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Abstract 

A green one-pot synthesis of 5H-Chromeno[4,3-b]pyridin-5-one deriv-

atives which are the main core of the natural product of Polyneomar-

line C is described by the reaction of 4-chloro-3-formyl coumarin and 

different cyclic and acyclic compounds having active methylene group 

in presence of Et3N and NH4OAc in EtOH. The advantages of this strat-

egy are good yields, no need for the chromatographic separation and 

the absence of heavy metal catalysts and toxic by-products. The 4-

chloro-3-formyl coumarin is obtained by Vilsmeier Heck reaction of 4-

hydroxy coumarin. 
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1. Introduction 

In the last one or two decades, one-pot tandem chemical 

transformation without metal catalysts has been widely used 

for the synthesis of complex organic molecules. A variety of 

chemical conversion processes, such as oxidation, reduction, 

substitution, condensation, etc., has been developed using 

this principle [1–3]. A reaction undergoing without using 

toxic reagents (catalysts and solvents) has many advantages: 

a decrease of wastes, lower toxicity, maximum efficacy, a de-

crease in the energy requirements of the reactions, a possi-

bility of designing biodegradable products, economic and 

time factors. Hence, heterocyclic ring formation using this 

green protocol is an active and attractive field. Coumarin de-

rivatives represent the core structure of many naturally oc-

curring compounds with significant biological activities [4–

7]. Lamellarins and related pyrrole derived alkaloids isolated 

from diverse marine organisms are well known for their re-

markable biological activities [8, 9]. The coumarin deriva-

tives fused with azaheterocycles specially the pyridine nu-

cleus have been reported to possess antiallergic, antidiabetic 

and analgesic properties [10–12]. Santiagonamine is a natu-

rally occurring pyridine fused coumarin derivatives found in 

the stems and branches of Berberisdarwinii Hook, which is a 

shrub that abounds in South America having wound-healing 

properties [13, 14]. Goniothaline [15] is another a natural 

pyridocoumarin alkaloid, isolated from the Australian rain-

forest plant Goniothalamusaustralis, having antimalarial ac-

tivity against a chloroquine-sensitive Plasmodium falcipa-

rum line (3D7). Polyneomarline C [16] is also a natural 6H-

chromeno[4,3-b]quinolin-6-one derivative, isolated from the 

Polyalthia nemoralis A. DC, used as Chinese herbal medicine. 

Coumarin fused pyridine [17–19] derivatives have been re-

ported to possess anti-hypertensive activities, anti-HIV activ-

ity, androgen receptor antagonist activity, and optoelec-

tronic activity; they can also act as fluorescent dyes. All these 

observations highlight the importance and bioactivity of pyr-

idine fused coumarin derivatives. So the interest towards the 

synthesis of pyridine fused comarin is trending among the 

organic chemists. Many methods [20–30] have been devel-

oped to synthesize these types of compounds using different 

types of Lewis acids/bases and metal catalysts with different 

solvents. The 5H-Chromeno[4,3-b]pyridin-5-one skeleton 

constitutes the backbone of Polyneomarline C. We were in-

terested in the preparation of some non-natural analogs of 

this type of compounds by an easy process. Many synthese of 

5H-Chromeno[4,3-b]pyridin-5-one derivatives have been de-
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scribed in the literature [31, 32] using different reagents, cat-

alyst, solvents and ultrasound irradiation. In our present 

work, we reported a modified green approach for the synthe-

sis of 5H-Chromeno[4,3-b]pyridin-5-one derivatives from 4-

chloro-3-formyl coumarin and various compounds having an 

active methylene group. In this method there is no need for 

the chromatographic separation. 

2. Experimental 

2.1. Preparation of substituted pyridocoumarin deriv-

atives  

A mixture of chloroaldehyde 1 of 4-hydroxy coumarin 

(1 mmol), 2 (1.2 mmol), Et3N (1–2 drops) and NH4OAc 

(2 mol%) with 10 ml EtOH was taken in 50 mL r.b. The mix-

ture was then heated on an oil bath at 60 °C for 2 h. It was 

then cooled to room temperature. Then solvent was distilles 

out and residue was mixed with 20 mL water and filtered and 

washed with water and dried. The crude product which was 

purified by recrystalisation with EtOH to furnish compound 3. 

2.1.1. 3-acetyl-2-methyl-5H-chromeno[4,3-b]pyridin-5-one 

(3a) 

Light pink solid, yield, 90%; mp 220–221 °C (EtOH); 1H 

NMR (400 MHz, DMSO-d6): 2.62 (s, 3H), 2.68 (s, 3H), 

7.42 (m, 1H), 7.52 (d, 1H, J = 7.8 Hz), 7.65 (d, 1H,  

J = 7.8 Hz), 7.79 (m, 1H), 9.33 (s, 1H); HRMS (ESI, 70 eV): 

m/z = 254.0820 (M++H) [Calcd mass for C15H12NO3: 

254.0817 (M++H)]. 

2.1.2. Ethyl 2-methyl-5-oxo-5H-chromeno[4,3-b]pyridine-3-

carboxylate (3b) 

Light pink solid, yield, 82%; mp 230–231 °C (EtOH); 1H 

NMR (400 MHz, DMSO-d6): 1.3 (t, 3H, J = 7.2 Hz) 2.62 (s, 

3H), 4.8 (m, 2H), 7.30–7.33 (m, 1H), 7.65 (m, 1H), 7.92 (d, 

1H, J = 7.2 Hz), 7.78–7.80 (m, 1H), 8.90 (s, 1H); HRMS (ESI, 

70 eV): m/z = 284.0929 (M++H) [Calcd mass for C16H14NO4: 

284.0923 (M++H)]. 

2.1.3. 10,11-Dihydro-9H-chromeno[4,3-b]quinoline-6,8-di-

one (3c) 

Light yellow solid, yield, 92%; mp 221–222 °C (EtOH); 1H 

NMR (400 MHz, DMSO-d6): 1.98 (m, 2H), 2.45 (t, 2H,  

J = 7.2 Hz) 2.95 (m, 2H), 7.35 (m, 2H), 7.65–7.80 (m, 1H), 

8.03 (d, 1H, J = 7.5 Hz), 9.22 (s, 1H) ppm; HRMS (ESI, 

70 eV): m/z = 266.0821 (M++H) [Calcd mass for C16H12NO3: 

266.0817 (M++H)]. 

2.1.4. 9,9-Dimethyl-10,11-dihydro-9H-chromeno[4,3-b]quin-

oline-6,8-dione (3d) 

Light yellow solid, yield, 85%; mp 239–240 °C (EtOH); 1H 

NMR (400 MHz, DMSO-d6): 1.38 (s, 6H), 1.91 (t, 2H,  

J = 7.8 Hz), 2.92–2.95 (m, 2H), 7.45 (t, 2H, J = 8.0 Hz),  

7.7 (t, 1H, J = 7.7 Hz), 8.13 (dd, 1H, J = 2.2 and 9.0 Hz),  

9.33 (s, 1H) ppm; 13C NMR (13C NMR 100 MHz, DMSO-d6): 

23.2 (2), 28.2, 32.9, 113.3, 117.2, 117.9, 123.8, 125.32, 125.6, 

125.7, 127.3, 136.33, 153.0, 154.0, 160.5, 169.8, 196.7; HRMS 

(ESI, 70 eV): m/z = 294.1121 (M++H) [Calcd mass for 

C18H16NO3: 294.1130 (M++H)]. 

3. Results and discussion 

Our first task was to find out an optimal condition to pre-

pare the 5H-Chromeno[4,3-b]pyridin-5-one derivatives in 

the best possible yield using different methodologies. A re-

action between 4-chloro-3-formyl coumarin (1 equivalent) 

and acetyl acetone (1.2 equivalent) (Scheme 1) was studied 

under different conditions with different temperatures and 

times (Table 1). When 3-formyl 4-chloro coumarin, which 

was obtained from 4-hydroxy coumarins [33], was treated 

with different cyclic and acyclic compounds having active 

methylene group in the presence of Et3N and NH4OAc in 

EtOH at 60 °C, within 2 h the corresponding 5H-

Chromeno[4,3-b]pyridin-5-one derivatives  were obtained. 

The 1H-NMR (400 MHz, DMSO-d6) data is in conformity 

with the assigned structure for the 5H-Chromeno[4,3-

b]pyridin-5-one derivatives. A reaction of the other cyclic 

and acyclic compounds having an active methylene group 

2(b-d) and 4-chloro 3-formyl coumarin (1 equivalent) under 

identical condition produced the 5H-Chromeno[4,3-b]pyri-

din-5-one derivatives 3(a-d), respectively, in excellent 

yields (Scheme 2).  

 
Scheme 1 Synthesis of pyridocoumarin by condensation followed by 
cyclization reaction. 

Table 1 Optimization Studies in the formation of pyridocoumarin derivatives.a 

Entry 
Reactant propor-

tions (1:2a) 
Solvent Catalysts Additives Temp. (°C) Time (h) Yields (%) 

1 1:1 H2O – – 100 10 -- 
2 1:2 H2O Et3N NH4OAc 100 10 trace 

3 1:1 EtOH Et3N NH4OAc 100 3 75 
4 1:1 EtOH Et3N NH4OAc 60 2 90 
5 1:1 EtOH Et3N NH4OAc 60 1 80 

6 1:1 MeOH Et3N NH4OAc 80 5 40 
7 1:1 EtOH NaHCO3 NH4OAc 100 5 trace 
8 1:1 DMF Et3N NH4OAc 100 2 trace 

9 1:1 EtOH/H2O Et3N NH4OAc 100 2 45 
10 1:1 – – NH4OAc 100 1 trace 

a Reaction conditions: 4-Chloro 3-formyl coumarin 1 (1 mmol), 2a (1.2 mmol), solvent (10 ml); Et3N (cat), NH4OAc (2 mmol), 60 °C.  
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Scheme 2 Substrate scope of for the synthesis of 3(a-d). 

Unfortunately, we did not have access to any other cou-

marin derivatives, but we believe our method will be appli-

cable for other derivatives. 

A probable mechanism for the formation of compounds 3a 

is given in Scheme 3. In general, the reactions are very clean, 

proceeding without any side product, with remarkable yields, 

and do not requiring any chromatographic separation. Recrys-

tallization from EtOH provides an analytically pure sample. 

We believe that it is the first green approach reported for the 

synthesis of fused 5H-Chromeno[4,3-b]pyridin-5-one deriva-

tives.  

4. Conclusions 

In conclusion, we achieved the synthesis of poly-substituted 

pyridocoumarin derivative in one-pot three-component 

condensation and cyclization via an efficient, short and easy 

method. The method has a number of advantages: easy 

availability of the starting material, short time of the reac-

tion, and the use of simple and inexpensive catalyst. We are 

planning a collaborative study into the photophysical and 

biological properties of the synthesized compounds in the 

near future. 
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