and arene cyclization reactions 

increases and the isomerization process decreases. 

However, the isomerization of hydrocarbons that make 

up gasoline under all the conditions studied prevails over 

other reactions occurring during cracking. According to 

the data of the individual hydrocarbon composition of the 

obtained gasolines, their formation is most likely by the 

carbocation mechanism. This is evidenced by the presence 

of a large number of isomeric hydrocarbons with a sub-

stituent at the tertiary carbon atom. 

The results obtained suggest the mechanism of oxida-

tive cracking of fuel oil on a low-percentage suspension of 

an activated catalyst synthesized from natural zeolites. 

The catalytic destruction of hydrocarbon molecules pro-

ceeds through the formation of free radicals, so the intro-

duction of air into the reaction zone, in which oxygen is 

the initiator of this process, significantly increases the 

yield of the middle distillate fraction. Since the symmet-

rical decomposition of heavy fraction hydrocarbon mole-

cules occurs during cracking, the main product is light gas 

oil. The resulting less reactive light hydrocarbons are 

practically not cracked on the relatively weak acid sites of 

the natural catalyst, so the total yield of gas and gasoline 

fraction does not exceed 4 wt.%. According to the IR spec-

tral analysis of M-100 fuel oil fractions, in their composi-

tion, along with normal alkanes, a significant amount of 

olefinic and aromatic hydrocarbons was also noticed. 

The composition of the products according to the opti-

mal composition of catalysts for oxidative cracking of fuel 

oil (in %) was as follows: fuel oil M-100: gas – 0.8; gaso-

line – 1.1; light gas oil – 85.7; heavy residue – 11.9; loss – 

0.5; total – 100.0%. Commodity fuel oil (M-100): gas – 

3.3; gasoline – 8.4; light gas oil – 84.3; heavy residue – 

4.0; loss – 0; total – 100.0%. 

4. Conclusions 

This study showed that the introduction of air into the reac-

tor during the catalytic cracking of M-100 fuel oil on natural 

zeolites increases the yield of the middle distillate fractions. 

Since cracking involves symmetrical decomposition of 

heavy fraction hydrocarbon molecules, the main product is 

light gas oil. The resulting light hydrocarbons are almost 

not cracked on the relatively weak acid centers of the natu-

ral catalysts. The identical catalysts based on natural zeo-

lites were used in this work. It is obvious that the differ-

ences found in the rates of catalytic cracking can only be 

associated with a change in the process conditions (without 

air additions or in the presence of air).  
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