Sednev A. L., Tsvetkov D. S. Chimica Techno Acta. 2017. Vol. 4, No. 3. P. 183–190. ISSN 2409–5613

A.L. Sednev, D.S. Tsvetkov

Institute of Natural Sciences and Mathematics, Ural Federal University, 19 Mira St., Ekaterinburg, 620002, Russia e-mail: Anton.Sednev@urfu.ru

Study and optimization of the synthesis routine of the single phase YBaCo₂O₆₋₅ double perovskite

The chemical interaction of $YCoO_{3-\delta}$ and $BaCoO_{3-\delta}$ with formation of double perovskite was studied depending on temperature and oxygen partial pressure. The stability of $YCoO_3$ was shown to have a crucial influence on the kinetics and mechanism of $YBaCo_2O_{6-\delta}$ formation. It was found that at $1000 \,^{\circ}C$ in air, i.e. under conditions when $YCoO_3$ is unstable, the double perovskite $YBaCo_2O_{6-\delta}$ is formed much slower compared to the pure oxygen atmosphere where $YCoO_3$ is stable at the same temperature. Thus controlling $YCoO_3$ stability was shown to be the factor of key importance for optimal preparation of the $YBaCo_2O_{6-\delta}$ single phase.

Keywords: YBaCo₂O₆ synthesis, YCoO₃ instability, pO_2 acceleration, double perovskite synthesis, YBaCo₂O₅, YCoO₃, BaCoO₃.

Received: 07.09.2017; accepted: 25.09.2017; published: 20.10.2017.

© Sednev A.L., Tsvetkov D.S., 2017

Introduction

YBaCo₂O_{6-δ} Complex oxide with double perovskite structure has been extensively investigated in recent years as a promising material for oxygen membranes [1, 2] and solid oxide fuel cells (SOFCs) [3, 6, 7, 9, 12] due to high mixed ionic-electronic conductivity [12] and moderate thermal expansion comparable to that of the state-of-the art SOFC electrolytes [3]. However, YBaCo₂O₆₋₈ is unstable in air at temperatures between 800 and 850 °C [13] and decomposes to mixture of the simple perovskites $YCoO_{3-\delta}$ and $BaCoO_{3-\delta}$, which are more thermody-

Experimental

Taking into account that synthesis of $YBaCo_2O_{6-\delta}$ proceeds through the forma-

namically stable under these conditions. This significantly impedes obtaining a single phase material. Moreover, a synthesis routine, which could be provided the single phase $YBaCo_2O_{6-\delta}$ obtaining, has not been discussed in literature so far. The lack of the appropriate data also inhibits a commercial application of the $YBaCo_2O_{6-\delta}$ based materials.

Therefore the main aim of the current work was to study a formation of the YBaCo₂O_{6- δ} double perovskite at 900 and 1000 °C in different gas atmospheres in order to optimize its synthesis routine.

tion of intermediate phases of $YCoO_{3-\delta}$ and $BaCoO_{3-\delta}$ like other double perovskites LnBaCo₂O_{6- δ} [14] as well as that a synthesis routine for these intermediate phases has been already described in literature [15, 16] we selected YCoO_{3- δ} and BaCoO_{3- δ} as starting reagents for preparation of the YBaCo₂O_{6- δ} double perovskite.

Powder samples of $YCoO_{3-\delta}$, $BaCoO_{3-\delta}$ were synthesizes by means of glyserolnitrate technique, using Co, Y2O3 and BaCO₃ as starting materials. All the materials used had a purity of 99.99 %. Metallic Co was obtained by reduction of Co_3O_4 (purity 99.99%) in H₂ atmosphere at 600 °C. Y₂O₃ and BaCO₃ were preliminary calcined at 1100 °C and 600 °C, respectively, in air for two hours in order to remove adsorbed H₂O and CO₂. Stoichiometric mixture of starting materials was dissolved in concentrated nitric acid. Then the required quantity of glycerol as a complexing and reducing agent was added to the obtained solution. Afterwards the solution was evaporated to dryness, and resulted dry powder was pyrolyzed. The product of pyrolysis was put in a cru-

Fig. 1. X-ray diffraction pattern and its matching refinement plot of YCoO_{3- δ}: observed X-ray diffraction intensity – points and calculated curve ($\chi^2 = 1.62$) – line. The bottom curve is the difference of patterns, $y_{obs} - y_{cal}$, and the small bars indicate the angular positions of the allowed Bragg reflections

cible and calcined in a furnace. The final calcination was carried out at 1100 °C in air for two hours C for $BaCoO_{3-\delta}$ and at 900 °C for $YCoO_{3-\delta}$. Phase composition of the as-prepared powder samples was confirmed by X-ray diffraction using Shimadzu XRD-7000 diffractometer (CuKa radiation, $20 \le 2\theta$, ° ≤ 90). X-ray diffraction patterns of the as-synthesized $YCoO_{3-\delta}$ and $BaCoO_{3-\delta}$ are shown in Figs. 1 and 2.

The results of the structureless Le Bail fitting are also shown in Fig. 1 and 2. It should be noted that the X-ray diffraction pattern of $BaCoO_3$ was interpreted as a mixture of two compounds: $BaCoO_3$ and $BaCoO_{2.61}$ (see Fig. 2). The refined cell parameters of the prepared compounds given in Table 1 are in a good agreement with those reported in literature.

Synthesis of YBaCo₂O_{6- δ} was studied by annealing equimolar mixture of YCoO_{3- δ} and BaCoO_{3- δ} for 72h (6 steps with duration of 12 h at each step) at temperatures 900 and 1000 °C in atmospheres with oxygen partial pressure (pO_2)

Fig. 2. X-ray diffraction pattern and its matching refinement plot of $BaCoO_{3-\delta}$: observed X-ray diffraction intensity - points and calculated curve ($\chi^2 = 1.87$) – line. The bottom curve is the difference of patterns, $y_{obs} - y_{cal}$, and the small bars indicate the angular positions of the allowed Bragg reflections for BaCoO₃ (blue lines) and BaCoO₂₆₁ (red lines)

0.21 and 1 atm with intermediate mixture regrinding in agate mortar. Phase compo-

sition of the samples after each step of annealing was controlled by XRD.

Table 1

Space group	<i>a</i> *, Å	b *, Å	<i>c</i> *, Å	Reference
Pbnm	5.139	5.419	7.365	this work
	5.137	5.420	7.364	[17]
	5.132	5.411	7.360	[18]
P-6m2	5.683	5.683	4.552	this work
	5.645	5.645	4.752	[19]
	5.652	5.6525	4.763	[20]
	5.666	5.666	28.494	this work
P63/mmc	5.665	5.665	28.493	[16]
	5.671	5.671	28.545	[21]
	Space group Pbnm P-6m2 P63/mmc	Space group a*, Å 5.139 5.137 7 5.132 Pbnm 5.683 P-6m2 5.645 5.652 5.666 P63/mmc 5.665 5.671 5.671	Space group a*, Å b*, Å Pbnm 5.139 5.419 Pbnm 5.137 5.420 5.132 5.411 P-6m2 5.683 5.683 P-6m2 5.665 5.6525 P63/mmc 5.665 5.665 5.671 5.671 5.671	Space group a*, Å b*, Å c*, Å Pbnm 5.139 5.419 7.365 Pbnm 5.137 5.420 7.364 5.132 5.411 7.360 P-6m2 5.683 4.552 5.652 5.645 4.752 5.652 5.6525 4.763 P63/mmc 5.665 5.665 28.493 5.671 5.671 28.545

Crystallographic parameters of synthesized cobaltites in comparison with literature data

* uncertainty ±0.001 Å.

Results and discussion

Fig. 3 shows XRD patterns of the $YCoO_{3-\delta} + BaCoO_{3-\delta}$ equimolar mixtures annealed at 900 °C in air ($pO_2 = 0.21$ atm) and pure oxygen ($pO_2 = 1$ atm) for 72 h. As seen annealing neither in air nor in oxygen atmosphere leads to formation of the single phase YBaCo₂O_{6- $\delta}$} at least for this time of annealing.

Moreover XRD pattern of the mixture annealed at 900 °C in pure oxygen atmosphere does not show any indication of the chemical interaction between the reagents

Fig. 3. XRD patterns of $YCoO_{3-\delta}$ and BaCoO_{3- δ} equimolar mixtures after annealing in air (a) and pure oxygen (b) at 900 °C for 72 h

and formation of YBaCo₂O_{6- δ} double perovskite whereas annealing in air leads to formation of significant amount of this double perovskite (see Fig. 3). Possible reason of this difference seems to be related to the instability of YBaCo₂O_{6- δ} oxide under oxidizing conditions at temperatures lower than some threshold value [11–13].

Figs. 4 and 5 show XRD patterns of the $YCoO_{3-\delta}$ and $BaCoO_{3-\delta}$ equimolar mixtures annealed at 1000 °C in air ($pO_2 =$ 0.21 atm) and pure oxygen ($pO_2 = 1$ atm) for 72 h. As seen annealing in air also did not lead to the formation of the single phase double perovskite. Y₂O₃, BaCoO₃ and CoO can be identified as impurities in the X-ray diffraction pattern shown in Fig. 4. The presence of these impurities is a consequence of instability of the YCoO₂, which decomposes in air at $T \ge 900$ °C with formation of Y₂O₃ and CoO [11–13, 22, 23]. Similar behavior is well-known for the perovskite-type cobaltites with small rare-earth elements [24, 25].

Therefore formation of $YBaCo_2O_{6-\delta}$ at 1000 °C in air seems to proceed according

to the two-stage process. First YCoO₃ decomposes into Y_2O_3 and CoO upon heating of the equimolar mixture of YCoO_{3- δ} and BaCoO_{3- δ} up to 1000 °C in air

$$1'CoO_3 = \frac{1}{2}Y_2O_3 + CoO + \frac{1}{4}O_2.$$
 (1)

Then a mixture of Y_2O_3 , BaCoO₃ and CoO slowly reacts at 1000 °C with formation of the required double perovskite

$$\frac{1}{2}Y_{2}O_{3} + BaCoO_{3-\delta} + CoO =$$

= YBaCo_{2}O_{6-\delta} + \frac{1}{4}O_{2}. (2)

At the same time annealing the $YCoO_{3-\delta}$ and $BaCoO_{3-\delta}$ equimolar mixture at 1000 °C in oxygen for 72 h leads to formation of the single phase YBaCo₂O₆₋₈ as seen in Fig. 5 where appropriate XRD pattern is shown. This pattern was refined as a mixture of two phases having $3 \times 2 \times 2$ and $1 \times 2 \times 2$ superstructures. The former has tetragonal structure (s.g. P4/mmm) with cell parameters a = b = 11.596(4)Å and c = 7.509(7) Å whereas the latter has orthorhombic structure (s.g. Pmma) with cell parameters a = 3.821(4) Å, b =7.846(2) Å, c = 7.515(8) Å in full agreement with available structural data [5, 7, 12, 26, 27].

Detailed step-by-step investigation of the $YBaCo_2O_{6-\delta}$ synthesis in oxygen at this temperature revealed that the result-

Fig. 4. XRD pattern of YCoO_{3- δ} and BaCoO_{3- δ} equimolar mixtures annealed in air at 1000 °C for 72 h

ant mixture at each step except last one contained BaCoO₃₋₆, Y₂O₃, CoO, YCoO₃₋₆ and the product YBaCo₂O₆₋₈. This result can be understood, first of all, based on the analysis of the thermodynamics of reaction Eq. (1). Although for this particular reaction thermodynamic functions are unknown similar reactions for Ho- and Er-contained cobaltites have already been studied in this respect [24, 25]. Required thermodynamic data for them are given in Table 2. As seen HoCoO₂ decomposition starts at 1051 °C in air whereas Er-CoO₂ decomposes already at 866 °C in the same atmosphere. YCoO₃ as mentioned above is somewhere between these two compounds since its decomposition in air starts at 900–950 °C [11–13, 22, 23]. Therefore standard enthalpy and entropy of reaction Eq. (1) for YCoO₃ may be roughly estimated by averaging corresponding standard enthalpies and entropies for Er- and Ho-containing cobaltites.

The thermodynamic quantities of reaction Eq. (1) obtained in this way are also

Fig. 5. X-ray diffraction pattern and its matching refinement plot of YBaCo₂O_{6-δ} obtained by annealing at 1000 °C in oxygen for 72 h: observed X-ray diffraction intensity – points and calculated curve – line. The bottom curve is the difference of patterns, $y_{obs} - y_{cal}$, and the small bars indicate the angular positions of the allowed Bragg reflections for YBaCo₂O_{6-δ} with 3×2×2 superstructure (blue) and 1×2×2 superstructure (red)

shown in Table 2. They allow estimating corresponding equilibrium decomposition temperatures for YCoO₃ in air and oxygen. As seen in Table 2 this estimation gives 953 °C as the decomposition temperature of YCoO₃ in air, which is in line with that reported earlier [11–13, 22, 23]. The value of decomposition temperature in oxygen is around of 1060 °C. Taking into account that this is only a very rough estimation one may expect the real decomposition temperature for YCoO₃ in oxygen in the range of 1000–1100 °C, i. e. during annealing of the YCoO_{3- δ} and BaCoO_{3- δ} equimolar mixture at 1000 °C

Fig. 6. XRD patterns of $YCoO_{3-\delta}$ and $BaCoO_{3-\delta}$ equimolar mixture step-by-step annealed at 1000 °C in pure oxygen

Table 2

	ΔH° , kJ·mol ⁻¹	ΔS° , J·mol ⁻¹ ·K ⁻¹	T_{air}^{*} , °C	<i>T</i> ₀₂ ^{**} , ⁰C	Reference
HoCoO ₃	44.88	30.63	1051	1192	[24, 25]
ErCoO ₃	51.34	41.3	866	970	[24, 25]
YCoO ₃	48	36	953	1060	Estimated in this work

Thermodynamics of reaction Eq. (1) for the selected cobaltites at 927 °C

* Equilibrium temperature for $RCoO_3$ (R = Y, Ho, Er) decomposition in air

** Equilibrium temperature for $RCoO_3$ (R = Y, Ho, Er) decomposition in oxygen

in pure oxygen atmosphere its first component is in equilibrium with oxides Y_2O_3 and Co O. Therefore synthesis of the $YBaCo_2O_{6-\delta}$ double perovskite under these conditions can be described by the following parallel reactions

$$YCoO_3 + BaCoO_3 = YBaCo_2O_6 \qquad (3)$$

$$\frac{1}{2}Y_{2}O_{3} + CoO + \frac{1}{4}O_{2} = YCoO_{3}$$
 (4)

The equilibrium of reaction Eq. (4) is shifted to the right due to consumption of $YCoO_3$ as a reagent of reaction Eq. (3).

Comparison of the results of synthesis at 1000 °C in two atmospheres, i. e. air and oxygen, shows that in the second case formation of the double perovskite occurs apparently faster. One may speculate on the reasons of the observed positive influence of high oxygen pressure. Intuitively

it seems quite expected that the combination (or interaction) of two 'simple' perovskites representing elementary 'building' units of the double perovskite structure is a faster process then a combination of barium cobaltite with two oxides. Significant diffusion difficulties are quite expected in the last case. However the exact reasons and detailed microscopic mechanism of an interaction in oxygen or air atmosphere should be studied in order to make meaningful conclusions. We only would like to emphasize once again the key role, which thermodynamic stability of YCoO₃ plays in the optimization of synthesis routine for the $YBaCo_2O_{6-\delta}$ double perovskite.

Conclusions

Synthesis of YBaCo₂O_{6- δ} from equimolar mixture of YCoO₃ and BaCoO_{3- δ} was studied at 900 °C and 1000 °C in air and pure oxygen atmosphere. It was shown that synthesis at 1000 °C in pure oxygen atmosphere is an optimal way of obtaining the single phase YBaCo₂O_{6- δ}. Detailed step-by-step investigation of the synthesis was carried out at 1000 °C in $pO_2 = 1$ atm. The mechanism of YBaCo₂O_{6-δ} synthesis in different gas atmospheres was proposed based on thermodynamics of YCoO₃ and crucial role of this oxide stability in governing of the synthesis process was revealed.

References

- Haoshan H, Lu Z, Yingfan W, Shijiang L, Xing H. Thermogravimetric study on oxygen adsorption/desorption properties of double perovskite structure oxides REBaCo₂O_{5+δ} (RE = Pr, Gd, Y). *J Rare Earths*. 2007;25:275–81. DOI:10.1016/S1002-0721(07)60421-9.
- Hao H, Chen B, Zhao L, Hu X. Oxygen removal from nitrogen using YBaCo₂O₅₊₈ adsorbent. *Korean J Chem Eng.* 2011;28(2):563-66. DOI:10.1007/s11814-010-0354-9.
- Xue J, Shen Y, He T. Double-perovskites YBaCo_{2-x}Fe_xO_{5+δ} cathodes for intermediate-temperature solid oxide fuel cells. *J Power Sources*. 2011;196(8):3729-35. DOI:10.1016/j.jpowsour.2010.12.071.
- 4. Zheng K, Świerczek K, Bratek J, Klimkowicz A. Cation-ordered perovskite-type anode and cathode materials for solid oxide fuel cells. *Solid State Ionics*. 2014;262:354–8. DOI:10.1016/j.ssi.2013.11.009.
- Pelosato R, Donazzi A, Dotelli G, Cinzia C, Sora IN, Mariani MP. Electrical characterization of co-precipitated LaBaCo₂O₅₊₈ and YBaCo₂O₅₊₈ oxides. *J Europ Ceram Soc.* 2014;34:4257-72. DOI:10.1016/j.jeurceramsoc.2014.07.005.
- Zhang Y, Yu B, Lü S, Meng X, Zhao X, Ji Y. Effect of Cu doping on YBaCo₂O_{5+δ} as cathode for intermediate-temperature solid oxide fuel cells. *Electrochim Acta*. 2014;134:107-15. DOI:10.1016/j.electacta.2014.04.126.
- Yi L.YBaCo₂O_{5+δ} as a new cathode material for zirconia-based solid oxide fuel cells. *J Alloys Compd.* 2009;477:860-2. DOI:10.1016/j.jallcom.2008.11.010.
- Kim JH, Manthiram A. LnBaCo₂O₅₊₈ oxides as cathodes for intermediatetemperature solid oxide fuel cells. *J Electrochem Soc.* 2008;155(4):B385-90. doi:10.1149/1.2839028.
- Meng F, Xia T, Wang J, Shi Z, Lian J, Zhao H, Bassat JM, Grenier JC. Evaluation of layered perovskites YBa_{1-x}Sr_xCo₂O_{5+δ} as cathodes for intermediate temperature solid oxide fuel cells. *Int J Hydrogen Energy*. 2014;39:4531-43. DOI:10.1016/j. ijhydene.2014.01.008.
- Zhang X, Hao H, He Q, Hu X. High-temperature electronic transport properties of Fe-doped YBaCo₂O_{5+δ}. *Phys B*. 2007;39(1):118-21. DOI:10.1016/j. physb.2007.02.027.
- 11. Zhang K, Ge L, Ran R, Shao Z, Liu S. Synthesis, characterization and evaluation of cation-ordered $LnBaCo_2O_{5+\delta}$ as materials of oxygen permeation membranes

and cathodes of SOFCs. Acta Mater. 2008;56(17):4876-89. DOI:10.1016/j.acta-mat.2008.06.004.

- 12. Kim JH, Kim YN, Bi Z, Manthiram A, Paranthaman MP, Huq A. Overcoming phase instability of $RBaCo_2O_{5+\delta}$ (R= Y and Ho) by Sr substitution for application as cathodes in solid oxide fuel cells. *Solid State Ionics.* 2013;253:81-7. DOI:10.1016/j. ssi.2013.09.001.
- Sednev AL, Zuev AYu, Tsvetkov DS. Oxygen content and thermodynamic stability of YBaCo₂O_{6.8} double perovskite. *Adv Mater Sci Eng.* Forthcoming 2017.
- Xuening J, Hongxia X, Qian W, Lei J, Xiangnan L, Qiuli X, Yuchao S, Qingyu Z. Fabrication of GdBaCo₂O_{5+d} cathode using electrospun composite nanofibers and its improved electrochemical performance. *J Alloys Compd.* 2013;557:184-9. DOI:10.1016/j.jallcom.2013.01.015.
- Buassi-Monroy OS, Luhrs CC, Chávez-Chávez A, Michel CR. Synthesis of crystalline YCoO₃ perovskite via sol–gel method. *Mater Lett.* 2004;58(5):716-8. DOI:10.1016/j. matlet.2003.07.001.
- Urusova AS, Cherepanov VA, Aksenova TV, Gavrilova LY, Kiselev EA. Phase equilibria, crystal structure and oxygen content of intermediate phases in the Y–Ba– Co–O system. J Solid State Chem. 2013;202:207-14. DOI:10.1016/j.jssc.2013.03.037.
- Knizek K, Jirak Z, Hejtmanek J, Veverka M, Marysko M, Hauback BC, Fjellvag H. Structure and physical properties of YCoO_{3-δ} at temperatures up to 1000 K. *Phys Rev B: Condens Matter.* 2006;73:214443. DOI:10.1103/PhysRevB.73.214443.
- Balamurugan S, Takayama-Muromachi E. Structural and magnetic properties of high-pressure/high-temperature synthesized (Sr_{1-x}R_x)CoO₃ (R=Y and Ho) perovskites. *J Solid State Chem.* 2006;179(7):2231-6. DOI:10.1016/j.jssc.2006.04.028.
- 19. Felser C, Yamaura K, Cava RJ. The electronic structure of hexagonal BaCoO3. *J Solid State Chem.* 1999;146(2):411-7. DOI:10.1006/jssc.1999.8382.
- Botta PM, Pardo V, de la Calle C, Baldomir D, Alonso JA, Rivas J. Ferromagnetic clusters in polycrystalline BaCoO₃. J Magn Magn Mater. 2007;316(2):e670-3. DOI:10.1016/j.jmmm.2007.03.058.
- Jacobson AJ, Hutchinson JL. An investigation of the structure of 12H BaCoO_{2.6} by electron microscopy and powder neutron diffraction. *J Solid State Chem*. 1980;35(3):334-40. DOI:10.1016/0022-4596(80)90530-7.
- 22. Demazeau G, Pouchard M, Hagenmuller P. Sur de nouveaux composés oxygénés du cobalt+ III dérivés de la perovskite. *J Solid State Chem.* 1974;9(3):202-9. DOI:10.1016/0022-4596(74)90075-9.
- Feng G, Xue Y, Shen H, Feng S, Li L, Zhou J, Yang H, Xu D. Sol-gel synthesis, solid sintering, and thermal stability of single-phase YCoO₃. *Phys Status Solidi A*. 2012;209(7):1219-24. DOI:10.1002/pssa.201127710.
- 24. Kropanev AYu, Petrov AN. Termicheskie svoystva cobal'titov redkozemel'nykh elementov sostava RCoO₃ [Termal properties of cobaltites of rare earth elements RCoO₃]. *Zhurnal Fizicheskoy Khimii.* 1984;58(1):50-3. Russian.

- 25. Kropanev AYu, Petrov AN. Termicheskaya ustoychivosť cobaľtitov LnCoO₃ na vozduhe (Ln Sm, Eu, Gs, Tb, Dy, Ho) [termal stability of cobaltites LnCoO₃ in air]. *Izv AN SSSR. Neorganicheskie materialy.* 1983;19(12):2027-30. Russian.
- 26. Kozlenko DP, Jirák Z, Golosova NO, Savenko BN. Magnetic ground state and the spin-state transitions in YBaCo2O5.5. *Eur Phys J B*. 2009;70(3):327-34. DOI:10.1140/epjb/e2009-00228-x.
- Aurelio G, Curiale J, Sánchez RD, Cuello GJ. Probing phase coexistence and stabilization of the spin-ordered ferrimagnetic state by calcium addition in the Y(Ba_{1-x}Ca_x) Co₂O_{5.5} layered cobaltites using neutron diffraction. *Phys Rev B*. 2007;76(21):214417. DOI:10.1103/PhysRevB.76.214417.

Cite this article as:

Sednev AL, Tsvetkov DS. Study and optimization of the synthesis routine of the single phase $YBaCo_2O_{6-\delta}$ double perovskite. *Chimica Techno Acta*. 2017;4(3):183–90. DOI:10.15826/chimtech/2017.4.3.03.