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Abstract 

The catalytic system of triphenylphosphine oxide and phthaloyl di-

chloride catalysing conversion of aldehydes to 1,1-dichlorides is re-

ported. The reaction proceeds via a P (V) catalysis manifold in which 

triphenylphosphine oxide turnover is achieved using phthaloyl di-

chloride as a consumable reagent. The application of the developed 

method on substrates of different structures was demonstrated. We 

showed the use of unsaturated compounds, including aromatics with 

and without electron donating / withdrawing groups, as well as satu-

rated aliphatic compounds. The possibility of using the developed 

method on a gram scale was also demonstrated with the deoxydi-

chlorination reaction of 0.03 mol of benzaldehyde catalyzed by tri-

phenylphosphine oxide as an example. The proposed method may be 

of interest for the production of different herbicides, insecticides and 

fungicides for the agricultural industry. 
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1. Introduction 

The development of methods for nucleophilic substitution 

(SN) in sp3-hybridized carbon centers is the most signifi-

cant and widespread problem of chemical transformations 

in organic synthesis [1–5]. Nucleophilic substitutions are 

general chemical transformations, as they allow, for ex-

ample, strategic building of C–Cl, C–O, C–N and C–C bonds 

[6–15]. At the same time, compounds such as geminal 

dihalides are important intermediates in the chemical syn-

thesis of useful natural substances, including active bio-

logical compounds. Geminal dihalides, especially dichlo-

rides, are an important class of intermediates in organic 

synthesis. They were used for alkenylation of carbonyl 

compounds [16, 17], cyclopropanation and epoxidation 

[18–20], dimerization [21, 22] and other purposes [23–26]. 

In addition, geminal dichlorides are also encountered 

as structural motifs in polyhalogenated natural products 

[27, 28]. At the same time, one of the main areas of appli-

cation of such compounds is agriculture. Herbicides, insec-

ticides and fungicides are widely used for plant protection 

in the modern industry (Fig. 1) [29–31]. Most of the waste 

from such chemical industries contains various halogen-

containing compounds, which are extremely toxic to both 

humans and the environment. 

Also, the Dichlorides are an important class of inter-

mediates in organic synthesis. They were used for 

alkenylation of carbonyl compounds [32, 33], cyclopropa-

nation and epoxidation [34–36], dimerization [37, 38], etc. 

[39–42]. In addition, geminal dichlorides are also encoun-

tered as structural motifs in polyhalogenated natural 

products such as Caldariomycin, Danicalipin A and un-

decachlorosulfolipids A [43–48]. 

However, traditional synthetic methods often have low 

selectivity and low atom economy, resulting in the differ-

ent products of chemical reactions [49–51]. Research in 

this area is at an early stage in the study of such catalytic 

reactions, but several efficient protocols for the produc-

tion of dichlorides from aldehydes catalyzed by a Lewis 

base have been disclosed to date (Scheme 1). Dr. Denton 

with colleagues previously reported a method for the cata-

lytic deoxydichlorination of aldehydes [52]. In this meth-

od, authors used a catalytic system of triphenylphosphine 

oxide (7.5–15 mol.%) and Oxalyl chloride. The proposed 

method works well with different unsaturated compounds, 

but gives a lower yield of 32% with aliphatic compounds. 
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Fig. 1 The most used herbicides, insecticides and fungicides 

In 2019, Dr. P. Huy showed new catalytic method 

transformation of aldehydes into geminal dichlorides us-

ing a catalytic system of N-formylpyrrolidine  

(5–10 mol.%) with phthaloyl dichloride (1.2–1.4 equiv). 

The proposed method exhibits the same catalytic activity 

as triphenylphosphine oxide [53]. Later Dr. Shipilovskikh 

with colleges proposed an alternative method for deoxydi-

chlorination of aldehydes catalyzed by diphenyl sulfoxide, 

using a catalytic system of diphenyl sulfoxide (10 mol.%) 

and oxalyl chloride (1.5 equiv). The developed method 

showed excellent yields with unsaturated aldehydes [54]. 

In this work, we use the combination of the previously 

reported catalytic system and optimization of the reaction 

condition. We found that the catalytic activity of tri-

phenylphosphine oxide can be increased by a factor of 10 

compared to previously described methods. In addition, in 

the proposed method, reducing the catalyst load did not 

affect the catalytic activity in case of unsaturated alde-

hydes and in case of aliphatic aldehydes, the reaction yield 

increased to 10%. 

2. Experimental 

Yields are given for isolated products showing one spot on a 

TLC plate and no impurities detectable in the NMR spec-

trum. The identity of the products prepared by different 

methods was checked by comparison of their NMR spectra. 

The 1H and 13C NMR spectra were recorded at 400 MHz 

for 1H and 100 MHz for 13C NMR at the temperature of 303 K; 

the chemical shifts (δ) were measured in ppm with respect to 

the solvent (CDCl3, 1Н: δ = 7.26 ppm, 13C: δ = 77.16 ppm; [D6] 

DMSO, 1Н: δ = 2.50 ppm, 13C: δ = 39.52 ppm). The coupling 

constants (J) are given in Hertz. The splitting patterns of 

apparent multiplets associated with an averaged coupling 

constants were designated as s (singlet), d (doublet),  

t (triplet), q (quartet), sept (septet), m (multiplet),  

dd (doublet of doublets) and br (broadened). The melting 

points were determined with a «Stuart SMP 30», the val-

ues are uncorrected. Flash chromatography was per-

formed on silica gel Macherey Nagel (40–63 µm).  

Scheme 1 Catalytic deoxydichlorination of aldehydes to  
1,1-dichlorides 
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The reaction progress was monitored by GC/MS analy-

sis and thin layer chromatography (TLC) on aluminum 

backed plates with Merck Kiesel 60 F254 silica gel. The 

TLC plates were visualized either by UV radiation at a 

wavelength of 254 nm or stained by exposure to a Dragen-

dorff’s reagent or potassium permanganate aqueous solu-

tion. All the reactions were carried out using dried and 

freshly distilled solvent. 

2.1. General method for synthesis of dichlorides from 

aldehyde 

Triphenylphosphine oxide (Ph3PO) (3 mg, 0.01 mmol,  

0.01 equiv, 1 mol.%) and phthaloyl dichloride (203 mg, 

1.00 mmol, 1 equiv) were dissolved in 8 mL of anhydrous 

toluene in a 25 mL round bottom flask equipped with a 

magnetic stirring bar. After wards, aldehydes 1a–e  

(1 mmol, 1 equiv) in 2 mL of anhydrous toluene were slow-

ly added to this solution with vigorous stirring at 0 °C, 

followed by heating up to 100 °C and stirring the mixture 

for 3 h. The reaction progress was monitored by GC-MS. 

After the reaction was complete, the solution was filtered 

and concentrated in vacuum. The crude mixture thus ob-

tained was purified by flash chromatography on silica (pe-

troleum ether/Et2O – 19/1). For gram-scale example , the 

mixture was purified by distillation. The general method 

for synthesis is shown in Scheme 2. 

Scheme 2 General method for synthesis 

2.1.1. (Dichloromethyl)benzene 4а 

Obtained from 1a (106 mg, 1 mmol), triphenylphosphine 

oxide (Ph3PO) (3 mg, 0.01 mmol, 0.01 equiv, 1 mol.%), and 

phthaloyl dichloride (203 mg, 1.00 mmol, 1 equiv), in an-

hydrous toluene (10 mL). Colorless oil (142 mg, 88%, for 

gram-scale 4.05 g, 84%). 1H NMR (CDCl3, 400 MHz)  

δ (ppm): 6.73 (s, 1H, CH), 7.44–7.46 (m, 3H, HAr),  

7.64–7.66 (m, 2H, HAr). 13C NMR (CDCl3, 100 MHz) δ 

(ppm): 72.2, 126.0, 128.9, 123.0, 140.3 [55].  

2.1.2. 1-(Dichloromethyl)-4-methylbenzene 4b 

Obtained from 1b (120 mg, 1 mmol), triphenylphosphine 

oxide (Ph3PO) (3 mg, 0.01 mmol, 0.01 equiv, 2 mol.%), 

and phthaloyl dichloride (203 mg, 1.00 mmol, 1 equiv), in 

anhydrous toluene (10 mL). Colorless oil (159 mg, 91%). 
1H NMR (CDCl3, 400 MHz) δ (ppm): 2.42 (s, 3H, CH3),  

6.69 (s, 1H, CH), 7.16–7.24 (m, 2H, HAr), 7.44–7.51 (m, 2H, 

HAr). 13C NMR (CDCl3, 100 MHz) δ (ppm): 21.8, 71.6, 126.0, 

129.1, 137.2, 140.7 [56]. 

2.1.3. 1-Bromo-4-(dichloromethyl)benzene 4с  

Obtained from 1с (185 mg, 1 mmol), triphenylphosphine 

oxide (Ph3PO) (3 mg, 0.01 mmol, 0.01 equiv, 1 mol.%), and 

phthaloyl dichloride (203 mg, 1.00 mmol, 1 equiv), in an-

hydrous toluene (10 mL). Colorless oil (194 mg, 81%).  
1H NMR (CDCl3, 400 MHz) δ (ppm): 6.70 (s, 1H, CH),  

7.43–7.49 (m, 2H, HAr), 7.49–7.56 (m, 2H, HAr). 13C NMR 

(CDCl3, 100 MHz) δ (ppm): 72.0, 124.2, 128.1, 131.7, 139.5 [53]. 

The structures of 1-(Dichloromethyl)benzene 4a, (Di-

chloromethyl)-4-methylbenzene 4b and 1-Bromo-4-

(dichloromethyl)benzene 4c are shown in Fig. 2. 

 
Fig. 2 1-(Dichloromethyl)benzene 4a, (Dichloromethyl)-4-

methylbenzene 4b and 1-Bromo-4-(dichloromethyl)benzene 4c 

2.1.4. 1-(dichloromethyl)-2-methoxybenzene 4d  

Obtained from 1d (136 mg, 1 mmol), triphenylphosphine 

oxide (Ph3PO) (3 mg, 0.01 mmol, 0.01 equiv, 1 mol.%), and 

phthaloyl dichloride (203 mg, 1.00 mmol, 1 equiv), in an-

hydrous toluene (10 mL). Colorless oil (143 mg, 75%). 1H 

NMR (CDCl3, 400 MHz) δ (ppm): 3.87 (s, 3H, CH3),  

6.93–7.17 (m, 1H, CH, 2H, HAr), 7.29–7.32 (0, 1H, HAr), 

7.71–7.83 (m, 2H, HAr). 13C NMR (CDCl3, 100 MHz) δ (ppm): 

54.1, 64.5, 109.3, 120.1, 127.1, 128.3, 130.0, 152.4 [53]. 

2.1.5. (3,3-Dichloroprop-1-en-1-yl)benzene 4e 

Obtained from 1e (132 mg, 1 mmol), triphenylphosphine 

oxide (Ph3PO) (3 mg, 0.01 mmol, 0.01 equiv, 1 mol.%), and 

phthaloyl dichloride (203 mg, 1.00 mmol, 1 equiv), in an-

hydrous toluene (10 mL). Colorless oil (153 mg, 82%). 1H 

NMR (CDCl3, 400 MHz) δ (ppm): 6.33 (d, J = 7.6 Hz, 1H, 

CH), 6.40 (dd, J = 14.7 and 7.6 Hz, 1H, CH), 6.72 (d, 

J = 14.7 Hz, 1H, CH), 7.30–7.50 (m, 5H, HAr). 13C NMR 

(CDCl3, 100 MHz) δ (ppm): 73.5, 127.1, 128.1, 129.0, 129.2, 

132.5, 134.7 [53]. 

2.1.6. 1,1-dichlorooctane 4f  

Obtained from 1f (128 mg, 1 mmol), triphenylphosphine 

oxide (Ph3PO) (3 mg, 0.01 mmol, 0.01 equiv, 1 mol.%), 

and phthaloyl dichloride (203 mg, 1.00 mmol, 1 equiv), in 

anhydrous toluene (10 mL). Colorless oil (77 mg, 42%). 
1H NMR (CDCl3, 400 MHz) δ (ppm): 0.92 (t, J = 7.2 Hz, 

3H, CH3), 1.31 (m, 8H, CH2), 1.55 (m, 2H, CH2), 2.20 (m, 

2H, CH2), 5.74 (t, J = 6.2 Hz, 1H, CHCl2). 13C NMR (CDCl3, 

100 MHz) δ (ppm): 14.0, 22.9, 26.3, 28.7, 29.6, 32.0, 

43.9, 73.7. 

The structures of 1-(dichloromethyl)-2-

methoxybenzene 4d, (3,3-Dichloroprop-1-en-1-yl)benzene 

4e and 1,1-dichlorooctane 4f are shown in Fig. 3. 
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Fig. 3 1-(dichloromethyl)-2-methoxybenzene 4d, (3,3-Dichloro-
prop-1-en-1-yl)benzene 4e and 1,1-dichlorooctane 4f 

3. Results and Discussion 

The investigation commenced with establishing the best 

conditions for the deoxydichlorination of aldehydes, em-

ploying benzaldehyde 1a as a model substrate (Table 1). 

First, the catalytic triphenylphosphine oxide was investi-

gated. Then, the effects of the solvent, temperature, and 

equivalents of phthaloyl dichloride on the conversion in the 

reaction were studied. Phthaloyl dichloride on its own did 

not produce (Dichloromethyl)benzene 4a (entry 1). The use 

of stoichiometric quantities of Ph3PO and 2 equiv of 

phthaloyl dichloride in DCM resulted in low conversion of 

1a into 4a (Scheme 3, Table 1, entry 2). With 10 mol.% 

Ph3PO and 2 equiv of phthaloyl dichloride, 4a was formed in 

16% conversion after 3 h (entry 3), which increased to 40% 

after changing the solvent to toluene (entry 4). Raising the 

temperature to 100 °C with 10 mol.% Ph3PO and using  

2 equiv of phthaloyl dichloride led to the best results of 

conversion to 95% (entry 9). We then studied the catalytic 

activity of Ph3PO at 100 °C for 3 hours and found that using 

1 mol.% Ph3PO gives a similar result (95% conversion, en-

try 11). Finally, we studied the effect of the equivalents of 

phthaloyl dichloride on the conversion of the reaction and 

found that the use of phthaloyl dichloride at an equivalent 

of 100 mol.% gives a similar conversion, 95% (entry 12). 

However, reducing the equivalents of phthaloyl dichloride 

to 50 mol.% yields the conversion of 43% (entry 13). 

Table 1 Optimization of the reaction conditionsa 

entry 

equiv of 

phthaloyl 
dichloride 

mol.% 
Ph3PO 

solvent 
T 

(°C) 
t 

(h) 
conv. 
(%)b 

1 2 – DCM 40 1 0 

2 2 100 DCM 40 1 8 

3 2 10 DCM 40 3 16 

4 2 10 Tol 40 3 40 

5 2 10 MeCN 40 3 10 

6 2 10 DCE 40 3 18 

7 2 10 THF 40 3 32 

8 2 10 Et2O 30 3 6 

9 2 10 Tol 100 3 95 

10 2 5 Tol 100 3 95 

11 2 1 Tol 100 3 95 

12 1 1 Tol 100 3 95 

13 0.50 1 Tol 100 3 43 
aGeneral conditions: 1a (0.01 mmol, 1 mol.%) Ph3PO, dry solvent, slowly 

addition of aldehydes. The reactions were carried out for 1–3 h before an 

aliquot (50 μL) was taken, quenched with aqueous solvent (1 mL), and 

analyzed by GC. 

bConversion to 4a was calculated from GC. 

Scheme 3 The reaction for optimization conditions 

The substrate scope was investigated next. As shown, 

the reaction works well with different types of aromatic 

aldehydes, including donor and acceptor substituents at 

the fourth position of the ring. The use of cinnamaldehyde 

under the reaction conditions also showed good results. 

However, the use of aliphatic aldehydes led to the low cat-

alytic activity, which is consistent with the research de-

scribed previously.  

In addition, we studied the possibility of transferring 

the developed method from the milligram-scale to the 

gram-scale of (dichloromethyl)benzene, which shows the 

possibility of industrial application of the developed 

methods (Scheme 4). The possibility of using 1 mol.% cat-

alyst based on triphenylphosphine oxide, as well as the 

complete transition of chlorine into the final product, sig-

nificantly reduces the amount of waste that is toxic to the 

environment and humans. Also, the results obtained are 

superior to those described earlier, which indicates the 

prospects for further development of this catalytic system.  

Scheme 4 Gram-scale application of deoxydichlorination of ben-

zaldehyde catalyzed by triphenylphosphine oxide 

The proposed mechanism is depicted in Scheme 5. We 

believe that the catalytic cycle start with a quick formation 

of the intermediate dichlorotriphenylphosphane (B) upon 

treatment of triphenylphosphine oxide (A) with phthaloyl 

dichloride. Next, in catalytic cycle, the intermediate B re-

acts with aldehyde 1 via oxygen to form the intermediate 

C, which then undergoes elimination to furnish geminal 

dichloride 4 and to regenerate the catalyst A. 

4. Conclusions 

We developed a highly atom economy protocol for a cata-

lytic deoxydichlorination of aldehydes under modified Ap-

pel conditions catalyzed by 1 mol.% of triphenylphosphine 

oxide. The salient features of the method are: (i) opera-

tionally simplicity, (ii) low catalyst loading (1 mol.%),  

(iii) medium reaction times and (iv) mild conditions and 
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all transfer chlorine from phthaloyl dichloride. Also, we 

showed applications of the developed method on the 

gram-scale. 

 
Scheme 5 The proposed mechanism related to cyclic transfor-
mation of substances 
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