Chimica Techno Acta published by Ural Federal University eISSN 2411-1414; <u>chimicatechnoacta.ru</u>

New triple molybdate and tungstate Na₅Rb₇Sc₂(XO_4)₉ (X = Mo, W)

Tatyana S. Spiridonova ^{a*} ^(b), Aleksandra A. Savina ^{ab} ^(b), Evgeniy V. Kovtunets ^a ^(b), Elena G. Khaikina ^a ^(b)

a: Baikal Institute of Nature Management, Siberian Branch, Russian Academy of Sciences, 670047 Sakh'yanova st., 6, Ulan-Ude, Russia

b: Skolkovo Institute of Science and Technology, 121205 Bolshoy blvd., 30, Moscow, Russia

* Corresponding author: spiridonova-25@mail.ru

This article belongs to the regular issue.

© 2021, The Authors. This article is published in open access form under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).

Abstract

New compounds of the composition $Na_5Rb_7Sc_2(XO_4)_9$ (X = Mo, W) were obtained via the ceramic technology. The sequences of chemical transformations occurring during the formation of these compounds were established, and their primary characterization was performed. Both $Na_5Rb_7Sc_2(XO_4)_9$ (X = Mo, W) were found to melt incongruently at 857 K (X = Mo) and 889 K (X = W). They are isostructural to $Ag_5Rb_7Sc_2(XO_4)_9$ (X = Mo, W), $Na_5Cs_7Ln_2(MOO_4)_9$ (Ln = Tm, Yb, Lu) and crystallize in the trigonal crystal system (sp. gr. R32). The crystal structures were refined with the Rietveld method using the powder diffraction data. The thermal expansion X-rav of Na₅Rb₇Sc₂(WO₄)₉ was studied by high-temperature powder X-ray diffraction; it was shown that this triple tungstate belongs to high thermal expansion materials.

1. Introduction

The search for new functional inorganic materials based on the development of ideas about the relationships between their structure and properties is one of the high-priority directions of modern solid state chemistry, crystal chemistry and materials science. The greatest attention is paid to the synthesis, study of the structure and properties of complex oxides, among which binary Mo (VI) and W (VI) compounds of various compositions occupy a significant place. In the last two decades, triple molybdates have been actively studied, and in recent years, triple tungstates have also attracted much attention as interesting research objects. Constant interest in such compounds is maintained due to their wide range of functional properties, such as catalytic, luminescent, laser, nonlinear optical, ferroelectric, ion-conducting, and others. Thus, numerous publications are devoted to triple molybdates and tungstates with the BaNd₂(MoO₄)₄-type structure, which are represented by two families of compounds: LiMR₂(MoO₄)₄ (M = K, Tl, Rb; R = Bi, Ln) and $Li_3Ba_2Ln_3(XO_4)_8$ (X = Mo,W). The prospects for possible application of these compounds as photo- and IR-phosphors, materials for UV radiation dosimeters, laser materials are shown in [1-10]. The latter is also facilitated by the fact that the maximum anisotropy of thermal expansion in several representatives of this family is lower than that in other successfully used laser crystals [11]. The molybdate phosphor NaCaLa(MoO₄)₃: Tb³⁺/Yb³⁺ can be used as a spectral converter [12].

Keywords sodium

rubidium

scandium

synthesis

triple molybdate

triple tungstate

crystal structure

thermal expansion

Received: 03.12.2021

Revised: 10.12.2021

Accepted: 14.12.2021

Available online: 16.12.2021

Triple molybdates $Na_{25}Cs_8R_5(MoO_4)_{24}$ (R = In, Sc or Fe) [13, 14] and $Na_{10}Cs_4Co_5(MoO_4)_{12}$ [15], built on the basis of alluaudite (Na,Ca)Mn(Fe,Mg)₂(PO₄)₃, $M_{1-x}A_{1-x}R_{1+x}(MoO_4)_3$ [16, 17] with the NASICON-type structure, $K_5ScHf(MoO_4)_6$ [18] with the $K_5InHf(MoO_4)_6$ -type structure, and AgRb₂In(MoO₄)₃ [19], Ag₃Rb₉Sc₂(WO₄)₉ [20], Ag₅Rb₇Sc₂(XO_4)₉ (X = Mo, W) [21] that formed their own structural types are considered to be promising solid state electrolytes.

In this work, the family of triple molybdates and tungstates represented by formula $M'_5M''_7R_2(XO_4)_9$ [21, 22] is extended by two new compounds, Na₅Rb₇Sc₂($XO_4)_9$ (X = Mo, W). The primary characterization of these phases was carried out. Their crystal structure was refined by the Rietveld method from powder X-ray diffraction data. In addition, the thermal expansion of Na₅Rb₇Sc₂(WO₄)₉ was studied.

2. Experimental

2.1. Preparation of materials

Commercially available chemically pure MoO₃, WO₃ (ReaKhim, Ltd, Russia), AgNO₃ (KhimKo, Ltd, Russia) and high purity Sc₂O₃ (SibMetallTorg, Ltd, Russia), Rb₂CO₃ (Sigma-Aldrich, China) were used as starting materials for preparing molybdates and tungstates. Rb₂*X*O₄ (X = Mo, W) was prepared by high temperature annealing of a stoichiometric mixture of Rb₂CO₃ and *X*O₃ (723–823 K, 80 h). Sc₂(*X*O₄)₃ (X = Mo, W) was obtained from Sc₂O₃ and *X*O₃ (X = Mo, 773–1023 K, 80 h; X = W, 773–1123 K, 80 h). Anhydrous Na₂*X*O₄ (X = Mo, W) used in this work were obtained by calcining the corresponding crystalline hydrates at 823–873 K.

The phase purity of the prepared samples was confirmed by powder X-ray diffraction (PXRD). The PXRD patterns of Na₂*X*O₄, Rb₂*X*O₄, Sc₂(*X*O₄)₃ (X = Mo, W) were in good agreement with the literature data [23].

2.2. Instrumental characterization methods

The processes that occur during the solid-state syntheses were monitored with PXRD using a D8 ADVANCE Bruker diffractometer (VANTEC detector, Cu K α radiation, $\lambda = 1.5418$ Å, reflection geometry, secondary monochromator). High temperature X-ray measurements of Na₅Rb₇Sc₂(WO₄)₉ were performed with the same instrument using an Anton Paar HTK 16 high temperature chamber in the temperature range of 303–823 K. The heating rate was 20 K min⁻¹. Prior to measurements, the sample was kept at a specified temperature for 25 min.

The unit cell parameters of $Na_5Rb_7Sc_2(XO_4)_9$ (X = Mo, W) were refined by the least-squares method using ICDD program package for preparing experimental standards. The Smith–Snyder F30 criterion was used as a validation criterion for X-ray patterns indexing [24]. The crystal structures refinement of $Na_5Rb_7Sc_2(XO_4)_9$ (X = Mo, W) at room temperature and the unit cell parameters determination in high-temperature studies were carried out by the Rietveld method [25] using the TOPAS 4.2 software [26].

The thermal measurements were carried out using an STA 449 F1 Jupiter NETZSCH thermoanalyser (Pt crucible, heating rate of 10 K min⁻¹ in a flow of argon).

3. Results and discussion

3.1. Synthesis and characterization of Na₅Rb₇Sc₂(XO₄)₉ (X = Mo, W)

Polycrystalline Na₅Rb₇Sc₂(XO_4)₉ (X = Mo, W) were synthesized by annealing the stoichiometric mixtures of Na₂ XO_4 , Rb₂ XO_4 and Sc₂(XO_4)₃ at 773–823 K for 80 h (X = Mo), 100 h (X = W).

The final powder products are of white color, insoluble in water and common organic solvents, soluble in HCl $(Na_5Rb_7Sc_2(MoO_4)_9 \text{ at room temperature, } Na_5Rb_7Sc_2(WO_4)_9 - \text{ at heating}).$ According to the results of PXRD data, the sequence of chemical transformations in the course of $Na_5Rb_7Sc_2(WO_4)_9$ formation from a stoichiometric mixture of simple tung-states can be illustrated by the following scheme:

Scheme 1 The sequence of chemical transformations in the course of $Na_5Rb_7Sc_2(WO_4)_9$ formation

In the Mo-containing system the formation of $Na_5Rb_7Sc_2(MoO_4)_9$ started at the stage when $NaRb_3(MoO_4)_2$ and $RbSc(MoO_4)_2$ appeared. The corresponding scheme differs from that for ternary tungstate only in shorter synthesis times.

Both Mo- and W-based Na₅Rb₇Sc₂(XO_4)₉ melt incongruently at 857 K (X = Mo) and 889 K (X = W) (Fig. 1). Reflections of both NaSc(MoO₄)₂ and a phase with an alluoudite-type structure together with the initial phase were found in the PXRD pattern of the cooled Na₅Rb₇Sc₂(MoO₄)₉ melt. The cooled melt of Na₅Rb₇Sc₂(WO₄)₉ contains the double tung-states RbSc(WO₄)₂ and NaSc(WO₄)₂ and an alluaudite-like phase. The amount of the latter phase was dominant.

Fig. 1 The DSC curves for polycrystalline $Na_5Rb_7Sc_2(XO_4)_9$ (*X* = W, Mo)

The PXRD patterns of prepared single-phase compounds Na₅Rb₇Sc₂(XO_4)₉ (X = Mo, W) are similar and show that these complex oxides are isostructural to trigonal Na₅Cs₇Yb₂(MoO₄)₉, Ag₅Rb₇Sc₂(XO_4)₉ (X = Mo, W) (sp. gr. R_{32} , Z = 3) [21, 22]. This allows satisfactorily indexing the PXRD patterns of Na₅Rb₇Sc₂(XO_4)₉ (X = Mo, W) (in the case of molybdate F(30) = 141.6 (0.0056; 38), for tungstate F(30) = 287.2 (0.0028; 37)). The obtained crystallographic characteristics are shown in Table 1, the results of indexing of $Na_5Rb_7Sc_2(WO_4)_9$ are shown in Table 2 as an example.

Table 1 Unit cell parameters for $Na_5Rb_7Sc_2(XO_4)_9$ (X = Mo, W)

X	<i>a</i> , Å	<i>c</i> , Å	<i>V</i> , Å ³
Мо	10.1264(1)	35.6570(7)	3172.80
W	10.1899(2)	35.6096(9)	3202.12

Table 2 The PXRD	data for	$Na_5Rb_7Sc_2(WO_4)_9$
------------------	----------	------------------------

h k l	$2\theta_{exp}$,°	I/I _o	d _{exp} , Å	$\Delta = 2\theta_{exp} - 2\theta_{exp} - 2\theta_{exp} - 2\theta_{exp} + \theta_{exp} - \theta_{exp} + \theta_{exp$	h k l	$2\theta_{exp}$,°	I/ I _o	d _{exp} , Å	$\Delta = 2\theta_{exp} - 2\theta_{exp} - \theta_{exp}$
101	10.322	1	8.563	-0.003	2 1 1 3	42.680	3	2.1167	-0.002
0 1 2	11.183	2	7.906	-0.002	045	42.879	2	2.1074	+0.000
104	14.117	1L	6.268	+0.003	3 0 12	43.273	2	2.0891	+0.000
006	14.911	1L	5.936	+0.004	0 1 17	44.418	1L	2.0379	-0.005
0 1 5	15.974	1L	5.544	+0.004	407	44.739	2	2.0240	-0.001
1 1 0	17.390	20	5.095	+0.001	1 2 14	44.781	2	2.0222	-0.009
113	18.938	42	4.682	+0.001	321	44.813	2	2.0208	-0.011
107	20.131	1	4.407	+0.000	1 3 10	44.914	1	2.0165	-0.013
021	20.264	1	4.379	-0.001	232	45.033	1	2.0114	-0.003
202	20.724	2	4.283	-0.001	0 2 16	45.615	1L	1.9871	+0.000
009	22.454	13	3.9563	-0.002	0 0 18	45.831	7	1.9783	-0.001
116	22.987	100	3.8658	+0.000	324	45.930	1	1.9742	+0.002
205	23.694	1	3.7520	+0.007	3 1 11	46.475	2	1.9523	+0.000
027	26.722	2	3.3333	+0.001	235	46.604	1	1.9472	-0.004
211	26.824	15	3.3209	+0.000	2 2 12	46.970	2	1.9329	+0.000
1 0 10	26.973	1L	3.3029	+0.005	410	47.157	3	1.9257	-0.001
122	27.178	3	3.2784	+0.000	413	47.813	5	1.9008	-0.002
119	28.541	59	3.1249	-0.001	2 0 17	48.045	1L	1.8921	-0.004
0 1 11	29.345	2	3.0411	+0.018	327	48.348	2	1.8810	-0.001
125	29.546	5	3.0208	+0.002	4 0 10	48.505	1L	1.8753	-0.004
0 0 12	30.094	1	2.9671	-0.004	2 1 16	49.167	1L	1.8516	+0.007
030	30.362	54	2.9415	-0.001	3 0 15	49.280	1L	1.8476	+0.005
303	31.304	1	2.8551	-0.001	1 1 18	49.379	5	1.8441	-0.002
217	32.067	2	2.7889	-0.006	238	49.422	1	1.8426	-0.008
128	33.548	3	2.6690	-0.002	416	49.737	8	1.8317	-0.001
306	33.989	5	2.6354	-0.002	1 3 13	49.930	1	1.8250	-0.002
2 0 11	34.335	1L	2.6096	-0.006	0 4 11	49.993	2	1.8229	-0.006
1 1 12	34.964	15	2.5641	-0.002	1 2 17	51.478	2	1.7737	-0.005
220	35.200	5	2.5475	+0.000	3 1 14	51.749	1L	1.7651	+0.045
223	36.031	1	2.4906	-0.002	051	51.820	1L	1.7628	+0.001
0 1 14	36.738	1L	2.4443	+0.004	3 2 10	51.916	1	1.7598	-0.006
131	36.779	2	2.4417	-0.002	2 2 15	52.659	4	1.7367	-0.002
2 1 10	36.898	1L	2.4340	-0.004	419	52.831	15	1.7314	-0.002
312	37.057	1L	2.4240	-0.012	0 2 19	53.025	1	1.7256	+0.018
309	38.091	6	2.3605	-0.002	4 0 13	53.279	1	1.7179	-0.009
226	38.423	8	2.3409	-0.001	2 3 11	53.336	1	1.7162	-0.009
315	38.875	2	2.3147	+0.001	330	53.946	5	1.6983	-0.002
137	40.884	1	2.2055	-0.001	333	54.538	2	1.6812	+0.001
401	40.950	1	2.2021	+0.002	057	55.016	1L	1.6677	+0.011
042	41.201	1	2.1892	-0.004	241	55.077	2	1.6660	+0.005
1 0 16	41.799	1L	2.1593	+0.025	422	55.268	1L	1.6607	+0.010
1 1 15	41.952	9	2.1518	-0.002	1 3 16	55.766	1L	1.6471	+0.017
229	42.156	19	2.1418	-0.002	3 0 18	55.969	13	1.6416	-0.001

Cu K α_1 radiation (λ = 1.54056 Å)

3.2. Rietveld refinement of Na₅Rb₇Sc₂(XO₄)₉ (X = Mo, W) structure

The positional atomic parameters for the Ag₅Rb₇Sc₂(MoO₄)₉ structure [21] were taken as a starting model for the refinement of the Na₅Rb₇Sc₂(XO_4)₉ (X = Mo, W) structures by the Rietveld method. The refinement was carried out by gradually adding the refined parameters with the simultaneous graphical simulation of the background. The Pearson VII Function was used to describe the shape of peaks. Isotropic displacement parameters (Biso) for all atoms in $Na_5Rb_7Sc_2(MoO_4)_9$ were refined separately, while for the O atoms in Na₅Rb₇Sc₂(WO₄)₉ they were taken as equal. The refinement procedure included corrections for the sample preferred orientation and broadening of peaks due to anisotropy within the model of spherical harmonics [27]. The refinement results for $Na_5Rb_7Sc_2(XO_4)_9$ (X = Mo, W) are shown in Table 3. Experimental, theoretical and difference PXRD patterns for Na₅Rb₇Sc₂(XO_4)₉ (X = Mo, W) are shown in Fig. 2 and 3. The fractional atomic coordinates, isotropic atomic displacement parameters, cation occupancies and main selected interatomic distances are presented in Tables 4-7.

The crystal structures of $Na_5Rb_7Sc_2(MoO_4)_9$ and $Na_5Rb_7Sc_2(WO_4)_9$ were deposited in the Cambridge Crystallographic Data Centre with Cambridge Structural Database (CSD) N^o 2124713 and N^o 2124691, respectively [28].

Table 3 Main structure parameters for $Na_5Rb_7Sc_2(XO_4)_9$ (*X* = Mo, W) after the Rietveld refinement

Compound	Na ₅ Rb ₇ Sc ₂ (MoO ₄) ₉	$Na_5Rb_7Sc_2(WO_4)_9$
Sp. gr.	<i>R</i> 32	<i>R</i> 32
<i>a</i> , Å	10.13752(9)	10.19247(9)
<i>c</i> , Å	35.6615(4)	35.6191(4)
<i>V</i> , Å ³	3173.91(7)	3204.59(7)
Ζ	3	3
<i>2</i> θ-interval, ^o	8-100	8-100
<i>R</i> _{wp} , %	4.15	4.56
<i>R</i> _p , %	3.20	3.42
<i>R</i> _{exp} , %	2.04	1.81
χ^2	2.04	2.51
<i>R</i> _B , %	1.64	2.11

Fig. 2 Observed, calculated and difference diffractograms of $Na_5Rb_7Sc_2(MoO_4)_9$

Fig. 3 Observed, calculated and difference diffractograms of $Na_5Rb_7Sc_2(WO_4)_9$

In the structures of $Na_5Rb_7Sc_2(XO_4)_9$ (X = Mo, W), Na1 and Na2 atoms are located in threefold special positions with the point symmetry 32; Sc, Rb1, and Rb2 sit at threefold axes; Rb3, Mo2 (W2), and Na3 are settled at twofold axes, and Mo1 (W1) and oxygen atoms are in general positions. Both Mo and W atoms have tetrahedral coordination, while Sc, Na1 and Na3 possess octahedral coordination. It is worth noting that, unlike the octahedron surrounding Na1, the octahedron around Na3 is distorted. The half-occupied Na2 site has a trigonal-prismatic environment. Rb1 and Rb2 atoms have 9-fold environments, while Rb3 exhibits CN = 8. The general view of the structure is illustrated in Fig. 4a.

The characteristic details of the title compounds are so-called 'lanterns' $[Sc_2(XO_4)_9]$ (X = Mo, W) composed by two ScO₆ octahedra sharing corners with six terminal and three bridging XO_4 tetrahedra (Fig. 4b). Together with the Rb1, Rb2 and Na3 cations they form two-tiered hexagonal layers parallel to (001) plane, which resemble the motif of the K₃Na(SO₄)₂ glaserite structure [29]. The layers are folded with a displacement along the *b* axis and are connected by Na3, Na1 and Rb3 cations (Fig. 4c).

Similar "lanterns" $[M_2(TO_4)_9]$ (*M* is an octahedrally coordinated cation, TO_4 is a tetrahedral oxoanion), and hexagonal layers formed by them also characterize the structures of previously studied Ag₅Rb₇Sc₂(MOO₄)₉, Ag₅Rb₇Sc₂(WO₄)₉ and Na₅Cs₇Yb₂(MOO₄)₉ [21]. The relationship between structure of the considered family $M_5M'_7R_2(XO_4)_9$ (*X* = Mo, W) and many rhombohedral triple molybdates and tungstates with *a* = 9–10 Å and large *c*-periods (more than 20 Å) was discussed in [21].

3.3. Thermal expansion of Na₅Rb₇Sc₂(WO₄)₉

The thermal expansion of Na₅Rb₇Sc₂(WO₄)₉ was studied by high-temperature X-ray diffraction. The thermal expansion of this compound, which crystallizes in a trigonal symmetry, is defined by two linear thermal expansion coefficients (LTECs) measured along (α_c) and across (α_a) the threefold axis. The average LTEC can be calculated as follows: $\alpha_{aV} = \alpha_V/3 = (2\alpha_a + \alpha_c)/3$. Thermal expansion anisotropy is quantitatively defined as $|\alpha_a - \alpha_c|$.

Fig. 4 The crystal structure of $Na_5Rb_7Sc_2(XO_4)_9$ (X = Mo, W): a general view (a); $[Sc_2(XO_4)_9]$ cluster (b); layers of $[Sc_2(XO_4)_9]$ clusters (c)

Table 4	Fractional	atomic	coordinates	and	isotropic	displacement
parame	ters (Ų) fo	r Na₅Rb	$_{7}$ Sc ₂ (MoO ₄) ₉			

Table 5 Fractional atomic coordinates and isotropic displacement
parameters (Å ²) for Na ₅ Rb ₇ Sc ₂ (WO ₄) ₉

-											
Atom	X	У	Ζ	$B_{ m iso}$	Осс.	Atom	X	У	Ζ	$B_{\rm iso}$	Осс.
Rb1	0	0	0.2332(1)	1.9 (1)	1	Rb1	О	О	0.2331(2)	1.1(2)	1
Rb2	0	0	0.1074(1)	2.0(1)	1	Rb2	0	0	0.1083(2)	1.7(2)	1
Rb3	0	0.3687(3)	0	4.6(2)	1	Rb3	0	0.3671(5)	0	3.1(2)	1
Na1	0	0	0	1.9(6)	1	Na1	0	0	0	2(1)	1
Na2	0	0	0.3376(8)	2.1(3)	0.5	Na2	0	0	0.329(2)	3(1)	0.5
Na3	0.4030(9)	0.4030(9)	0.5	2.1(3)	1	Na3	0.418(1)	0.418(1)	0.5	4.3(6)	1
Sc2	0	0	0.4253(3)	2.1(2)	1	Sc2	0	0	0.4241(3)	0.5(3)	1
Mo1	0.3429(2)	0.3265(3)	0.39176(4)	1.30(9)	1	W1	0.3410(1)	0.3251(1)	0.39174(3)	0.8(1)	1
Mo2	0.7331(2)	0.7331(2)	0.5	0.9(1)	1	W2	0.7329 (1)	0.7329(1)	0.5	0.9(1)	1
01	0.458(1)	0.269(1)	0.3746(4)	3.2(4)	1	01	0.4660(7)	0.2580(8)	0.3785(3)	1.0(2)	1
02	0.362(1)	0.480(1)	0.3662(3)	1.4(4)	1	02	0.376(1)	0.4839(7)	0.3633(2)	1.0(2)	1
03	0.406(1)	0.394(1)	0.4344(3)	0.4(3)	1	03	0.4104(8)	0.3974(9)	0.4371(2)	1.0(2)	1
04	0.147(1)	0.180(1)	0.3938(3)	1.8(2)	1	04	0.1487(9)	0.1765(9)	0.3976(4)	1.0(2)	1
05	0.566(1)	0.719(1)	0.4937(4)	1.6(4)	1	05	0.5570(8)	0.7196(7)	0.4896(2)	1.0(2)	1
06	0.822(1)	0.839(2)	0.5391(3)	1.8(2)	1	06	0.823(1)	0.840(1)	0.5412(2)	1.0(2)	1

M	01-tetrahedron	Mc	2-tetrahedron	S	Sc-octahedron
M01-01	1.660(9)	M02-O5	1.64(1) (× 2)	Sc-O4	2.02(1) (× 3)
-02	1.73(1)	-06	1.71(1) (× 2)	-06	2.14(1) (× 3)
-03	1.66(1)	<m02-0></m02-0>	1.67	<sc-0></sc-0>	2.08
-04	1.79(1)				
<m01-0></m01-0>	1.71				
N	a1-octahedron	Na2	-trigonal prism	Ν	a3-octahedron
Na1-01	2.39(1) (× 6)	Na2-02	2.45(2) (× 3)	Na3-03	2.34(1) (× 2)
		-04	2.62(2) (× 3)	-05	2.192(9) (× 2)
		<na2-0></na2-0>	2.53	-05′	2.78(1) (× 2)
				<na3-0></na3-0>	2.44
R	b1-polyhedron	Rb	2-polyhedron	R	b3-polyhedron
Rb1-O5	3.04(1) (× 3)	Rb2-05	3.18(1) (× 3)	Rb3-01	3.05(1) (× 2)
-03	3.20(1) (× 3)	-03	3.00(1) (× 3)	-02	3.00(1) (× 2)
-02	3.16(1) (× 3)	-01	3.01(1) (× 3)	-02'	3.11(1) (× 2)
<rb1-0></rb1-0>	3.13	<rb2-0></rb2-0>	3.06	-04	3.18(1) (× 2)
				<rb3-0></rb3-0>	3.08
W	/1-tetrahedron	W	2-tetrahedron	s	Sc-octahedron
W1-01	1.785(5)	W2-05	1.768(6) (× 2)	Sc-04	1.92(1) (× 3)
-02	1.788(7)	-06	1.786(8) (× 2)	-06	2.12(1) (× 3)
-03	1.771(8)	<w2-0></w2-0>	1.777	<sc-0></sc-0>	2.02
-04	1.792(7)				
<w1-0></w1-0>	1.784				
N	a1-octahedron	Na2-trigonal prism		Ν	a3-octahedron
Na1-01	2.406(9) (× 6)	Na2-02	2.30(2) (× 3)	Na3-03	2.247(8) (× 2)
		-04	2.96(5) (× 3)	-05	2.76(1) (× 2)
		<na2-0></na2-0>	2.63	-05′	2.69(1) (× 2)
				<na3-0></na3-0>	2.57
R	b1-polyhedron	Rt	2-polyhedron	R	b3-polyhedron
Rb1-05	2.870(8) (× 3)	Rb2-05	3.202(9) (× 3)	Rb3-O1	3.043(9) (× 2)
-03	3.212(8) (× 3)	-03	2.997(7) (× 3)	-02	2.874(9) (× 2)
02	227(1)(22)	-01	$2.88(1) (\times 3)$	-02'	3.209(9) (× 2)
-02	3.2/(1) (* 3)	01			
<rb1-0></rb1-0>	3.12	<rb2-0></rb2-0>	3.03	-04	3.32(1) (× 2)

Table 6 Main bond lengths (Å) in Na₅Rb₇Sc₂(MoO₄)

The reflections in the X-ray diffraction patterns of $Na_5Rb_7Sc_2(WO_4)_9$ regularly shift with increasing temperature (Fig. 5) due to an increase in the unit cell parameters (Fig. 6).

Fig. 5 Fragments of $Na_5Rb_7Sc_2(WO_4)_9$ diffractograms from 303 K to 823 K

The parameter *a* changes with temperature almost linearly; the temperature variation of the parameter *c* is described by a polynomial of the second degree (Table 8). Table 8 also presents the coefficients of thermal linear expansion and thermal expansion anisotropy. The obtained results allowed classifying $Na_5Rb_7Sc_2(WO_4)_9$ as belonging to high thermal expansion materials.

4. Conclusions

Two new compounds $Na_5Rb_7Sc_2(XO_4)_9$ (X = Mo, W) were obtained by a solid-phase synthesis, supplementing the previously discovered family of isostructural triple molybdates and tungstates of the composition $M'_7M''_5R_2(XO_4)_9$. The thermal stability of obtained compounds was studied and the thermal expansion of $Na_5Rb_7Sc_2(WO_4)_9$ was examined by the high-temperature XRD diffraction method; it was shown that this compound belongs to highly expanding substances. The crystal structure of $Na_5Rb_7Sc_2(XO_4)_9$ (X = Mo, W) was refined by the Rietveld method using the PXRD data.

Chimica Techno Acta 2021, vol. 8(4), Nº 20218412

Composition	Polynomials for $a(T)$ and $a(T)$	LTEC·10 ⁻⁶ , K ⁻¹				
Composition	Polynomials for $a(1)$ and $c(1)$, A	α	α_c	α_{aV}	$ \alpha_a - \alpha_c $	
Na ₅ Rb ₇ Sc ₂ (WO ₄) ₉	a = 0.0003 T + 10.18 $c = 1 \times 10^{-6} T^2 + 0.0002 T + 35.612$	27.8(3)	22.9(2)	26.2(3)	4.9	

The obtained compounds crystallize in the chiral sp. gr. R32 and together with their formula and structural analogues $Ag_5Rb_7Sc_2(XO_4)_9$ (X = Mo, W), $Na_5Cs_7Ln_2(MoO_4)_9$ (Ln = Tm, Yb, Lu) belong to the series of rhombohedral triple molybdates and tungstates with a = 9-10 Å and long *c*-parameter, more than 20 Å; many of those have noticeable ionic conductivity at elevated temperatures [19-21]. For two representatives of the $M'_7 M''_5 R_2(XO_4)_9$ family, namely, $Ag_5Rb_7Sc_2(XO_4)_9$ (X = Mo, W), we confirmed this experimentally earlier [21]. This stimulates our research to find new representatives of this group of phases, as well as to continue the study of the ion-conducting properties of already obtained compounds - (Na₅Rb₇Sc₂(XO₄)₉ (X = Mo, W) and Na₅Cs₇Ln₂(MoO₄)₉ (Ln = Tm, Yb, Lu). In addition, it seems expedient to carry out a further study of thermophysical properties for representatives of the considered structural type to reveal the influence of the nature of one-, three- and hexavalent elements on the value of thermal expansion coefficients and anisotropy in these phases.

Fig. 6 Temperature dependences of the *a* and *c* unit cell parameters for $Na_5Rb_7Sc_2(WO_4)_9$

Acknowledgments

This work was financially supported by the Russian Foundation for Basic Research, project N^o 20-03-00533 (synthesis and research of Na₅Rb₇Sc₂(WO₄)₉) and by the Ministry of Science and Higher Education of the Russian Federation, Basic Project of BINM SB RAS N^o 0273-2021-0008 (synthesis and research of Na₅Rb₇Sc₂(MoO₄)₉). X-ray powder diffraction and thermal analysis results were obtained using the equipment of the Collective Use Center BINM SB RAS.

References

- 1. Morozov VA, Lazoryak BI, Smirnov VA, Mikhailin VV, Basovich OM, Khaikina EG. Crystal structures and luminescence properties of triple molybdates $LiMNd_2(MOO_4)_4$ (M = K, Rb, Tl). Russ J Inorg Chem. 2001;46(6):873–879.
- Song M, Zhang L, Wang G. Growth and spectral properties of Nd³⁺-doped Li₃Ba₂Ln₃(MoO₄)₈ (Ln = La, Gd) crystals. J Alloys Compds. 2009;480:839–842. doi:10.1016/j.jallcom.2009.02.082
- Xie A, Yuan XM, Wang FX. A potential red-emitting phosphors scheelite-like triple molybdates LiKGd₂(MoO₄)₄: Eu³⁺ for white light emitting diode applications. Sci China Tech Sci. 2011;54:70-75. doi:10.1007/s11431-010-4222-y
- Li H, Zhang L, Wang G. Growth, structure and spectroscopic characterization of a new laser crystals Nd³⁺:Li₃Ba₂Gd₃(WO₄)₈. J Alloys Compd. 2009;478(1):484–488. doi:10.1016/j.jallcom.2008.11.079
- Xiao B, Lin Zh, Zhang L, Huang Y, Wang G. Growth, thermal and spectral properties of Er³⁺-doped and Er³⁺/Yb³⁺-codoped Li₃Ba₂La₃(WO₄)₈ crystals. PLoS ONE. 2012;7(7):40631. doi:10.1371/journal.pone.0040631
- Pan Yu, Chen Y, Lin Y, Gong X, Huang J, Luo Z, Huang YD. Structure, spectral properties and laser performance of Tm³⁺doped Li₃Ba₂La₃(WO₄)₈ crystal. Cryst Eng Comm. 2012;14:3930–3935. doi:10.1039/C2CE25190F
- Li H, Lin Zh, Zhang L, Huang Y, Wang G. Spectroscopic characteristics of Yb³⁺-doped Li₃Ba₂Y₃(WO₄)₈ crystal. J Lumin. 2012;132:1507–1510. doi:10.1016/j.jlumin.2012.01.050
- Hu J, Gong X, Huang J, Chen Yu, Lin Y, Luo Z, Huang YD. Near ultraviolet excited Eu³⁺ doped Li₃Ba₂La₃(WO₄)₈ red phosphors for white light emitting diodes. Opt Mater Express. 2016;6:181. doi:10.1364/OME.6.000181
- Zeng X-L, Zhang J-Y, Chen D-G, Huang F. Crystal Structure and Spectroscopic Properties of a New Ternary Tungstate Li₃Ba₂Ho₃(WO₄)₈. Chin J Struct Chem. 2013;1:33–38.
- Guo W, Jiao Y, Wang P, Liu Q, Liu Sh, Hou F. Energy transfer and spectroscopic characterization of new green emitting Li₃Ba₂Gd₃(WO₄)₈:Tb³⁺ phosphor. Solid State Phenom. 2018;281:686–691.

doi:10.4028/www.scientific.net/SSP.281.686

- Han X, Calderon R, Esteban-Betegón F, Cascales C, Zaldo C, Jezowski A, Stachowiak P. Crystal growth and physical characterization of monoclinic Li₃Lu₃Ba₂(MoO₄)₈. A spectrally broadened disordered crystal for ultrafast mode-locked lasers. Cryst Growth Des. 2012;12(8):3878–3887. doi:10.1021/cg300105g
- 12. Verma A, Sharma SK. Downshifting and up-conversion luminescent properties of triple molybdate NaCa-

Chimica Techno Acta 2021, vol. 8(4), Nº 20218412

La(MoO₄)₃:Tb³⁺/Yb³⁺ phosphor for solar cell application. AIP Conf Proc. 2019;2115(1):030562. doi:10.1063/1.5113401

- 13. Savina AA, Solodovnikov SF, Belov DA, Basovich OM, Solodovnikova ZA, Pokholok KV, Stefanovich SYu, Lazoryak BI, Khaikina EG. Synthesis, crystal structure and properties of alluaudite-like triple molybdate Na₂₅Cs₈Fe₅(MoO₄)₂₄. J Solid State Chem. 2014;220:217–220. doi:10.1002/chin.201446018
- 14. Savina AA, Solodovnikov SF, Belov DA, Solodovnikova ZA, Stefanovich SYu, Lazoryak BI, Khaikina EG. New alluauditerelated triple molybdates $Na_{25}Cs_8R_5(MOO_4)_{24}$ (R = Sc, In): synthesis, crystal structures and properties. New J Chem. 2017;41:5450-5457. doi:10.1039/C7NJ00202E
- Yudin VN, Zolotova ES, Solodovnikov SF, Solodovnikova ZA, Korolkov IV, Stefanovich SY, Kuchumov BM. Synthesis, structure, and conductivity of alluaudite-related phases in the Na₂MoO₄-Cs₂MoO₄-CoMoO₄ system. Eur J Inorg Chem. 2019;2:277–286. doi:10.1002/ejic.201801307
- 16. Kozhevnikova NM, Kotova IYu. X-ray study of phases of variable-composition $M_{1-x}A_{1-x}R_{1+x}(MoO_4)_3$, $0 \le x \le 0.3-0.5$ (M = Na, K; A = Mg, Mn, Co, Ni; R = Al, In, Cr, Fe, Sc). Zh Neorg Khim. 2000;45:102-103.
- 17. Kotova IY, Belov DA, Stefanovich SY. $Ag_{1-x}Mg_{1-x}R_{1+x}(MoO_4)_3$ Ag⁺-conducting nasicon-like phases, where R = Al or Sc and $0 \le x \le 0.5$. Russ J Inorg Chem. 2011;56:1189–1193. doi:10.1134/S0036023611080122
- Grossman VG, Bazarova JG, Molokeev MS, Bazarov BG. New triple molybdate K₅ScHf(MoO₄)₆: synthesis, properties, structure and phase equilibria in the *M*₂MoO₄-Sc₂(MoO₄)₃-Hf(MoO₄)₂ (*M* = Li, K) systems. J Solid State Chem. 2020;283:121143. doi:10.1016/j.jssc.2019.121143
- Spiridonova TS, Solodovnikov SF, Savina AA, Kadyrova YuM, Solodovnikova ZA, Yudin VN, Stefanovich SYu, Khaikina EG. New triple molybdate Rb₂AgIn(MoO₄)₃: synthesis, framework crystal structure and ion transport behavior. Acta Crysallogr C. 2018;74(12):1603–1609. doi:10.1107/S2053229618014717

- Spiridonova TS, Solodovnikov SF, Savina AA, Kadyrova YuM, Solodovnikova ZA, Yudin VN, Stefanovich SYu, Kotova IYu, Khaikina EG, Komarov VYu.
 Rb_{9-x}Ag_{3+x}Sc₂(WO₄)₉: a new glaserite-related structure type, rubidium disorder, ionic conductivity. Acta Crystallogr. B. 2020; 76:28–37. doi:<u>10.1107/S2052520619015270</u>
- Spiridonova TS, Solodovnikov SF, Molokeev MS, Solodovnikova ZA, Savina AA, Kadyrova YuM, Sukhikh AS, Kovtunets EV, Khaikina EG. Synthesis, crystal structures, and properties of new acentric glaserite-related compounds Rb₇Ag₅₋₃xSc_{2+x} (XO₄)₉ (X = Mo, W). J Solid State Chem. 2022;305:122638. doi:10.1016/j.jssc.2021.122638
- 22. Basovich OM, Uskova AA, Solodovnikov SF, Solodovnikova ZA, Khaikina EG. Phase formation in the systems Na₂MoO₄-Cs₂MoO₄-*Ln*₂(MoO₄)₃ and the crystal structure of the new ternary molybdate Cs₇Na₅Yb₂(MoO₄)₉. Vestn Buryats Gos Univ Khim Fiz. 2011;3:24-29. Russian.
- 23. ICDD PDF-2 Database, Cards № 01-074-2369, 00-012-0773, 00-024-0958, 01-073-2342, 01-072-2078, 01-089-4691
- 24. Smith GS, Snyder RL. F_A: A criterion for rating powder diffraction patterns and evaluating the reliability of powderpattern indexing. J Appl Crystallogr. 1979;12:60–65.
- 25. Rietveld HM. A profile refinement method for nuclear and magnetic structures. J Appl Crystallogr. 1969;2:65–71. doi:10.1107/S0021889869006558
- 26. Bruker AXS TOPAS V4: General profile and structure analysis software for powder diffraction data. User's Manual. Bruker AXS, Karlsruhe, Germany. 2008.
- 27. Järvinen M. Application of symmetrized harmonics expansion to correction of the preferred orientation effect. J Appl Crystallogr. 1993;26(4):525-531. doi:<u>10.1107/S0021889893001219</u>
 28. WebCSD. Available
- from:<u>https://www.ccdc.cam.ac.uk/structures/</u>
- 29. Okada K, Ossaka J. Structures of potassium sodium sulphate and tripotassium sodium disulphate, Acta Crystallogr. 1980;36:919–921. doi:<u>10.1107/S0567740880004852</u>