A.I. Klyndyuk, E.A. Chizhova, A.I. Poznyak

Belarus State Technological University 13a Sverdlova St., Minsk, 220006, Republic of Belarus

Preparation and characterization of $Bi_{4-x}Pr_{x}Ti_{3}O_{12}$ solid solutions

The Bi_{4-x}Pr_xTi₃O₁₂ (BPT) solid solutions (x = 0.05, 0.10, 0.15) with small praseodymium content were prepared by solid-state method. Thermal, electric, and dielectric properties of BPT were studied. It was revealed that BPT titanates crystalize in an orthorhombic structure and exhibit *p*-type semiconductivity. Dielectric constant of BPT increased, Curie temperature (T_c), electrical conductivity and dielectric losses decreased, but lattice parameters and thermo-EMF coefficient remained practically unchanged with the increase of praseodymium content in layered Bi_{4-x}Pr_xTi₃O₁₂. It was determined that activation energy of direct current (DC) electrical conductivity and linear thermal expansion coefficient (LTEC) of BPT changes at ferroelectric (FE) \rightarrow paraelectric (PE) phase transition. The activation energy and LTEC changed below and above T_c from 1.08–1.56 eV to 0.45–0.86 eV and from (9.10–10.80)·10⁻⁶ K⁻¹ to (13.12–14.61)·10⁻⁶ K⁻¹, respectively. The AC electrical conductivity studies of BPT illustrated short-range order with ionic translations assisted by small-polaron hopping.

Keywords: layered bismuth titanates; dielectric constant; dielectric losses; electrical conductivity; thermo-EMF; thermal expansion.

Received: 20.10.2017; accepted: 15.11.2017; published: 25.12.2017.

© Klyndyuk A.I., Chizhova E.A., Poznyak A.I., 2017

Introduction

Bi₄Ti₃O₁₂ belongs to the Aurivillius phase family Bi₂A_{n-1}B_nO_{3n+3}, structure of which consists of alternated fluoritelike [Bi₂O₂]²⁺ layeres and perovskite-like [A_{n-1}B_nO_{3n+1}]²⁻ blocks, where *n* – number of octahedral layers in the perovskite-like block [1]. This triple-layered (*n* = 3) Aurivillius phase is ferroelectric with high Curie temperature (*T_c* = 948 K [2]). The possibility to preserve the ferroelectric properties within a wide temperature range lets us to consider layered bismuth titanate as a promising material for radio-, acusto-, and optoelectronics; and thus can be used for production of optical displays, piezoelectric transducers, filters, capacitors, and different types of memory devices. So, for example, as a material for non-volatile memory devices the lanthanum-substituted $\text{Bi}_{3.25}\text{La}_{0.75}\text{Ti}_3\text{O}_{12}$ bismuth titanate is proposed, functional characteristics of which are better than of traditional ferroelectrics, such as PbTi_{1-x}Zr_xO₃ or SrBi₂Ta₂O₉ [3].

Crystal structure, physico-chemical, and functional properties of the solid solutions $\text{Bi}_{4-x}\text{Ln}_x\text{Ti}_3\text{O}_{12}$ (Ln = rare-earth element) were studied in a number of papers [1, 3-8]. In [4] it was found that partial substitution of Bi by La in Bi₄Ti₃O₁₂ leads to decrease of orthorhombic distortion degree of Bi_{4-r}La_rTi₃O₁₂ solid solutions at $x \leq 1.0$, and at x > 1.0 they had tetragonal structure and were paraelectrics. According to the [1, 4] results, at $x \le 0.75 \text{ La}^{3+}$ ions substitute Bi³⁺ in perovskite-like [Bi,Ti,O10]2- blocks, and at x > 0.75 they can substitute Bi³⁺ ions in fluorite-like [Bi₂O₂]²⁺ layers too, so formula of $Bi_{4-x}La_{x}Ti_{3}O_{12}$ solid solutions at x \leq 0.75 and *x* > 0.75 should be written as $[Bi_2O_2][Bi_2La_Ti_3O_{10}]$ and $[Bi_2La_VO_2]$ $[Bi_{2-r+\nu}La_{r-\nu}Ti_{3}O_{10}]$, respectively. Authors of [5] established that partial substitution of Bi with La or Ce in Bi₄Ti₃O₁₂ leads to the decrease of Curie temperature of ceramics (T_c values for $Bi_{3,5}La_{0,5}Ti_3O_{12}$ and Bi₃₅Ce₀₅Ti₃O₁₂ samples were 798 and 813 K, respectively, both being lower than T_c for Bi₄Ti₃O₁₂ phase). At the same time, La₂O₃ addition to the layered bismuth titanate improved its dielectric properties; by authors' opinion, it was caused by de-

Experimental

Bi_{4-x}Pr_xTi₃O₁₂ (x = 0.00, 0.05, 0.10, 0.15) ceramic samples were prepared by solid-state reactions method from mixtures of Bi₂O₃ (99.0%), Pr₆O₁₁ (99.0%), and TiO₂ (99.5%) powders taken in appropriate stoichiometric ratios. Precursor mixtures were calcuned in air within temperature interval of 923–1223 K for 17 hours with some intermediate regrindings, according to procedure described in details in [6].

Identification of the samples was performed using X-ray diffraction analysis (XRD) (Bruker D8 XRD Advance diffractometer, Cu Kα radiation) and IR absorption spectroscopy (IR Fourierspectrometer Nexus of ThermoNicolet).

creasing of oxygen vacancy concentration in ceramics. Partial substitution of Bi with Nd in Bi₄Ti₃O₁₂ leads to the decrease of Curie temperature, dielectric losses, and electrical conductivity of Bi_{4-x}Nd_xTi₃O₁₂ ceramic; and impoves its polarization properties because of reduction of bismuth and oxygen vacancy concentrations [7]. In [8] the $Bi_{4-\nu}Tb_{\nu}Ti_{3}O_{12}$ phase formation in the powder mixtures of $Bi_{2}O_{3}$, $Tb_{4}O_{7}$, and TiO_{2} was investigated. It was found that partial replacing of Bi by Tb results in shrinking of unit cell of $Bi_{4-\nu}Tb_{\nu}Ti_{3}O_{12}$ solid solutions, decrease of orthorhombic distortion degree of their crystal lattice, and, as a consequence, leads to the decrease of temperature of FE \rightarrow PE (ferroelectric \rightarrow paraelectric) phase transition (up to ≈ 28 K for y = 0.4).

In this work the results of investigation of crystal structure, thermal, electric, and dielectric properties of ceramic samples of $\text{Bi}_{4-x}\text{Pr}_x\text{Ti}_3\text{O}_{12}$ (BPT) solid solutions with small praseodymium oxide content ($x \le 3.75 \text{ mol.\%}$) are presented.

Relative density (ρ_{rel}) of the samples was calculated as

$$\label{eq:rel} \begin{split} \rho_{rel} &= (\rho_{app}/\rho_{XRD}) \cdot 100\%, \quad (1) \\ \text{where } \rho_{app} - \text{apparent density, determined} \\ \text{from the mass and dimensions of the} \\ \text{samples; } \rho_{XRD} - X\text{-ray density.} \end{split}$$

Thermal expansion of the samples was studied using DIL 402 PC (Netzsch) dilatometer within 290–1130 K with heating-cooling rate of 1–5 K/min. Dielectric measurements were carried out in the temperature range 300–1090 K for frequencies between 100 Hz and 1 MHz using immittance meter E7–25. DC electrical conductitivy and thermo-EMF of sintered ceramics were studied within the temperature ranges of 470–1090 K and 780–1090 K, respectively, according to the procedure described elsewhere [9]. Values of linear thermal expansion coefficient (LTEC, α) and activation energy of DC electrical con-

Results and discussion

All Bi_{4-x}Pr_xTi₃O₁₂ samples after final stage of annealing were found single phase within XRD reliability (Fig. 1), and crystallized in orthorhombic structure like parent compound Bi₄Ti₃O₁₂ (space group B2cb) [10]. Lattice constants of Bi- $_{4}$ TiO₁₂ (*a* = 5.449(9) Å, *b* = 5.422(9) Å, and c = 32.85(4) Å) were in a close agreement with an earlier studies: 5.444(1), 5.413(1), and 32.858(1) Å [10], 5.4403, 5.4175, and 32.7862 Å [11], and 5.4438(1), 5.4105(1), and 32.8226(5) Å [8]. Lattice constants of Bi_{4-x}Pr_xTi₃O₁₂ solid solutions were close to the Bi4Ti3O12 ones (for example, for $Bi_{3,90}Pr_{0,10}Ti_{3}O_{12} a = 5.449(7) Å$, b = 5.420(9) Å, and c = 32.80(3) Å), which agrees with the fact that sizes of substituting and substituted ions are close to each other (for C.N. = 6 according to [12] Bi³⁺ and Pr³⁺ ionic radii are 1.11 and 1.013 Å, respectively).

It should be noted that 0014 reflection in the $Bi_{4-x}Pr_{x}Ti_{3}O_{12}$ diffractograms was the most intensive, in contrast with 117 peak for $Bi_{4}Ti_{3}O_{12}$. Other 001 peaks

Fig. 1. X-ray powder diffractograms (Cu K α radiation) of Bi_{4-x}Pr_xTi₃O₁₂ solid solutions

ductivity (E_A) of the samples were determined from linear parts of $\Delta l/l_0 = f(T)$, and $\lg \sigma_{DC} = f(1/T)$ dependences, respectively. All measurements were performed in air.

had higher intensity as well (I_{006}/I_{117} ratio was equal to 0.6, 1.7, 3.0, and 2.8 for x = 0.00, 0.05, 0.10, and 0.15, respectively). This fact shows that partial substitution of Bi with Pr in Bi₄Ti₃O₁₂ leads to the texturing of the samples. The nature of this phenomenon is not clear yet and will be studied in the future.

Three absorption bands occurring at 810–818 cm⁻¹ (v_1), 573–582 cm⁻¹ (v_2), and 474 cm⁻¹ (v_3) were observed in the absorption spectra of Bi_{4-x} Pr_xTi₃O₁₂ powders. According to [7, 11], these bands correspond to the stretching (v_1 and v_2) and bending (v_3) vibrations of Bi–O (v_1 and v_3) and Ti–O (v_2) bonds, respectively. The peak positions did not change with *x* increasing, so partial replacing of Bi by Pr in layered Bi₄Ti₃O₁₂ did not affect practically the metal-oxygen interactions in its crystal structure.

The relative density values for $\text{Bi}_{4-x} \text{Pr}_{x-}$ Ti₃O₁₂ ceramics varied within 77–80% and increased with *x*, being essentially larger than for unsubstituted bismuth titanate (60%). These results show that addition of praseodymium oxide to the layered bismuth titanate improves its sinterability. Note that according to the literature data [6, 7] addition of lanthanum or neodymium oxides to the Bi₄Ti₃O₁₂, on the contrary, had lowered its sinterability.

On the temperature dependences of relative elongation an inflection point near 940–970 K was observed (Fig. 2). It is related to the FE \rightarrow PE phase transition [8] and is accompanied by the increase of LTEC values of the samples (Table 1).

An inflection point, which was determined as an intersection of linear parts of $\Delta l/l_0 = f(T)$ dependences at low (FE region) and high temperatures (PE region), corresponds to the Curie temperature and decreases with *x* (Fig. 2, inset). It is in a good agreement with the literature data, according to which substitution of Bi with Ln in Bi₄Ti₃O₁₂ leads to lowering of its Curie temperature [4–8].

The LTEC values of Bi_{4-r}Pr_rTi₃O₁₂ titanates in FE state decreased, but in PE state increased with x (Table 1). The LTEC values in PE state can be explaned by anharmonicity of metal-oxygen vibrations in disordered cationic sublattice of Pr³⁺-substituted bismuth titanate Bi, Pr Ti₂O₁₂. The LTEC values in FE state could be caused either by increase of dipole-dipole interactions or by decrease of oxygen and bismuth vacancy concentrations in the BPT. The first explanation is in contrast with the fact that T_c of $Bi_{4-r}Pr_rTi_3O_{12}$ solid solutions decreases with x. So, the decrease of LTEC values of BPT ceramics in FE region is due to the decrease of the vacancy concentration in it [3].

 $Bi_{4-x}Pr_xTi_3O_{12}$ compounds are *p*-type semiconductors (Fig. 3), which confirms previous data [7, 14]. According to [7, 14] electrical conductivity of layered bismuth titanate increases with temperature [7,14] and thermo-EMF coefficient of $Bi_4Ti_3O_{12}$ phase at high temperatures

is positive [14]. Seebeck coefficient values of BPT ceramics were close to each other (Fig. 3b), which corresponds to the isovalent character of substitution of Bi with Pr. But DC electrical conductivity of the samples decreased with x (Fig. 3a) due to the defect concentration decrease as was mentioned above. Near T_c there is a change in the slope of linear sections at the Arrhenius plots $\lg \sigma_{DC} = f(1/T)$. Values of activation energy of the samples' DC electrical conductivity in PE region are essentially less than in FE one (Table 1). Similar results were obtained in [15] for Bi₄Ti₂Nb_{0.5}Fe_{0.5}O₁₂ ceramics, activation energy values of which were equal to 1.21 eV and 0.50 eV below and above T_{c} , respectively (AC, $\omega = 10^5$ Hz). Partial substitution of Bi with Pr in Bi₄Ti₃O₁₂ increases E_{A} of BPT in FE state and low-

Fig. 2. Temperature dependences of relative elongation of $\text{Bi}_{4-x} \Pr_x \text{Ti}_3 \text{O}_{12}$ sintered ceramics. Inset shows concentration dependences of T_c

Table 1

Values of apparent activation energy of DC electrical conductivity (E_A) and linear thermal expansion coefficient (α) of Bi_{4-x}Pr_xTi₃O₁₂ titanates

x	$E_{\scriptscriptstyle A}$, eV		α·10 ⁶ , K ⁻¹	
	FE	PE	FE	PE
0.00	1.08 ± 0.02	0.86±0.02	10.80±0.06	13.12±0.02
0.05	$1.24{\pm}0.01$	0.46±0.02	09.62±0.01	14.61±0.02
0.10	1.23±0.02	0.45±0.01	09.31±0.01	13.53±0.01
0.15	1.56 ± 0.04	0.49±0.01	09.10±0.01	13.48±0.01

ers it in PE state (Table 1). Note that E_A value of layered bismuth titanate below T_C obtained in this work coincides with the data given in [14]: 1.0 eV for Bi₄Ti₃O₁₂ ceramics.

In the temperature dependences of dielectric constant of $\text{Bi}_{4-x} \text{Pr}_x \text{Ti}_3 \text{O}_{12}$ titanates abrupt maxima near 930–940 K was observed (Fig. 4a). It was caused by FE \rightarrow PE phase transition, and phase transition temperature (T_C) lowered with increasing praseodymium content in the samples (Fig. 4d) and was close to the T_C values determined from the $\Delta l/l_0 = f(T)$ depen-

dences (Fig. 2, inset). Dielectric constant values of BPT ceramics increased with *x*, which was more prominent at high temperatures (Fig. 4a, c). Dielectric losses of investigated samples increased with temperature and decreased when Pr concentration (Fig. 4b, e). Besides, on the $tg\delta =$ f(T) dependences two anomalous regions were observed: near 760–820 K and 930– 940 K. The second anomaly is related to the FE \rightarrow PE phase transition, but the first one is probably due to the oxygen vacancy movement out (migration) of the domain walls [16].

The values of Curie temperature of the samples are frequency independent (Fig. 5*a*, *b*), which indicates that $Bi_{4-x}Pr_xTi_3O_{12}$ phases are normal ferroelectrics [15]. When the testing frequency increased from 100 Hz to 100 kHz, the dielectric constant and dielectric losses of BPT ceramics decreased substantially due to the suppression of relaxing polarization at high frequencies.

The dielectric constant of normal ferroelectrics follows the Curie–Weiss law

$$\varepsilon = C/(T - T_{\Theta}), \qquad (2)$$

where C is Curie–Weiss constant and T_{Θ} is Curie–Weiss temperature. The Curie–

Fig. 4. Temperature (a, b) and concentration (c–e) dependences of dielectric constant (a, c), dielectric losses (b, e), and $T_c(d)$ of $\text{Bi}_{4-x} \text{Pr}_x \text{Ti}_3 \text{O}_{12}$ ceramics ($\omega = 1 \text{ kHz}$)

Fig. 5. Temperature dependences of dielectric constant (a) and dielectric losses (b) of Bi_{3.85}Pr_{0.15}Ti₃O₁₂ at different frequencies. Inset (c) shows the inverse dielectric constant as a function of temperature at 100 kHz

Weiss plot for $\text{Bi}_{3.85}\text{Pr}_{0.15}\text{Ti}_3\text{O}_{12}$ phase at 100 kHz is shown in the Fig. 5c. The parameters obtained from the linear fit are $C = 1.63 \times 10^5 \text{ K}$ and $T_{\Theta} = 821 \text{ K}$. The magnitude of Curie–Weiss constant is of the same order as of well-known displasive-type ferroelectrics, such as BaTiO_3 ($C = 1.7 \cdot 10^5 \text{ K}$ [15]).

The frequency dependences of AC electrical conductivity of $Bi_{3.85}Pr_{0.15}Ti_3O_{12}$ at various temperatures are given in Fig. 6. The frequency independent plateau at low frequencies is attributed to the long-range translational motion of ions contributing to DC conductivity (σ_{DC}) [17, 18]. At high frequencies (>10⁴ Hz) the AC electrical conductivity shows ω^n dependence which corresponds to the short-range translation ion hopping [15, 18].

The frequency dependent AC electrical conductivity of BPT ceramics obeys Jonscher's power law [19] at all temperatures

$$\sigma(\omega) = \sigma(0) + A\omega^{n}, \qquad (3)$$

where $\sigma(\omega)$ is the total conductivity, $\sigma(0)$ is the DC conductivity, *A* is the temperature-dependent constant which determines the strength of polarizability, and *n* represents the degree of interaction between the mobile ions and the lattice around them [15, 19]. The values of n are less than one, which indicates that motion of charge carriers is translational [18, 20]. The shape of n vs. T dependence suggests hopping mechanisms of charge carriers [18, 19]. In case of small-polaron hopping, n increases with temperature, while for a large polaron hopping, n decreases with temperature. As shown in inset of Fig. 6, the values of n are less than 1 and are found to increase with temperature;

Fig. 6. Frequency dependences of AC electrical conductivity of $\text{Bi}_{3.85} \text{Pr}_{0.15} \text{Ti}_3 \text{O}_{12}$ at different temperatures. Inset shows the variation of Jonscher's power law parameters (n, A) as a function of temperature

hence we conclude that AC electrical conductivity arises mainly due to the shortrange order translation hopping assisted by small-polaron hopping mechanism.

Conclusions

The $Bi_{4-x}Pr_xTi_3O_{12}$ solid solutions (x = 0.05, 0.10, 0.15) with small substitution degree were synthesized and their thermal expansion, DC and AC electrical conductivity, dielectric constant and dielectric losses were measured. The samples crystallized in orthorhombic structure and possessed *p*-type semiconductive and normal ferroelectric properties. Lattice constants and thermo-EMF coefficient of BPT were practically composition independent, but Curie temperature, electrical conductivity and dielectric losses de-

creased with *x*. Activation energy of DC electrical conductivity and linear thermal expansion coefficient of $\text{Bi}_{4-x} \text{Pr}_x \text{Ti}_3 \text{O}_{12}$ changed at the temperature of ferroelectric to paraelectric phase transition, and their values were 1.08-1.56 eV and 0.45-0.86 eV, and $(9.10-10.80)\cdot10^{-6}$ K⁻¹ and $(13.12-14.61)\cdot10^{-6}$ K⁻¹ below and above Curie temperature, respectively. AC electrical conductivity investigations illustrate short-range order ionic translation hopping assisted by small-polaron hopping mechanism.

Acknowledgements

This work was carried out within the framework of State Program of Scientific Investigations of Belarus Republic «Physical materials science, new materials and technologies» (subprogram «Materials science and technologies of materials», task 1.17).

References

- 1. Hyatt NC, Hriljac JA, Comyn TP. Cation disorder in $Bi_2Ln_2Ti_3O_{12}$ Aurivillius phases (Ln = La, Pr, Nd and Sm). *Mat Res Bull*. 2003;38:837–46. DOI:10.1016/S0025–5408(03)00032–1.
- 2. Scott JF, Araujo CA. Ferroelectric memories. *Science*. 1989;246(4936):1400–5. DOI:10.1126/science.246.4936.1400.
- 3. Park BH, Kang BS, Bu SD, Noh TW, Lee J, Jo W. Lanthanum-substituted bismuth titanate for use in non-volatile memories. *Nature*. 1999;401:682–4. DOI:10.1038/44352.
- Wu D, Yang B, Li A. Structural phase transition due to La substitution in Bi₄Ti₃O₁₂. *Phase Transitions*. 2009;82(2):146–55. DOI:10.1080/01411590802524992.
- Pavlović N, Koval V, Dusza J, Srdić VV. Effect of Ce and La substitution on dielectric properties of bismuth titanate ceramics. *Ceram Int.* 2011;37:487–92. DOI:10.1016/ j.ceramint.2010.09.005.
- Klyndyuk AI, Glinskaya AA, Chizhova EA, Bashkirov LA. Synthesis and properties of lanthanum-substituted bismuth titanate with structure of Aurivillius phase. *Refractories & Technical Ceramics*. 2017;(1–2):29–33. Russian.
- Kan YM, Zhang GJ, Wang PL, Cheng YB. Preparation and properties of neodymium-modified bismuth titanate ceramics. *J Eur Ceram Soc.* 2008;28:1641–7. DOI:10.1016/j.jeurceramsoc.2007.10.010.

- 8. Fortalnova EA, Politova ED, Ivanov SA, Safronenko MG. Phase formation and physicochemical properties of solid solutions Bi_{4-y}Tb_yTi₃O₁₂ based on layered bismuth titanate. *Russ J Inorg Chem.* 2017;62(2):224–30. DOI:10.1134/S0036023617020061.
- Klyndyuk AI, Chizhova EA. Structure, Thermal Expansion, and Electrical Properties of BiFeO₃-NdMnO₃ Solid Solutions. *Inorg Mater.* 2015;51(3):272–7. DOI:10.1134/ S0020168515020090.
- Villegas M, Jardiel T, Caballero AC, Fernandez JF. Electrical Properties of Bismuth Titanate Based Ceramics with Secondary Phases. J Electroceram. 2004;13:543–8. DOI:10.1007/s10832–004–5155–2.
- Stojanović BD, Simoes AZ, Paiva-Santos CO, Quinelato C, Longo E, Varela JA. Effect of processing route on the phase formation and properties of Bi₄Ti₃O₁₂ ceramics. *Ceram Int.* 2006;32:707–12. DOI:10.1016/j.ceramint.2005.05.007.
- Shannon RD. Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides. *Acta Cryst.* 1976; A32:751–67. DOI:10.1107/ S0567739476001551.
- 13. Chen Z, Yu Y, Hu J, Shui A, He X. Hydrothermal synthesis and characterization of Bi₄Ti₃O₁₂ powders. *J Ceram Soc Jap*. 2009;117(3):264–7. DOI:10.2109/jcersj2.117.264.
- Kim SK, Miyayama M, Yanagida H. Electrical anisotropy and a plausible explanation for dielectric anomaly of Bi₄Ti₃O₁₂ single crystal. *Mat Res Bull*. 1996;31(1):121–31. DOI:10.1016/0025–5408(95)00161–1.
- 15. Kumar S, Varma KBR. Structural and dielectric properties of Bi₄Ti₂Nb_{0.5}Fe_{0.5}O₁₂ ceramics. *Solid State Commun.* 2008;146:137–42. DOI:10.1016/j.ssc.2008.02.004.
- Jimenez B, Jimenez R, Castro A, Millan P, Pardo L. Dielectric and mechanoelastic relaxations due to point defects in layered bismuth titanate ceramics. *J Phys: Condens Matter*. 2001;13(33):7315–26. DOI:10.1088/0953–8984/13/33/312.
- Shashkov MS, Malyshkina OV, Piir IV, Koroleva MS. Dielectric properties of ironcontaining bismuth titanate solid solutions with a layer perovskite structure. *Phys Solid State*. 2015;57(3):518–21. DOI:10.1134/S1063783415030312.
- Kumari S, Ortega N, Kumar A, Pavunny SP, Hubbard JW, Rinaldi C, Srinivasan G, Scott JF, Katiyar RS. Dielectric anomalies due to grain boundary conduction in chemically substituted BiFeO₁. J Appl Phys. 2015;117:114102. DOI:10.1063/1.4915110.
- 19. Jonscher AK. The 'universal' dielectric response. *Nature*. 1977;267:673–9. DOI:10.1038/267673a0.
- 20. Sadykov SA, Palchaev DK, Murlieva ZK, Alikhanov NM, Rabadanov MK, Gadzhimagomedov SK, Kallaev SN. AC conductivity of BiFeO₃ ceramics obtained by spark plasma sintering of nanopowders. *Phys Solid State*. 2017;59(9):1771–7. DOI:10.1134/ S1063783417090268.

Cite this article as:

Klyndyuk AI, Chizhova EA, Poznyak AI. Preparation and characterization of Bi_{4-x}Pr_xTi₃O₁₂ solid solutions. *Chimica Techno Acta*. 2017;4(4):211–7. DOI:10.15826/ chimtech/2017.4.4.01.