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Abstract 

The electrophoretic deposition (EPD) of coatings and bulk compacts 
in a wide range of thicknesses (from 23 to 1800 μm) from stable sus-
pensions of a magnesium-doped aluminum oxide nanopowder with 
subsequent sintering of samples into dense ceramics was studied. 
The initial nanopowder was obtained by the method of electric ex-
plosion of an Al-Mg alloy wire with a Mg content of 1.3 wt. %. The 
study of the dispersion composition, kinetics of deaggregation under 
the ultrasonic treatment and zeta potential in the nanopowder-based 
suspensions was carried out. It was shown that a nearly linear in-

crease in the deposited mass and thickness of EPD deposits occurred 
at a constant voltage of 20 V and an average deposition current of 
approximately 40 μA when the deposition time was varied from 1 to 
180 min. Drying of the coatings with a thickness of less than 35 μm 
led to the formation of a net of small cracks, while drying of the bulk 
compacts with a thickness of more than 1 mm occurred without 
cracking. The ceramic bulk sample with a thickness of 1.2 mm and 
the density of 98.7% TD was successfully obtained by sintering at 
1650 °C for 4 h. It was characterized by a dense grain structure with 
an average grain size of 5 μm and the presence of a small number of 
closed pores less than 1 μm in size. Sintering of ceramics was re-

vealed to be accompanied by the formation of a MgAl2O4 crystalline 
spinel phase, localized mainly at grain boundaries. 
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1. Introduction 

Corundum materials are widely used in many applications 

as high-frequency and high-voltage insulators, current 

inputs, resistance substrates and etc. Thus, the develop-

ment of methods for the formation of dense corundum 

ceramics both in the form of coatings as well as bulk com-

pacts is a relevant and challenging task of ceramic tech-

nology. The known methods of the formation of Al2O3-

based coatings are sol-gel method [1], chemical vapor dep-

osition [2, 3], pulsed laser deposition [4, 5], and electro-

phoretic deposition (EPD) [6-8]. The slip casting is known 

as one of the ceramic methods for producing corundum 

ceramics [9]. Various pressing technologies such as iso-

static and magnetic-pulse pressing were applied to com-

pact powdered materials [10-12]. However, the features of 

these methods include the difficulty to obtain uniform 

density and the presence of internal stresses in the mate-

rial [13]. 

The EPD method is based on the formation of a depos-

ited layer on an electrode from a liquid suspension under 

the action of an external electric field [14-17]. It is simple 

and cost-effective, and is characterized by high deposition 

rates. The advantages of the EPD method also include flex-

ibility in regulating the thickness of the formed deposits 

by varying the deposition time or electrical deposition 

modes. In this case, the kinetics of the deposited mass 

growth depending on time, the formation of cracks in the 

deposited layer during drying, the ratio between the 

achieved deposit’s density before and after sintering are 
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the important issues to be addressed. The features of the 

EPD method include the difficulty of achieving a high den-

sity of the formed deposit [18] and the formation of cracks 

during the deposit drying [19], which is influenced by 

many factors: the particle size distribution in the suspen-

sion, the thickness of coatings, drying conditions, the addi-

tion of binders and plasticizers. Santanach Carreras et al. 

[20] revealed the existence of a critical thickness of the 

coating, above which cracks may appear during its drying. 

The use of nanopowders is relevant in ceramic tech-

nology since it allows one to reduce the sintering tempera-

ture of ceramics [21]. However, in the EPD technology, it 

is necessary to take into account the necessity of obtaining 

stable suspensions of nanoparticles suitable for the depo-

sition and, thus, to find a way to diminish nanoparticle 

aggregation in a liquid dispersion medium [22]. The use of 

weakly aggregated nanopowders with a spherical shape of 

particles obtained by the method of electric explosion of 

wires (EEW) [23, 24] makes it possible to avoid the use of 

dispersants and charging agents due to the spontaneous 

formation of a high zeta potential on the nanoparticles in 

the suspension [25]. However, during the EPD formation 

of the compacts, the use of suspensions based on na-

nopowders during the EPD formation of the compacts can 

be accompanied by a decrease in their density compared to 

those obtained using suspensions of submicron pow-

ders [18]. 

It is known that the addition of a small amount of Mg 

to an oxide ceramic accelerates its sintering due to diffu-

sion processes at the grain boundaries and makes it possi-

ble to achieve a high density of the sintered samples [26-

28]. In [28], the bulk ceramics of 98.5–99.2% of theoreti-

cal density (TD) were obtained by the EPD method from 

the suspensions of commercial submicron (330 and 

470 nm) Al2O3 powders with an addition of 0.05 wt. % 

MgO. 

The aim of this work was to study the conditions for 

obtaining EPD deposits in a wide range of thicknesses 

(from 23 to 1800 μm) from stable suspensions of EEW 

nanopowder of Mg-doped Al2O3 (22 nm) with subsequent 

sintering of samples into dense ceramics. The preparation 

of suspensions without the introduction of dispersants and 

binders was identified in this study as a necessary condi-

tion to obtain the EPD deposits with high green densities 

(the density of as-obtained deposits). The developed tech-

nology allowed obtaining the bulk ceramics of high quality 

with the density of 98.7% TD. 

2. Experimental 

An initial Mg-doped Al2O3 nanopowder was obtained by 

the EEW method from an Al-Mg alloy wire with a Mg con-

tent of 1.3 wt. % as described elsewhere [23, 29]. The 

morphology of aluminum oxide nanoparticles was studied 

using a JEOL JEM 2100 transmission electron microscope 

(TEM) (JEOL, Tokyo, Japan). X-ray phase analysis was car-

ried out on a D8 DISCOVER diffractometer (Bruker UK Ltd, 

Durham, UK) in a copper radiation with a graphite mono-

chromator on a diffracted beam. The processing of the 

XRD data was carried out using the TOPAS-3 program. The 

specific surface area was determined by the volumetric 

version of the BET method by a low-temperature equilib-

rium sorption of nitrogen vapor from a mixture with heli-

um using a Micromeritics TriStar 3000 device (Mi-

cromeritics Instrument Corporation, Norcross, USA). 

The initial Mg-doped Al2O3 nanopowder was used for 

the preparation of suspensions for the EPD in isopropanol 

(high purity grade). Ultrasonic treatment of the suspen-

sions was performed using an UZV-13/150-TN ultrasonic 

bath (Reltek, Yekaterinburg, Russia) for 125 min. Removal 

of large aggregates preserved in the suspension after the 

ultrasound processing was carried out by centrifugation 

using a Hermle Z383 centrifuge at a speed of 6000 rpm 

for 3 min. The electrokinetic zeta potential and pH in sus-

pensions were measured by the electroacoustic method 

using a DT-300 analyzer (Dispersion Technology, NY, 

USA). Particle size distribution in suspensions was ob-

tained by dynamic light scattering (DLS) using a ZetaPlus 

particle size analyzer (Brookhaven Instruments Corpora-

tion, NY, USA). All measurements in suspensions were 

carried out under isothermal conditions in air at 25 C. 

Electrophoretic deposition was performed in a constant 

voltage mode in a cell with a vertical arrangement of elec-

trodes for the EPD of coatings and with a horizontal ar-

rangement of electrodes for the EPD of compacts. An alu-

minum foil disk of 12 mm in diameter served as an elec-

trode (cathode) for the deposition, the counter electrode 

(anode) was a stainless steel disk of the same diameter, 

the distance between the electrodes was 10 mm. During 

the EPD, the voltage on the electrodes was set at 20 V; the 

deposition time varied from 1 to 180 min. The suspension 

was pumped from the bottom of the cell to its upper part 

for the deposition. The resulting deposits were dried on 

the electrode for several days in a desiccator with a small 

amount of isopropyl alcohol. The thickness of the dried 

coatings and bulk compacts was in a range of 23–1800 µm. 

The morphology of the dried EPD deposits was examined 

using an ST-VS-520 (Russia) optical microscope. 

The bulk compacts were sintered in air at a tempera-

ture of 1650 °C for 4 h using a Nabertherm LHT-04/18 

oven (Nabertherm GmbH, Lilienthal, Germany). Study of 

the microstructure of the sintered bulk samples and the 

EDX analysis were performed using a TESCAN MIRA 3 

LMU field-emission electron microscope (TESCAN, Brno, 

Czech Republic) equipped with an INCA Energy 350 mi-

croanalysis system (Oxford Instruments, Abingdon, UK). 

The deposition of conductive carbon coatings to improve 

the recording quality (thickness <10 nm) was carried out 

using a Q150T ES system (Quorum Technologies Ltd., East 

Sussex, UK). The density of the sintered bulk ceramic 

samples was determined by the method of hydrostatic 

weighing. 
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3. Results and Discussion 

3.1. Preparation and study of the dispersion composi-

tion and electrokinetic properties of the suspensions  

In agreement with the TEM data, the particles of the ini-

tial Mg-doped Al2O3 nanopowder were of spherical shape 

(Fig. 1a). 

The particle size distribution (Fig. 1b) is characterized 

by a lognormal function: 

𝑓(𝐷) =
1

𝐷𝜎√2𝜋
𝑒
−
(ln𝐷−ln𝜇)2

2𝜎2  (1) 

where D - particle diameter, μ - mean value of the distri-

bution,  - dispersion of the normal distribution of the 

logarithm of diameter. The parameters’ values are 

μ = 19.0 nm and  = 0.632. According to the distribution 

data (Eq. 1), the average diameter of nanoparticles was 

22 nm. The specific surface of the nanopowder (𝑆BET) was 

determined to be equal to 40 m2/g.  

The analysis of the XRD data showed that the na-

nopowder contained four crystalline phases:  

1) -Al2O3 (68 wt. %) of an orthorhombic syngony (sp. 

gr. P222) with the unit cell parameters а = 7.934 Å, 

b = 7.956 Å, c = 11.711 Å with a coherent scattering region 

(CSR) value of (18 ± 2) nm; 

2) -Al2O3 (31.3 wt. %) of a cubic structure (sp. gr. 

Fd3̅m) with the unit cell parameter а = (7.950 ± 0.010) Å 

and CSR = (26 ± 2) nm; 

3) -Al2O3 (0.4 wt. %) of a rhombohedral syngony  

(sp. gr. R3̅c) with the unit cell parameters 

a = (4.764 ± 0.004) Å, c = (12.99 ± 0.02) Å;  

4) metallic Al (0.3 wt. %) of a cubic structure (sp. gr. 

Fm3̅m), a = (4.054 ± 0.004) Å. 

To obtain a stable suspension of nanoparticles, isopro-

panol was used as a dispersion medium. The initial sus-

pension with a concentration of 70 g/l was prepared from 

an accurate weighed portion of the nanopowder and then 

subjected to the ultrasonic treatment (UST). After the UST, 

the dispersion characteristics and fractional composition 

of particle aggregates in the suspensions were evaluated. 

Fig. 2a shows the dependence of the effective hydrody-

namic diameter of the aggregates (deff) in the suspension 

as a function of the UST time (with continuous cooling of 

the suspension).  

As derived from the data presented in Fig. 2a, under 

the UST the size of aggregates in the nanopowder suspen-

sion significantly decreases from 410 nm to 250 nm. The 

large aggregates remaining after the UST were removed 

by centrifugation. The fractional composition of the sus-

pension after the UST (25 and 125 min) and centrifugation 

is shown in Fig. 2b. In accordance with the fractional 

composition data, in the initial suspension of the na-

nopowder (UST during 5 min), the presence of three frac-

tions of particles and their aggregates in different weight 

ratios was established: 90 nm (5 wt. %), 420 nm 

(87 wt.%), and 2020 nm (8 wt. %). After the UST for 

25 min, the size of aggregates of the main fraction was 

440 nm (97 wt. %). After the UST for 125 min and centrif-

ugation, the dispersion composition of the suspension was 

the following: 170 nm (44 wt. %) and 45 nm (56 wt. %). 

After centrifugation of the initial suspension (70 g/l), the 

concentration of nanoparticles decreased down to 62 g/l. 

The values of the electrokinetic zeta potential and pH 

obtained for the suspension of Mg-doped Al2O3 nanoparti-

cles are presented in Table 1. According to the data, when 

the initial suspension was centrifuged the zeta potential 

decreased from +55 to +48 mV with a simultaneous de-

crease in pH from 8.1 to 7.3, respectively. The obtained 

high value of the zeta potential ensures the stability of the 

suspensions and successful and stable implementation of 

the EPD process [30, 31]. 

Table 1 Parameters of the suspensions based on Mg-doped Al2O3 
nanoparticles 

Suspension Concentration, g/l Zeta potential, mV рН 

Initial 70 +55 8.1 

After  

centrifugation 
62 +48 7.3 

 
Fig. 1 Morphology of aluminum oxide nanoparticles (TEM images) (a) and numerical particle size distribution calculated using the TEM 

data (b) 
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Fig. 2 Dependence of the effective hydrodynamic diameter of the aggregates on the UST time (a) and the fractional composition of the 
suspension with the UST for 25 min and 125 min with centrifugation (b). Pw(d) — weight fraction (%) of particles with a diameter 

d (nm) 

3.2. Electrophoretic deposition of coatings and bulk 

compacts 

The formation of coatings and bulk compacts was carried 

out from a suspension after centrifugation with a concen-

tration of 62 g/l. The use of centrifugation made it possi-

ble to exclude a fraction of large aggregates (Fig. 2b), 

which is favorable for increasing the homogeneity of the 

resulting deposits. The characteristics of deposits obtained 

at different deposition times (at a constant voltage of 20 V 

and an average current of 40 μA) are shown in Table 2. 

It can be seen from the data presented that almost lin-

ear dependence of the deposit thickness and weight on the 

deposition time is observed when obtaining coatings with 

a thickness of up to 35 μm and during the formation of 

bulk compacts with a thickness of up to 1800 μm. It was 

found that the formation of cracks in the deposits during 

their drying is associated with their thickness. With an 

increase in thickness of more than 1 mm, a compacted 

bulk deposit without cracks was formed, while coatings 

with a thickness of less than 1 mm tended to form a net of 

cracks, especially with the coating thicknesses less than 

35 μm (Fig. 3). 

3.3. Sintering of bulk compacts based on Mg-doped 

Al2O3 into dense ceramics  

Crack-free bulk sample AM_5 with a green thickness 

1.8 mm (the thickness of as-obtained bulk sample deposit-

ed and dried) was sintered in air at a temperature of 

1650 °C for 4 h. The thickness of the sintered ceramic 

sample was 1.2 mm. The relative density of the AM_5 

sample before sintering was about 30% TD, while after 

the sintering it reached 98.7% TD. As provided by the XRD 

data, the sintered AM_5 ceramic sample contained  

two crystalline phases 2.5 wt. % of a MgAl2O4 spinel  

phase (cubic, sp. gr. Fd3̅m with a lattice parameter 

a = (8.080 ± 0.02) Å and CSR = (110 ± 40) nm) and 

97.5 wt. % of a α-Al2O3 phase (rhombohedral, sp.  

gr. R3̅c with lattice parameters a = (4.763 ± 0.002) Å, 

c = (13.011 ± 0.005) Å and CSR > 200 nm). In the initial 

nanopowder obtained from the Al-Mg alloy, a separate 

magnesium containing crystalline phase, as it was noted 

in the Experimental section, was not registered by the 

XRD analysis. Magnesium was possibly presented in the 

initial powder in the form of interstitial or substitutional 

ions in the Al2O3 crystal lattice. However, during long-

term sintering of the compacted material into dense 
 

 
Fig. 3 Optical images of coatings and bulk compacts based on Mg-
doped Al2O3: (a) sample AM_1; (b) sample AM_3; (c) sample 

AM_4; (d) sample AM_5 

Table 2 Parameters of coatings and bulk compacts based on Mg-doped Al2O3 at different deposition times (obtained at a constant volt-
age of 20 V and an average current of 40 μA) 

Sample Deposition time, min Weight, mg Thickness, µm Deposit characteristics 

AM_1 1 3.2 23 Net of small cracks 

AM_2 2 5.5 35 Net of small cracks 

AM_3 15 25.4 340 Uniform areas of the deposit separated by cracks 

AM_4 90 90.6 1000 Single cracks in the uniform deposit 

AM_5 180 180.8 1800 Uniform deposit without cracks 
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ceramics at a temperature of 1650 °C, the crystalline 

phase of MgAl2O4 spinel was formed localized mainly at 

the grain boundaries of the ceramics. 

Fig. 4 shows electron images of the surface (a) and in 

section (b), as well as an integrated map (c) and individu-

al maps of elements (d) for the sintered AM_5 ceramic 

sample (e). Sintered ceramics are characterized by a dense 

grain structure with grain sizes up to 5 μm and a small 

number of closed pores less than 1 μm in size. The element 

distribution map (Fig. 4d) demonstrates the segregation of 

magnesium along the grain boundaries. This is in good 

agreement with the results obtained in [26], where it was 

demonstrated that doping aluminum oxide with magnesi-

um improves the sinterability of ceramics by accelerating 

diffusion processes at grain boundaries. 

4. Conclusions 

The study of electrophoretic deposition of coatings and 

bulk compacts from stable suspensions of the nanopowder 

of aluminum oxide doped with magnesium in an isopropyl 

alcohol media with subsequent sintering of samples into 

dense ceramics was carried out. An initial Mg-doped Al2O3 

nanopowder was obtained by the method of electric explo-

sion of an Al-Mg alloy wire with a Mg content of 1.3 wt. %. 

A study of the dispersion composition and kinetics of ul-

trasonic disaggregation of aggregates in a nanopowder 

suspension was carried out. It was shown that the ultra-

sonic treatment effectively reduced the average hydrody-

namic size of aggregates from 410 to 250 nm. A fraction of 

large aggregates in the suspension was excluded by means 

of centrifugation, thus, the suspension for the EPD con-

tained 170 nm (44%) and 45 nm (56%) fractions. The re-

sulting suspension had a high zeta potential (+48 mV), 

sufficient to ensure its stability and successful EPD. It was 

shown a nearly linear increase in the deposit weight and 

thickness observed during the EPD process at a constant 

voltage of 20 V and varying the deposition time from 1 to 

180 min. It was found that drying of coatings with a thick-

ness of less than 35 μm led to the formation of a net of 

small cracks. An increase in the thickness of the EPD de-

posit reduced cracking in such a way that drying of the 

samples with a thickness of more than 1 mm was not ac-

companied by their cracking. A criterion was established 

in concordance with that the thickness of the dried EPD 

deposit should be at least 1 mm to exclude cracks during 

drying in the case of the implementation of the suspension 

preparation scheme without the use of dispersants and 

binders based on EEW nanopowders, used in this study. 

High-quality dense ceramics (1.2 mm) of 98.7% TD were 

obtained by sintering at 1650 С for 4 h. Appearance of 

MgAl2O4 spinel phase on the ceramics grain boundary val-

idates increasing sinterability of Mg-doped corundum ce-

ramics by accelerating diffusion processes at grain bound-

aries. 

 
Fig. 4 Electron images of the AM_5 bulk ceramic sample sintered 
at a temperature of 1650 С for 4 h: surface (a) and in section (b), 

integrated map (c), individual maps of elements (d) and a photo 

of the sintered ceramic sample (e) 
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