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Abstract 

Ultrasonic exposure can be used for depolymerization of brown algae 

polysaccharides. However, its effectiveness depends on several fac-

tors, including cavitation activity in the treatment medium. There-

fore, the purpose of the work was to determine the cavitation activi-

ty and the effectiveness of the ultrasonic exposure to fucoidan in or-

der to optimize the processing processes of polysaccharide from 

brown algae. A change in cavitation activity was revealed depending 

on the composition of the processing environment, as well as on the 

intensity of ultrasonic exposure with a constant frequency of the ul-

trasonic wave. Similar dynamics of change of cavitation activity were 

established at the intensity of ultrasonic treatment of 100 and 

133 W/cm2 with amplification of electric signal at the increase of ul-

trasound intensity. The use of SDS in the processing medium led to 

an increase in cavitation activity to 14.9±0.47 mV. Treatment of the 

fucoidan solution for 40 minutes under various conditions allowed to 

obtain fractions with a change in the average hydrodynamic particle 

diameter from 113 nm (100 W/cm2) to 85 nm (200 W/cm2) and 

124 nm (SDS). 
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1. Introduction 

Fucoidans are of great interest among biopolymers of ma-

rine origin. Fucoidan is a branched sulfated heteropolysac-

charide isolated from brown algae and some marine inver-

tebrates [1]. Fucoidan has anticancer [2], antithrombic [3], 

anticoagulant [4], antioxidant [5], antiviral [6] activity and 

other pharmacologically important properties and its use is 

approved by the FDA. However, as a rule, this polysaccha-

ride has a high molecular weight, which limits its industrial 

use. Therefore, we can make a conclusion that depolymeri-

zation of fucoidan is considered an urgent task. Ultrasonic 

treatment is often used in order to lower the molecular 

weight of polymers, in polysaccharides in particular [7, 8]. 

This method is simple and environmentally friendly. Ultra-

sonic processing is based on the phenomenon of cavitation. 

When treated with ultrasonic, the cavities are formed in the 

environment – cavitation bubbles. As a result of the cavita-

tion bubble collapse, a shock wave is created with the for-

mation of an acoustic flow leading to the formation of tur-

bulence due to the continuous formation and collapse of 

cavities in the system. In addition, shock waves, intense 

local heating (about 5000 °C) and high pressure (about 

1000 atm) are created [9]. As a result of the collapse of 

such bubbles, sufficient energy is released to break bonds in 

any polymeric materials [10]. 

However, the effectiveness of ultrasonic treatment de-

pends on a number of factors, one of which is the cavitation 

activity in the treatment medium. Detection of cavitation 

activity will allow determining the optimal rate of destruc-

tion of the biopolymer. Therefore, the purpose of the work 

was to determine the cavitation activity and the effective-

ness of ultrasonic treatment to fucoidan in order to opti-

mize the processing of polysaccharide from brown algae. 

The measurement of cavitation intensity was based on re-

cording acoustic noise as an electrical signal. 

2. Experimental  

For ultrasonic treatment, polysaccharide obtained from 

brown algae Fucus vesiculosus was used according to the 

procedure presented in [11] with some changes. Subse-

quent cleaning was carried out in accordance with the 

work of A.M. Urvantsev, I. Yu. Bakunin, N. Yu. Kim and 

others [12]. The resulting fucoidan was dispersed in deion-

ized water at a concentration of 10 mg/ml.  
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The ultrasonic waves generated by means of the ultra-

sonic UIP1000hd processor with a power of 1 kW 

(Hielscher Ultrasonics GmbH, Germany) with a frequency 

of 20 kHz induced through sonotrode. In the first case, the 

sonotrode was placed in an aqueous fucoidan solution and 

the ultrasonic intensity was varied to 100, 133, 

200 W/cm2. In the second case, the composition of the 

medium was varied by introducing auxiliary substances 

into an aqueous solution of fucoidan while maintaining the 

intensity of ultrasonic exposure. Surfactants (SDS,  

PEG-400) were used as excipients. Ultrasonic treatment of 

fucoidan was carried out for 40 minutes with constant 

cooling with the help of an ice bath with temperature con-

trol within the range of 45±5 °С.  

The size of the obtained particles was determined us-

ing Photocor Compact Z (Photoсor LLC, Russia). A cavi-

tometer was used in order to determine the intensity of 

cavitation. The principle of the cavitometer is based on the 

analysis of cavitation noise with its conversion to an elec-

tric signal. The hydrophone was placed in a treatment me-

dium at a depth of 45±2 mm below the surface of the liq-

uid and an electrical signal was recorded. 

3. Results and discussion 

Cavitation is the formation of bubbles experiencing local 

pressure fluctuations, the occurrence of which is possible 

under the influence of an ultrasonic wave [13]. Cavitation 

measurements were carried out in the work using a cavi-

tometer, the action of which is based on processing the 

spectrum of cavitation noise received by a broadband hy-

drophone, followed by converting an acoustic signal into 

an electric one. The more intense the shock wave, the wid-

er the spectrum of cavitation noise and the larger the elec-

tric signal. The measurement of cavitation activity in the 

form of an electrical signal were carried out during ultra-

sonic exposure of the fucoidan solution. 

The work revealed that cavitation activity changes un-

evenly. This is because the volume fraction of the cavita-

tion bubble plays an important role in cavitation. The 

large cavitation bubble in medium reduces acoustic trans-

parency and can cause attenuation of the ultrasonic waves 

during their propagation [13]. However, when bubbles 

collapse, shock waves form, which can lead to an increase 

in acoustic emission. 

Similar dynamics of change of cavitation activity were 

established at the intensity of ultrasonic exposure of 100 

and 133 W/cm2, as well as when used in the SDS pro-

cessing medium. In addition, the amplification of the elec-

tric signal was revealed when the intensity of ultrasound 

increased. Therefore, in the first minute, the average val-

ue of this signal increased from 7.94±0.21 mV (with an 

ultrasound intensity of 100 W/cm2), 9.2±0.47 mV (with an 

ultrasound intensity of 133 W/cm2) to 10.4±1.35 mV (with 

an ultrasound intensity of 200 W/cm2). At higher ultra-

sound power, a cone-shaped bubble structure [14] is 

formed which can lead to the effect of screening and scat-

tering of ultrasound. This leads to a change in the shape of 

the acoustic emission plot compared to the acoustic emis-

sion plots at lower values of sound wave intensity (Fig. 1). 

Application in the treatment medium (SDS) showed an 

increase in cavitation activity up to 14.9±0.47 mV. The use 

of SAA PEG-400 also led to an increase in the electric sig-

nal relative to the medium without the use of SAA at the 

same ultrasonic wave intensity from 9.2±0.47 mV to 

10.2±0.92 mV, but to a lesser extent than SDS. In general, 

during ultrasonic exposure, a decrease in cavitation is ob-

served during the first 500 ms. 

When used in the SDS processing medium, there is a 

decrease in cavitation activity from 14.90±0.47 mV to 

11.00±0.21 mV at the 30th minute of exposure (Fig. 2). It 

is known that SAA leads to a decrease in surface tension in 

liquids, as a result of which the number of collapse bub-

bles decreases and they accumulate [15]. 

 
Fig. 1 Graph of the cavitation activity change at ultrasonic exposure during the first 500 ms 
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Fig. 2 Change in cavitation activity at ultrasonic exposure during 
40 min when SAA is used (* – results of 5 measurements) 

At the same time, the introduction of SAA prevents the 

Bjerknes force and leads to electrostatic repulsion of cavi-

tation bubbles [16], thereby their fusion is prevented, 

growth slows down and the lifetime of the bubbles in-

creases. The retention of bubbles, in turn, can block the 

transmission of sound through the liquid to the hydro-

phone [17], as a result of which the electrical signal is re-

duced. In general, there is a decrease in cavitation activity 

to 9.80±0.31 mV when used in a processing medium PEG-

400 and to 14.20±0.22 mV when using SDS.  

SAAs have been used in the treatment environment un-

der the assumption that their action caused forced con-

formational changes, which are formed during the move-

ment of polymer chains. In turn, this makes it possible to 

adopt the unwound shape of the chain and increase its 

sensitivity to the shear force of the shock wave when the 

cavitation bubble collapses [18]. 

 

 
Fig. 3 Dependence of size of nanoscale fraction of fucoidan on 

parameters of ultrasound and composition of processing envi-
ronment 

According to Fig. 3, there is a decrease in the particle 

size of the polysaccharide of the nanoscale fraction of fu-

coidan with an increase in the intensity of ultrasonic ex-

posure. The average hydrodynamic diameter of the ob-

tained particles, as in the case of molecular weight, has a 

certain value for a given intensity. It is known that in 

branched polysaccharides of the form "tangle", chain 

break is more difficult than in linear "stick-shaped" mac-

romolecules (for example, chitosan). This is due to the fact 

that linear conformation leads to the accumulation of 

"pulling forces" throughout the entire chain [19]. It is pos-

sible that this difficulty can be overcome by increasing the 

intensity of the ultrasonic wave or introducing PEG-400, 

allowing to obtain fractions with an average particle size 

of 85±33 and 83±25 nm, respectively. 

4. Conclusions 

Cavitation activity in the treatment medium upon change 

of intensity of ultrasonic action and composition of the 

treatment medium was investigated. A direct proportional 

dependence of the ultrasound efficiency on the intensity of 

ultrasound wave was revealed. Similar dynamics of 

change of cavitation activity at intensity of ultrasonic ac-

tion of 100 and 133 W/cm2 with amplification of electric 

signal upon the increase of ultrasound intensity was estab-

lished. In such a way, with an ultrasound intensity of 

200 W/cm2 the electric signal increased to 10.40±1.35 mV. 

The use of SDS in the processing medium led to an in-

crease in cavitation activity to 14.90±0.47 mV. After 40 

minutes of treatment of the fucoidan solution under vari-

ous conditions, fractions with a change in average particle 

size from 113 nm (100 W/cm2) to 85 nm (200 W/cm2) and 

124 nm (SDS) were obtained. Increasing the intensity of 

the ultrasonic wave or introducing PEG-400 allows obtain-

ing fractions with an average particle size of 85±33 and 

83±25 nm, respectively. Therefore, determination of ul-

trasonic impact efficiency will allow optimizing the tech-

nological process of fucoidan destructuring. 
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