Kotova I. Yu., Savina A. A., Vandysheva A. I., Belov D. A., Stefanovich S. Yu. Chimica Techno Acta. 2018. Vol. 5, No. 3. P. 132–143. ISSN 2409–5613

I. Yu. Kotova^a, A. A. Savina^a*, A. I. Vandysheva^b, D. A. Belov^c, S. Yu. Stefanovich^c

^aBaikal Institute of Nature Management, Siberian Branch, Russian Academy of Sciences, 6 Sakh'yanova St., Ulan-Ude, 670047, Buryat Republic, Russian Federation ^bBuryat State University, 24a Smolin St., Ulan-Ude, 670000, Buryat Republic, Russian Federation ^cLomonosov Moscow State University, Leninskie Gory, 1, Moscow 119991, Russian Federation *E-mail: alex551112@mail.ru

Synthesis, crystal structure and electrophysical properties of triple molybdates containing silver, gallium and divalent metals

A possibility of the triple molybdates formation with both NASICON-like and NaMg₃In(MoO₄)₅ structures in the Ag₂MoO₄–AMoO₄–Ga₂(MoO₄)₃ (A = Mn, Co, Zn, Ni) systems was studied by powder X-ray diffraction analysis. It was established that NASICON-like phases Ag_{1-x}A_{1-x}Ga_{1+x}(MoO₄)₃ are not formed. The triple molybdates AgA₃Ga (MoO₄)₅ (A = Mn, Co, Zn) isostructural to triclinic NaMg₃In(MoO₄)₅ (sp. gr. $P\overline{1}$, Z = 2) were synthesized and characterized. The structure of the obtained compounds was refined for AgZn₃Ga(MoO₄)₅ according to the powder data by the Rietveld method. The structure consists of MoO₄ tetrahedra, couples of edge-shared $M(1)O_6$ octahedra, and trimers of edge-shared $M(2)O_{6-}$, $M(3)_{6-}$ and $M(4)O_6$ octahedra, which are linked by the common vertices to form a 3D framework. High-temperature conductivity measurements revealed that the conductivity of AgMn₃Ga(MoO₄)₅ at 500 °C reaches 10⁻² S/cm, which is close to one of the known NASICON-type ionic conductors.

Keywords: triple molybdates; silver; gallium; solid-state synthesis; powder X-ray diffraction; Rietveld refinement; ionic conductivity.

Received: 10.10.2018. Accepted: 22.10.2018. Published: 31.10.2018.

© Kotova I. Yu., Savina A. A., Vandysheva A. I., Belov D. A., Stefanovich S. Yu., 2018

Introduction

A synthesis and studying of complex oxide compounds, the development of new materials with functionally significant properties based on those are among the main areas of the materials science. An important place in the study and obtaining of new phases with valuable physicochemical properties belongs to molybdates, in particular triple ones, which are among the fastest-growing groups of complex oxide compounds containing a tetrahedral anion and three different cations. One of the largest families of these compounds is molybdates containing 1-, 2- and 3-charged cations. In particular, silver-containing NASICON-like phases Ag_{1-x} $A_{1-x}R_{1+x}$ (MoO₄)₃ (A = Mg Co, R = Al; A = Mg, R = In) with different homogeneity range and triclinic AgA₃R(MoO₄)₅ (A = Mg, R = Cr, Fe, Ga; A = Mn, R = Al, Cr, Fe, Sc, In) having high ionic conductivity (10⁻³-10⁻² S/cm) are of interest. For a number of phases: AgMg₃R(MoO₄)₅ (R = Cr, Fe), AgMn^{II}₃ (Mn^{III}_{0.26}Al_{0.74}) (MoO₄)₅, Ag_{0.90}Al_{1.06}Co_{2.94}(MoO₄)₅ and AgFe^{II}₃Fe^{III}(MoO₄)₅ single crystals were

Experimental

The initial materials were simple molybdates of silver, manganese, cobalt, zinc, nickel, MoO₃ and Ga_2O_3 (reagent grade).

Ag₂MoO₄ and molybdates of divalent metals were obtained by the step annealing of stoichiometric mixtures of AgNO₃ (analytical grade), MnO, Co(NO₃)₂·6H₂O, ZnO, MoO₃ (all chemically pure), NiO (reagent grade) at 350-450 °C (Ag₂MoO₄), 400-750 °C (MnMoO₄), 300-700 °C $(CoMoO_4)$, 500-700 °C $(ZnMoO_4)$, 450-750 °C (NiMoO₄) in the air with intermittent grindings every 15 hours for better sample homogenization. Power X-ray diffraction (PXRD) patterns of the prepared compounds do not contain reflections of starting or impurity phases. PXRD and thermal characteristics of all prepared compounds agree well with corresponding data reported in [10–15].

Sample compositions $Ag_{1-x}A_{1-x}Ga_{1+x}$ (MoO₄)₃ ($0 \le x \le 0.7$, $\Delta x = 0.1$) and AgA₃Ga(MoO₄)₅ were prepared by the annealing of appropriate stoichiometric mixtures of Ag₂MoO₄, AMoO₄, MoO₃ and Ga₂O₃. The initial mixtures were annealed starting at 300 °C followed by raising the temperature by 20–50 °C (in some cases, 5–10 °C) with intermittent grindings every 20–30 hours for sample homogenization. The calcination time at each temperature was 30–70 h. The phase composition of the obtained and their crystal structures were determined [1–9].

The purpose of this work is to study the possibility of forming triple molybdates $Ag_{1-x}A_{1-x}Ga_{1+x}(MoO_4)_3$ and $AgA_3Ga(MoO_4)_5$ (A = Mn, Co, Zn, Ni) and investigate crystal structure and electrophysical properties of the obtained compounds.

obtained products was controlled by the PXRD analysis before each increasing of the annealing temperature.

PXRD patterns were collected at room temperature on a Bruker D8 ADVANCE diffractometer using Cu Ka radiation in the 2θ range from 5° to 100° with a step of 0.02076°. Possible impurity phases were checked by comparing their PXRD patterns with those in the Powder Diffraction File. The crystal structure refinement was carried out with the GSAS [16] program suite using PXRD data. Lattice parameters and individual scale factors were established, and five common peak-shape parameters of the pseudo-Voigt function (No. 2), one asymmetry parameter and one parameter for the zero-point correction were used to describe the powder patterns. The background level was described by a combination of 15-order Chebyshev polynomials. Isotropic displacement parameters (Uiso) were refined, and grouped by chemical similarity by used constrains.

Thermoanalytic studies were carried out on a STA 449 F1 Jupiter NETZSCH thermoanalyser (Pt crucible, heating rate of 10 °C/min in Ar stream).

Ceramic disks for dielectric investigations were prepared by the calcination of pressed powder at 600 °C for 2 h. The disks were of 9–10 mm in diameter and 1–2 mm thick, the electrodes were deposited by painting the disk bases with colloid platinum followed by subsequent one hour annealing at about 580 °C. The direct current (DC) electric conductivity was measured with a V7–38 microammeter. To study the ion transfer, electrical conductivity was measured on an alternating current (AC) by the two-contact method

Results and discussion

PXRD characteristics

The presence of NASICON-like phases in the Ag_2MoO_4 - $AMoO_4$ - $Ga_2(MoO_4)_3$ systems was determined according to PXRD analysis of samples $Ag_{1-x}A_{1-x}Ga_{1+x}(MoO_4)_3$ $(0 \le x \le 0.7, \Delta x = 0.1)$ which were annealed in the temperature range from 300 °C to melting point. The final annealed temperature was 550-700 °C and depended on both the composition of the reaction mixtures and the nature of the divalent metal. It was established that, despite the close values of the Al^{3+} (0.53) and Ga^{3+} (0.62 Å [17]) radii, gallium containing triple molybdates with NASICON-like structure, apparently, do not exist. All our attempts to obtain rhombohedral phases $Ag_{1-x}A_{1-x}Ga_{1+x}(MoO_4)_3$ by solid state synthesis did not lead to a positive result, probably this is due to the low reactivity of gallium in the molybdate systems. Thus, the simple gallium molybdate $Ga_2(MoO_4)_3$ has not yet been obtained by ceramic technology, and only recently it was synthesized by the sol-gel method [18]. Besides, silver-gallium double molybdate is not synthesized either by ceramic technology or by co-precipitation. In [19] this compound was obtained by the calcining of mixtures of AgNO₃, Ga₂O₃, MoO₃ (in ratio 2:1:4) at 350-400 °C for 8-10 h, followed by cooling, homogenization, and the repeated 12-20 hours annealing at 500in the frequency range 1 Hz–1 MHz in the temperature range 25–560 °C at the rate of 4 °C/min at both heating and cooling using a Novocontrol Beta-N impedance analyzer. The activation energy of electrical conductivity was calculated from the slope of the straight lines corresponding to the Arrhenius dependence in $\lg(\sigma T) - (10^3/T)$ coordinates.

550 °C, but the PXRD data of the product are not given by the authors. It should be noted that in none of the later publications (including those of the same authors) additional information about this compound was found.

At the same time, in the Ag_2MoO_4 - $AMoO_4$ - $Ga_2(MoO_4)_3$ systems triple molybdates of composition $AgA_3Ga(MoO_4)_5$ were found. These compounds were synthesized by the solid-state reactions at 550– 600 °C (A = Mn), 540–550 °C (A = Zn), 500–530 °C (A = Co) for 80–100 h. However, nickel-containing compound was not obtained in the single-phase state, even after sintering at temperatures as high as 600– 650 °C for 250–300 hours. This may be due to the smallest radius of Ni²⁺ cation (0.69 Å for CN = 6 [17]) in the studied series of simple molybdates of divalent metals.

The triple molybdates $AgA_{3}Ga(MoO_{4})_{5}$ (A = Zn, Mn, Co) were found to melt incongruently at temperatures of 644, 727, and 739 °C, respectively.

The powder XRD patterns of asprepared single-phase compounds $AgA_3Ga(MoO_4)_5$ are similar and show that these oxides are isostructural to triclinic $NaMg_3In(MoO_4)_5$ (sp. gr. $P\overline{1}$, Z = 2) [20]. The diffractograms of the $AgA_3Ga(MoO_4)_5$ (A = Mn, Co, Zn) were indexed with taking into account our data obtained earlier in the course of single-crystal structure determination of $AgMg_3R(MoO_4)_5$, R = Fe, Cr [7]. The result of indexing the PXRD patterns for AgA_3Ga (MoO₄)₅ (A = Mn, Co, Zn) are given in Table 1. Unit-cell parameters are listed in Table 2.

Crystal structure of $AgZn_3Ga(MoO_4)_5$

The crystal structure of $AgZn_3Ga(MoO_4)_5$ was refined ac-

cording to the Rietveld method [21], starting with the atomic coordinates of AgMg₃Fe(MoO₄)₅ structure [7]. Crystal data, data collection and structure refinement details are summarized in Table 3. Experimental, theoretical, and difference PXRD patterns for the AgZn₃Ga(MoO₄)₅ are shown in Figure 1. The fractional

Table 1

h lr 1		1	AgMn ₃ Ga(MoO ₄) ₅			Ag	$AgZn_{3}Ga(MoO_{4})_{5}$			AgCo ₃ Ga(MoO ₄) ₅		
п	K	1	I/I ₀	2θ _{obs.} ,°	2θ _{cal.} ,°	I/I ₀	2θ _{obs.} ,°	$2\theta_{cal.}$,°	I/I ₀	2θ _{obs.} ,°	$2\theta_{cal.}$,°	
0	0	2	3	9.861	9.850	2	9.981	9.991	2	10.006	10.019	
0	1	0	1	12.782	12.767	1	12.954	12.945	1L	12.956	12.943	
1	0	0	9	12.903	12.894	9	13.058	13.064	9	13.112	13.108	
0	1	1							1L	13.769	13.750	
1	0	1	1L	13.654	13.637	1	13.778	13.808	1L	13.853	13.849	
0	-1	1				1L	14.021	13.998	1L	14.005	14.017	
-1	0	1	1L	13.974	13.977	2	14.170	14.175	1	14.231	14.226	
0	0	3	1L	14.805	14.798	1	15.010	15.011	1L	15.061	15.052	
1	0	2	1	15.924	15.959	1L	16.154	16.157	1	16.177	16.200	
0	-1	2	1L	16.388	16.393	1L	16.577	16.576	1	16.625	16.619	
-1	0	2	1L	16.529	16.538	1L	16.799	16.783	1L	16.819	16.844	
1	1	1				1L	17.079	17.075				
-1	-1	1				1L	17.541	17.562	1L	17.596	17.610	
1	1	2	1L	18.728	18.728							
1	0	3	1L	19.304	19.310							
-1	-1	2	2	19.638	19.630	3	19.826	19.822	3	19.892	19.891	
0	0	4	1	10 700	19.774				1.1	20.127	20.115	
-1	1	0		19.780	19.792	1L	20.115	20.122		20.127	20.154	
-1	0	3	1L	20.025	20.033	1L	20.340	20.336				
-1	1	1	1L	20.406	20.425	1L	20.774	20.790	1L	20.819	20.817	
1	1	3	3	21.572	21.577	4	21.846	21.856	5	21.861	21.864	
1	-1	2	6	22.117	22.117	10	22.419	22.427	10	22.483	22.482	
-1	-1	3				1	22.959	22.996	1L	23.048	23.085	
1	0	4	2	22.267	23.270	3	23.569	23.573	3	23.646	23.631	
0	1	4	5	23.207	23.265	2	23.662	23.668	1	23.695	23.675	
0	-1	4	1	23.959	23.944	10	24.193	24.222	3	24.313	24.306	
-1	0	4	1	24.086	24.078	2	24.441	24.445	1	24.511	24.529	
0	0	5	100	24.793	24.787	100	25.145	25.148	86	25.221	25.218	
-1	1	3	6	24.869	24.848	16	25.307	25.312	16	25.344	25.346	

The calculated and observed values of PXRD data for $AgA_3Ga(MoO_4)_5$ (A = Mn, Zn, Co)

Continuation of table 1

1	1	1	AgMn ₃ Ga(MoO ₄) ₅			AgZn ₃ Ga(MoO ₄) ₅			AgCo ₃ Ga(MoO ₄) ₅		
h	K	1	I/I ₀	2θ _{obs.} ,°	$2\theta_{cal.}$,°	I/I ₀	2θ _{obs.} ,°	$2\theta_{cal.}$,°	I/I ₀	2θ _{obs.} ,°	2θ _{cal.} ,°
1	1	4	3	25.122	25.119	5	25.459	25.465	6	25.480	25.478
0	2	0	3	25.701	25.697	2	26.072	26.058	2	26.055	26.054
2	0	0	73	25.959	29.954	83	26.307	26.302	100	26.206	26.392
0	2	1	23	26.036	26.025	38	26.417	26.422	100	26.396	26.403
2	0	1	10	26.255	26.250	20	26.596	26.590	18	26.679	26.676
0	-2	1	6	26.337	26.333	22	26.664	26.674	7	26.697	26.690
-1	-1	4	4	26.483	26.488	7	26.780	26.782	7	26 000	26.890
1	2	0	0	26 612	26.601	3	26.883	26.881		20.000	26.892
-2	0	1	0	20.015	26.614	7	26.984	26.984	7	27.079	27.081
1	2	1	11	26.835	26.829	25	27.132	27.137	18	27.133	27.131
2	1	1	2	27.007	27.001	5	27.283	27.278	3	27.350	27.345
-1	-2	1	11	27 207	27.306	26	27.575	27.575	19	27.613	27.609
0	2	2	11	27.307	27.285	4	27.712	27.731	3	27.705	27.703
-2	-1	1	3	27.507	27.503	4	27.790	27.784	3	27.880	27.879
0	1	5	6	27.622	27.611	10	28.081	28.084	8	28.109	28.105
0	-2	2	3	27.874	27.873	6	28.208	28.210	5	28.255	28.250
1	2	2	2	27.961	27.970	4	28.320	28.322	4	28.308	28.304
1	-1	4	2	28.066	28.064	6	28.423	28.425	5	28.512	28.510
2	1	2	2	28.114	28.121			28.423	3	28.454	28.481
-2	0	2	2	28.164	28.167	1	28.567	28.573	2	28.672	28.678
0	-1	5	6	28.342	28.336	16	28.678	28.676	13	28.782	28.778
-1	0	5				1	28.893	28.900	1	29.000	28.997
-1	-2	2	1	28.877	28.882	2	29.163	29.159	1	29.223	29.217
-2	-1	2	4	29.081	29.082	10	29.391	29.390	9	29.499	29.501
0	2	3	3	29.376	29.367	4	29.859	29.869	3	29.837	29.839
2	0	3	1L	29.525	29.516	2	29.898	29.888	1	29.985	29.973
0	0	6	1	29.860	29.850	1	30.300	30.287	1	30.383	30.372
1	2	3	1L	29.929	29.927	1	30.365	30.334	1	30.324	30.310
2	1	3	4	30.055	30.056	9	30.397	30.397	9	30.453	30.450
0	-2	3	1L	30.175	30.189	1	30.527	30.539	1	30.590	30.603
-2	0	3	1L	30.513	30.488	1	20.002	30.940	1L	31.055	31.055
-1-1		5	1L	30.622	30.621		30.983	30.981	1	31.088	31.106
-1	2	0	1	30.953	30.949	2	31.460	31.462	1	31.483	31.484
-1	-2	3	2	31.213	31.207	4	31.501	31.509	4	31.594	31.592
-2	1	0				1	31.618	31.616	1L	31.691	31.698
-2	-1	3				2	31.748	31.755	10	21.075	31.883
-1	2	1	8	31.303	31.304	22	31.849	31.854	18	31.865	31.865

Continuation of table 1

			AgMn,Ga(MoO_)_			AgZn ₂ Ga(MoO ₄) ₅			AgCo ₂ Ga(MoO ₄) ₅		
h	k	1	I/L	2θ°	2θ°	I/L	2θ, °	2θ°	I/L	2θ, °	2θ°
	2	1	2	20 _{obs.} ,	20 _{cal.} ,	1/10	20 _{obs} .	20 _{cal.} ,	2	20 _{obs.} ,	20 _{cal.} ,
	-2	I	2	31.408	31.410	2	31 912	31.899	3	31.945	31.935
2	-1	1	1	31.440	31.428		51.712	31.914	1	31.996	31.999
1	-1	5	1	31.853	31.857	3	32.264	32.264	2	32.362	32.364
-1	1	5	1L	31.974	31.980				1	32.590	32.619
0	2	4	2	32.137	32.125	0	22 (52	32.689	2	32.654	32.663
2	0	4	4	32.239	32.238	9	32.653	32.647	6	32.741	32.736
2	-1	2	1	32.512	32.535	1.1	22.027	33.015	1	33.127	33.106
1	2	4	3	32.569	32.567		33.027	33.038	7	33.020	33.014
1	-2	2	3	32.655	32.656	5	33.131	33.133	4	33.188	33.186
0	-1	6				2	33.363	33.368			
0	-2	4	7	33.135	33.134	16	22 511	33.513	11	33.603	33.601
2	2	0	1	33.214	33.200	16	33.511	33.510	1	33.551	33.568
2	2	1	2	33.311	33.313	6	33.634	33.641	5	33.683	33.681
-2	0	4	1	33.426	33.434	4	22.025	33.941	1	34.059	34.066
1	1	6	1L	33.460	33.454		33.935	33.948			
-2	-2	1	3	33.847	33.852	11	34.158	34.160	8	34.239	34.239

Cu *K* α 1 radiation (*l* = 1.54056 Å)

Table 2

Unit-cell parameters	for AgA ₃ Ga(MoO ₄) ₅	(A = Mn, Zn, Co)
----------------------	---	------------------

Α	<i>a</i> , Å	<i>b</i> , Å	<i>c</i> , Å	۵°	β°	γ°	V, Å ³
Mn	6.9844 (3)	7.0519 (4)	17.9700 (8)	87.796 (4)	87.529 (5)	79.386 (4)	868.71
Zn	6.9037 (3)	6.9639 (4)	17.7147 (8)	88.107 (4)	87.440 (4)	78.982 (4)	834.87
Со	6.8810 (4)	6.9657 (4)	17.669 (1)	87.895 (5)	87.344 (5)	78.976 (5)	830.04

atomic coordinates, isotropic atomic displacement parameters, cation occupancies and main selected interatomic distances are presented in Tables 4 and 5. The populations of four independent positions M = (Zn, Ga) and three incompletely occupied Ag sites were refined with keeping the electrical neutrality of the chemical formula. The final compositions of the crystals are close to stoichiometric AgZn₃Ga(MoO₄)₅ with a negligible silver deficiency.

In the structure $AgZn_3Ga(MoO_4)_5$ all atoms are located in general positions. Coordination polyhedra of Mo atoms are tetrahedra with Mo–O distances of 1.714– 1.824 Å, which are similar to the values found in other molybdates containing a tetrahedral anion. Cations Zn^{2+} and Ga^{3+} are statistically distributed on octahedral positions *M*1–*M*4 with the (Zn, Ga)–O bond lengths of 1.940–2.129 Å. Both Ag1 and Ag3 cations are coordinated by four O atoms (Ag1–O 2.358 Å, Ag3–O 2.415 Å), while Ag2 cation has CN = 5 (Ag2–O 2.495 Å). The structure of AgZn₃Ga(MoO₄)₅ consists of MoO₄ tetrahedra, couples of edgeshared *M*(1)O₆ octahedra, and trimers of edge-shared *M*(2)O₆, *M*(3)O₆ and

Crystal data and structure refinement for ${\rm AgZn_3Ga(MoO_4)_5}$

Structural formula	AgZn ₃ Ga (MoO ₄) ₅
Formula weight, M_r (g mol ⁻¹)	1172.58
Temperature (K)	298(2)
Crystal system, space group (#)	Triclinic, $P\overline{1}$ (2)
Unit-cell parameters: $a (\mathring{A})$ $b (\mathring{A})$ $c (\mathring{A})$ a (°) $\beta (°)$ u (°)	6.9035 (5) 6.9643 (5) 17.7160 (14) 88.1039 (11) 87.4338 (12) 78.0880 (0)
Unit-cell volume, $V(Å^3)$	835.0 (2)
Formula unit, Z	2
Calculated density, $\rho_{cal} (g \text{ cm}^{-3})$	4.66
Refinement <i>R</i> factors and goodness of fit: wR_p R_p R_{exp} $R(F^2)$ χ^2	0.0511 0.0382 0.0152 0.05815 3.40
	1

Table 4

Structural parameters for $AgZn_3Ga(MoO_4)_5$

Atom	Occupancy	x	у	z	Uiso
Mo1	1	0.2722(8)	0.3095(8)	0.5282(3)	0.030(2)
Mo2	1	0.2129(8)	0.8293(9)	0.2856(3)	0.028(2)
Mo3	1	0.6843(8)	0.2187(8)	0.3109(3)	0.023(2)
Mo4	1	0.2811(9)	0.0522(9)	0.9044(3)	0.029(2)
Mo5	1	0.2520(8)	0.5491(8)	0.0863(3)	0.021(2)
M1	0.788(1)Zn+0.212(1)Ga	0.1834(12)	0.8241(11)	0.4938(5)	0.0126(3)
М2	0.901(1)Zn+0.099(1)Ga	0.1704(14)	0.0855(16)	0.1145(5)	0.045(4)
М3	0.798(1)Zn+0.202(1)Ga	0.7829(12)	0.4310(13)	0.1239(4)	0.014(3)
M4	0.505(1)Zn+0.495(1)Ga	0.2546(12)	0.3014(13)	0.7370(4)	0.023(3)
Ag1	0.323(3)Ag	0.149(3)	0.339(3)	0.2857(12)	0.062(5)
Ag2	0.328(3)Ag	0.122(4)	0.308(4)	0.3155(13)	0.062(5)
Ag3	0.342(3)Ag	0.097(3)	0.370(3)	0.3445(11)	0.062(5)
01	1	0.511(5)	0.194(5)	0.5163(18)	0.015(1)
O2	1	0.289(4)	0.366(4)	0.6238(17)	0.015(1)
O3	1	0.171(4)	0.545(5)	0.4601(18)	0.015(1)
O4	1	0.130(5)	0.126(5)	0.4978(18)	0.015(1)

Continuation of table 4

Atom	Occupancy	x	v	z	Uiso
05	1	0.189(4)	0.872(4)	0.3866(18)	0.015(1)
06	1	0.477(5)	0.719(4)	0.2580(17)	0.015(1)
07	1	0.140(5)	0.053(5)	0.2220(19)	0.015(1)
08	1	0.098(5)	0.641(5)	0.2687(18)	0.015(1)
09	1	0.419(5)	0.280(4)	0.3590(17)	0.015(1)
O10	1	0.804(5)	0.191(4)	0.3830(18)	0.015(1)
011	1	0.681(5)	0.995(5)	0.2696(17)	0.015(1)
012	1	0.774(4)	0.370(5)	0.237(2)	0.015(1)
013	1	0.198(4)	0.121(4)	0.997(2)	0.015(1)
014	1	0.468(5)	0.040(4)	0.0841(15)	0.015(1)
015	1	0.831(5)	0.202(5)	0.1174(16)	0.015(1)
016	1	0.238(4)	0.305(5)	0.8544(17)	0.015(1)
017	1	0.249(4)	0.546(4)	0.987(2)	0.015(1)
018	1	0.485(5)	0.488(5)	0.1153(17)	0.015(1)
019	1	0.171(4)	0.778(5)	0.1292(18)	0.015(1)
O20	1	0.097(4)	0.410(5)	0.1173(18)	0.015(1)

 $M(4)O_6$ octahedra, which are linked by the common vertices to form a 3D framework (Fig. 2). In the large framework cavities, the silver cations are disordered on three close positions with the distances Ag–Ag 0.595(4) Å and 1.101(2) Å.

Such a disordering is also typical of other compounds of this isostructural series [7, 9], suggesting a possible mobility of the Ag^+ cations in the compounds. This is favored not only by defects in Ag positions along with their irregular coordina-

Fig. 1. Observed (black line) and calculated (red line) XRD patterns of AgZn₃Ga(MoO₄)₅. Vertical bars indicate the positions of the Bragg peaks. The lower trace depicts the difference between the experimental and calculated intensity values

Fig. 2. Projection views of the structure of $AgZn_3Ga(MoO_4)_5$ along the *a* axis. The blue spheres and small red spheres indicate Ag and oxygen atoms, respectively

Selected interatomic	distances(Å) in	AgZn ₃ Ga(MoO ₄) ₅

Mal tat		Mo2 tetrahedron				
Moi-teu	aneuron	wio2-teti	ranearon			
Mo1-O1	1.696(3)	Mo2-O5	1.819(3)			
-O2	1.764(3)	-06	1.889(3)			
-03	1.726(3)	-07	1.891(3)			
-04	1.858(3)	-08	1.698(3)			
<mo1-o></mo1-o>	1.761	<mo2-o></mo2-o>	1.824			
Mo ³ -tetr	ahedron	Mo4-tet	rahedron			
Mo3-O9	1.961(3)	Mo4-O13	1.749(3)			
-O10	1.739(3)	-014	1.726(2)			
-011	1.747(4)	-015	1.922(3)			
-O12	1.812(3)	-016	1.760(3)			
<mo3-o></mo3-o>	1.815	<mo4-o></mo4-o>	1.789			
Mo5-teti	ahedron	M1-oct	ahedron			
Mo5-O17	1.758(4)	M1-O1	2.092(3)			
-018	1.683(3)	-03	2.068(3)			
-019	1.773(3)	-O10	2.186(3)			
-020	1.640(3)	-04	2.070(2)			
<m05-o></m05-o>	1.714	-05	1.918(3)			
	10,11	-04	2,124(3)			
		< <i>M</i> 1-O>	2.076			
M2-octa	hedron	M3-octahedron				
 M2_07	1 918(3)	M3-018	2 030(3)			
-013	2.096(3)	-017	1 99(4)			
-019	2.000(3) 2.144(3)	-015	1.57(4) 1.572(3)			
-020	2.144(3) 2.224(3)	-016	1.869(3)			
-020	2.224(3) 2.066(3)	12	2.038(3)			
-014	2.000(3) 2.325(3)	020	2.030(3) 2.143(3)			
-013 <m2 (d)<="" td=""><td>2.323(3)</td><td>-020 <m3 (d)<="" td=""><td>2.143(3)</td></m3></td></m2>	2.323(3)	-020 <m3 (d)<="" td=""><td>2.143(3)</td></m3>	2.143(3)			
	2,129	1/13-0/</td <td>1.940</td>	1.940			
M4-0Cla	inearon	Ag1-pol	ynearon			
M4-O8	2.398(4)	Ag1-O9	2.29(4)			
-011	2.033(4)	-08	2.080(3)			
-O2	2.053(3)	-07	2.33(4)			
-06	1.837(3)	-O12	2.73(4)			
-016	2.079(3)	<ag1-o></ag1-o>	2.358			
-012	2.320(3)					
< <i>M</i> 4–O>	2.120					
Ag2-pol	yhedron	Ag3-pol	yhedron			
Ag2-O9	2.19(4)	Ag3-O9	2.22(4)			
-O10	2.70(4)	-O8	2.28(4)			
-O8	2.41(4)	-O10	2.62(4)			
-07	2.45(4)	-O3	2.540(3)			
-O12	2.725(3)	<ag3-o></ag3-o>	2.415			
<ag2-o></ag2-o>	2.495					
Ag1-Ag2	0.595(4)	1	•			
Ag1–Ag3	1.101(2)					
		1				

tion, but also a rather flexible polyhedral framework of the $NaMg_3In(MoO_4)_5$ structure type, which involves interconnected cavities.

Electrophysical properties

As was noted in the previous section, the structural features of the obtained molybdates allow us to expect these compounds to have the increased ionic conductivity. This was already confirmed by us in the case of AgMg₃Al(MoO₄)₅ (σ = = 2.5 × 10⁻² S/cm) and AgMn₃Al(MoO₄)₅ (σ = 7.1 × 10⁻³ S/cm) at 500 °C [7]. In this work as an example, the results of studying electrophysical properties for AgMn₃Ga (MoO₄)₅ are presented.

It was found that the DC conductivity of ceramic sample $AgMn_3Ga(MoO_4)_5$, measured with the V7–38 device, is negligible as compared to the ac conductivity (Fig. 3) in temperature region of 100–560 °C. As the platinum electrodes are blocking in the DC conductivity measurement mode, the DC conductivity of $AgMn_3Ga(MoO_4)_5$ corresponds to the electronic one. Therefore, it can be concluded that the AC conductivity is almost equal to the ionic one.

It is seen that near room temperature the conductivity is as small as 10^{-7} S/cm

Conclusions

The possibility of the formation of silver-containing gallium triple molybdates with Mn, Co, Zn, Ni, analogous to the phases $Ag_{1-x}A_{1-x}R_{1+x}(MOO_4)_3$ and $AgA_3R(MOO_4)_5$ obtained by us in the $Ag_2MOO_4-AMOO_4-R_2(MOO_4)_3$ (A = Mg, Co; R = Al; A = Mg, R = In) systems, was studied. It was shown that in the $Ag_2MOO_4-AMOO_4-Ga_2(MOO_4)_3$ (A = Mn, Co, Zn, Ni) systems the NASICON-like phases of the composition $Ag_{1-x}A_{1-x}R_{1+x}(MOO_4)_3$ are not formed. The triple molybdates of the composition $AgA_3Ga(MOO_4)_5$ (A = Mn,

Fig. 3. Temperature dependences of the ionic conductivity on heating and cooling for AgMn₃Ga(MoO₄)₅

but quickly rises with temperature to values of about 10^{-2} S/cm. It is noteworthy that the conductivity in AgMn₃Ga(MoO₄)₅ increases with temperature in non-monotonic way showing distinct breaks on $lg\sigma = f(1/T)$ curves at 310 °C. Above these temperature the $lg\sigma = f(1/T)$ dependences are almost linear with the small activation energy value $E_a = 0.26$ eV. Above 310 °C, the ionic conductivity of AgMn₃Ga(MoO₄)₅ increases up to 2.03·10⁻² S/cm at 500 °C, which is close to the corresponding characteristics of the known ionic conductors.

Co, Zn) were synthesized and characterized. AgNi₃Ga(MoO₄)₅ was not obtained in the single-phase state. It was established that the obtained compounds incongruently melt and belong to the structural type of triclinic NaMg₃In(MoO₄)₅ (sp. gr. $P\overline{1}$, Z = 2). The structure of the obtained compounds was refined by the Rietveld method using the powder diffraction data for AgZn₃Ga(MoO₄)₅. The structural features of the obtained molybdates allow us to expect these compounds to have the increased ionic conductivity. This was confirmed by studying electrophysical properties of $AgMn_3Ga(MoO_4)_5$. It was shown that the high-temperature electrical conductivity of this compound reaches

 10^{-2} S/cm at $E_a = 0.26$ eV, which is close to the corresponding characteristics of the known ionic conductors.

Acknowledgments

The research was carried out within the state assignment of BINM SB RAS, supported in part by the Russian Foundation for Basic Research (Project No. 17-03-00333a)

References

- Kotova IYu. Phase formation in the Ag₂MoO₄-CoMoO₄-Al₂(MoO₄)₃ system. *Russ J Inorg Chem.* 2014;59:844–8. DOI:10.7868/S0044457X14080133.
- Kotova IYu, Korsun VP. Phase in the Ag₂MoO₄-MgMoO₄-Al₂(MoO₄)₃. Russ J Inorg Chem. 2010;55:955–8. DOI: 10.1134/S0036023610060203.
- 3. Kotova IYu, Korsun VP. Phase formation in the system involving silver, magnesium, and indium molybdates. *Russ J Inorg Chem.* 2010;55:1965–9. DOI: 10.1134/S0036023610120247.
- 4. Kotova IYu, Belov DA, Stefanovich SYu. $Ag_{1-x}Mg_{1-x}R_{1+x}(MoO_4)_3 Ag^+$ -conducting NASICON-like phases, where R = Al or Sc and $0 \le x \le 0.5$. *Russ J Inorg Chem*. 2011;56:1189–93. DOI: 10.1134/S0036023611080122.
- Bouzidi C, Frigui W, Zid MF. Synthèse et structure crystalline d'un matériau noir AgMn^{II}₃(Mn^{III}_{0.26}Al_{0.74})(MoO₄)₅. Acta Cryst. 2015; E71:299–304. DOI: 10.1107/S2056989015003345.
- Nasri R, Chérif SF, Zid MF. Structure cristalline de la triple molybdate Ag_{0.90}Al_{1.06}Co_{2.94} (MoO₄)₅. Acta Cryst. 2015; E71:388–91. DOI: 10.1107/s2056989015005290.
- 7. Kotova IYu, Solodovnikov SF, Solodovnikova ZA, Belov DA, Stefanovich SYu, Savina AA, Khaikina EG. New series of triple molybdates $AgA_3R(MoO_4)_5$ (A = Mg, R = Cr, Fe; A = Mn, R = Al, Cr, Fe, Sc, In) with framework structures and mobile silver ion sublattices. *J Solid State Chem*. 2016;238:121–8. DOI: 10.1016/j. jssc. 2016.03.003.
- 8. Balsanova LV. Synthesis of crystals of silver containing oxide phases based on molybdenum, study of their structure and properties. *Vestnik VSGUTU*. 2015;5:63–9.
- Kotova IYu, Savina AA, Khaikina EG. Crystal structure of new triple molybdate AgMg₃Ga(MoO₄)₅ from Rietveld refinement. *Powder Diffraction*. 2017;32(4):255–60. DOI: 10.1017/S0885715617000811.
- Yanushkevich TM, Zhukovsky VM, Ustyantsev VM. Fazovaya diagramma sistemy NiO-MoO₃. [Phase diagram of the system NiO-MoO₃]. *Russ J Inorg Chem.* 1974;19(7):1932–6.
- 11. Zhukovsky VM, Tkachenko EV. Fazovye ravnovesiya v molibdatnykh sistemakh. [Phase equilibria in molybdate systems]. Zbornik nauchnykh trudov. "*Fizicheskaya khimiya okislov*". Moscow: Nauka; 1981.106–15. Russian.
- 12. Reichelt W, Weber T, Soehnel T. at al. Electronic structure and luminescence mechanisms in ZnMoO₄ crystals. *J Phys: Condes Mater.* 2011;23:244–59.
- Tsyrenova GD, Bazarova JG, Mokhosoev MV. Phase equilibria in systems MeO-MoO₃ (Me-Mg, Mπ, Zn). *Russ J Inorg Chem.* 1986;31(12):3120–3.

- 14. Rajaram P, Viswanathan B, Aravamudan G. Studies on the formation of manganese molybdates. *Thermochim acta*. 1973;7 (2):123–9.
- 15. Kohlmuller R, Faurie J.-P. Etude des systemes MoO₃–Ag₂MoO₄ et MoO₃–MO (M–Cu, Zn, Cd). *Bull Soc chim. France*. 1968;11:4379–82.
- 16. Larson AC, Von Dreele RB. General Structure Analysis System (GSAS) (Report LAUR 86–748). 2004. Los Alamos, New Mexico: Los Alamos National Laboratory.
- Shannon RD. Revised effective ionic radii and systematic studies of interatomic distances in dalides and chalcogenides. *Acta Cryst.* 1976; A32:751–67. DOI: 10.1107/S0567739476001551.
- Gates Stacy D, Julie A, Lind C. Gates Non-hydrolytic sol-gel synthesis, properties, and high-pressure behavior of gallium molybdate. *J Mater Chem.* 2006;16:4214–9. DOI:10.1039/B608864C.
- 19. Perepelitsa AP, Golub AM, Badayev YuB, Shapoval VN. Double molybdates of aluminum, gallium, indium, chromium, iron and bismuth with monovalent silver and thallium. *Russ J Inorg Chem.* 1977;22(4):994–7.
- 20. Klevtsova RF, Vasiliev AD, Kozhevnikova NM, Glinskaya LA, Kruglik AI, Kotova IYu. Synthesis and crystal structural study of ternary molybdate NaMg₃In(MoO₄)₅. *J Struct Chem.* 1994;34:784-8.
- 21. Rietveld HM. A profile refinement method for nuclear and magnetic structures. *J Appl Cryst.* 1969;2:65–71.