
 CHEMICAL ENGINEERING TRANSACTIONS

VOL. 74, 2019

A publication of

The Italian Association

of Chemical Engineering
Online at www.cetjournal.it

Guest Editors: Sauro Pierucci, Jiří Jaromír Klemeš, Laura Piazza
Copyright © 2019, AIDIC Servizi S.r.l.
ISBN 978-88-95608-71-6; ISSN 2283-9216

An Effective MILP-Based Decomposition Algorithm for the
Scheduling and Redesign of Flexible Job-Shop Plants

Natalia P. Basána, Mariana E. Cóccolaa, Alejandro García del Valleb, Carlos A.
Méndeza,*
aINTEC (UNL –CONICET), Güemes 3450, Santa Fe, 3000, Argentina
bUniversity of A Coruña, C/ Mendizábal s/n, Ferrol, 15403, Spain
 cmendez@intec.unl.edu.ar

This paper presents a decomposition algorithm for the integrated scheduling and redesign problem of a multi-
stage batch plant dealing with multipurpose units and heterogeneous recipes. First, the procedure solves the
scheduling problem considering the existing plant configuration with the main goal of minimizing the
makespan. Then, a second objective of minimizing the number of units utilized without worsen the makespan
achieved in the first stage is considered. The units released can be reallocated to other compatible processing
stages in order to minimize the initial makespan value. In order to tackle large industrial examples, both
scheduling and redesign problems are solved through a decomposition algorithm, which has a MILP model as
its core. The procedure is tested on several realistic instances, demonstrating its robustness and applicability.

1. Introduction
In the context of a complex decision-making process in industry, scheduling is defined as the problem of
planning the manufacturing processes by allocating a set of operations to the available resources over a given
time horizon taking into account some production targets (Castro et al., 2018; Pinedo, 2016). In a company, a
good production program allows increasing the productivity of the whole manufacturing process. The main
goal is to maximize the plan efficiency, minimizing costs or makespan (Harjunkoski et al., 2014; Méndez et
al., 2006). In the last two decades, optimization techniques based on exact mathematical programming
methods have played an important role in the decision-making processes. From the literature, it follows that
two types of scheduling problems may be defined according to the shop environment, the number of
processing stages, the operational constraints, and the complexity of the production route: (i) flow shop and (ii)
job shop, besides of their respective variants. All these scheduling problems turn out to be NP-hard (Garey et
al., 1976; Guo and You, 2018; Hegyháti, 2018).
Particularly, the job shop environment is related to multipurpose plants. According to Kopanos and Puigjaner
(2019), in multipurpose plants, the products are manufactured via different processing networks and some
units may be used to perform non-consecutive operations for the same product. Multipurpose plants result in
more flexible operation, which can be optimized to decrease equipment idle time and to more efficiently utilize
critical equipment units. The scheduling problem in flexible manufacturing plants, commonly known as Flexible
Job Shop scheduling Problem (FJSP), considers that an operation (the processing of a job at one stage) may
be carried out on a set of compatible production units. According to Shen et al. (2018) the availability of
alternative units performing similar operations may increase the system performance and help to manage
preventive maintenance or tackle breakdown and other unforeseen events.
Generally, the flexible manufacturing systems involve the processing of a variety of products, using different
processing sequences. Moreover, mixing operations (or assembly operations for assembly lines) of
intermediate products may also be required to obtain the final products. Hence, this paper proposes a MILP
model based on the general precedence notion to solve to optimality the integrated scheduling and redesign
problem of multi-stage plants involving multipurpose units and mixing operations. Moreover, the MILP model is
then embedded within a decomposition algorithm in order to efficiently address large-scale scheduling

DOI: 10.3303/CET1974103

Paper Received: 1 July 2018; Revised: 3 October 2018; Accepted: 7 March 2019

Please cite this article as: Basan N.P., Coccola M.E., Garcia Del Valle A., Mendez C.A., 2019, An Effective Milp-based Decomposition Algorithm
for the Integrated Design and Scheduling of Flexible Job-shop Plants, Chemical Engineering Transactions, 74, 613-618
DOI:10.3303/CET1974103

613

problems arising in flexible manufacturing plants. The main goal is to minimize the makespan while satisfying
all process constraints. First, the procedure solves the scheduling problem considering the full set of units.
Then, the algorithm runs again but in this case for determining if the plant is oversized through the
minimization of the number of units to be utilized without exceeding the makespan found in the first step. In
case of unoccupied units, reassignments to other groups of cells or for other operations can be analysed.
The robustness and applicability of the proposed MILP-decomposition algorithm is demonstrated by solving
several instances derived from two complex examples.

2. Problem statement
In the FSJP problem, a multipurpose unit may handle operations of several processing stages. Therefore,
units performing similar functions are grouped together in a work cell or workstation ݑ. Figure 1 illustrates an
assembly scheduling problem with multipurpose units, in which a set of nine products should be processed on
six stages.

Figure 1: Job shop scheduling problem with multipurpose units

The FSJP problem is mathematically represented as a set of products ݅ ∈ which should be processed ,ܫ
through a predefined sequence of processing stages ݏ ∈ ௜ܵ, not necessarily using all stages. The available
units ܭ = ሼ݇ଵ, ݇ଶ, . . , ݑ ሽ are allocated in cell groups or workstations|ܭ| ∈ ܷ according to their similar or identical
functions: ݇ ∈ ݏ ௨. Additionally, the problem representation defines that a subset of processing stagesܭ ∈ ܵ௨ is
performed in each ݑ. In case that a final product ݅ ∈ ௙௜௡ is composed by intermediate products ݅ᇱܫ ∈ ௜௡௧, theܫ
subset ܵܣ௜ determines which products integrate ݅. The mixing (or assembly) operations are executed at
processing stages ݏ ∈ ܵ#.
A specific unit ݇ ∈ is able to process just one product at a time and can be categorized as either single ܭ
purpose or multipurpose. A single-purpose unit may be assigned to a single processing stage while
multipurpose units can handle operations belonging to several stages. For treating with multipurpose units, the
problem definition incorporates a set of tasks ܶ = ሼݐଵ, ,ଶݐ … , ݐ ௧ሽ, where each taskݐ ∈ ܶ references the
processing of one product i at one stage s. Consequently, the processing of each product ݅ ∈ on the ܫ
manufacturing line is decomposed in a set of tasks ݐ ∈ ܬ ௜ܶ, where ܬ ௜ܶ ⊂ ܶ. In addition, the subset ܵ ௦ܶ ⊂ ܶ
includes all operations to be performed at stage ݏ. Note that for each product ݅ to be processed at any stage ݏ ∈ ௜ܵ, there will be a task ݐ ∈ ܬ) ௜ܶ ∩ ܵ ௦ܶ).
The problem assumptions determines that: (i) the processing time of product ݅ at stage ݐ݌ ,ݏ௜௦, is known in all
cases; (ii) transportation times between stages are considered negligible or included in the processing times;
(iii) all parameters are deterministic; (iv) there are no setup or changeover times; (v) either UIS (unlimited
intermediate storage) or NIS (non-intermediate storage) transfer policy between stages can be adopted.
The first problem goal is to find the optimal plant operation that minimizes the makespan (ܭܯ). Once the
optimal MK is determined and fixed, the problem incorporates a second objective function for minimizing the
number of units to be utilized at each workstation ݑ ∈ ܷ. Thus, the units resulting unoccupied may be
assigned to other feasible workstations to further minimize the makespan value.

614

3. Mathematical formulation
The FSJP problem is formulated as a Mixed Integer-Linear Programming (MILP) model based on the general
precedence concept presented by Méndez et al. (2000). The proposal of these authors is based on
continuous time and was originally applied to batch scheduling problems with dedicated units. Hence, this
formulation is extended in order to incorporate multipurpose units and assembly operations. The main
objective is to determine the optimal operation of the plant in order to minimize the makespan and improve the
use of the processing units considering all the operational constraints of the process. Therefore, the
mathematical model allows to determine: (i) allocation and sequencing of the tasks in each machine or unit
according to the processing recipes of each product, (ii) the start and end times of each operation, (iii) the
minimum number of processing units needed to satisfy the best makespan, and (iv) relocation of feasible
processing units to increase the efficiency of the process. The constraints composing the mathematical model
follow. ݉݅݊݅݉݅(1) ܭܯ ݁ݖ ∑ ௧ܻ௞௞∈௄ೞ = ݏ ∀ 1 ∈ ܵ, ݐ ∈ ܵ ௦ܶ (2) ܶ ௧݂ ≥ ௧ݏܶ + ∋ ݐ ∀ ௧ݐ݌ ௧ݏܶ (3) ܶ ≥ ݂ܶ௧ ′ ∀ ݅ ∈ ,ܫ ݏ ∈ ܵ, ∋ ݐ ܬ ௜ܶ , ᇱݐ ∈ ܬ ௜ܶ, ݐ ∈ ܵ ௦ܶ ᇱݐ ∈ ܬ ௦ܶିଵ: ݏ > ௧ݏܶ (4) 1 ′ ≥ ܶ ௧݂ − 1)ܯ − ܹ௧௧ᇲ) − 2)ܯ − ௧ܻ௞ − ܻ௧ᇲ௞) ∀ ݏ ∈ ܵ, ᇱݏ ∈ ܵ, ݐ ∈ ܵ ௦ܶ, ᇱݐ ∈ ܵܶ௦ᇲ, ݇ ∈ ௦ܭ) ∩ :(௦ᇲܭ ݐ < ݐ

(5)

௧ݏܶ ≥ ݂ܶ௧ ′ − ௧௧ᇲܹܯ − 2)ܯ − ௧ܻ௞ − ܻ௧ᇲ௞) ∀ ݏ ∈ ܵ, ᇱݏ ∈ ܵ, ݐ ∈ ܵ ௦ܶ, ᇱݐ ∈ ܵܶ௦ᇲ, ݇ ∈ ௦ܭ) ∩ ݐ :(௦ᇲܭ < ௧ݏܶ (6) ′ݐ ≥ ݂ܶ௧ ′ ݏ ∀ ∈ ܵ#, ݅ ∈ ,ܫ ݅ᇱ ∈ ,௜ܣܵ ݐ ∈ ܬ ௜ܶ, ᇱݐ ∈ ௜ᇲܶܬ ݐ ∈ ܵ ௦ܶ ᇱݐ ∈ ܬ ௦ܶିଵ (7) ܭܯ ≥ ܶ ௧݂ ∀ ݐ ∈ ܶ (8)

The objective function is represented by Eq. (1). The main goal is the minimization of the makespan. Eq. (2) is
the assignment constraint defined for every processing stage ݏ and task ݐ ∈ ܵ ௦ܶ. Binary variable ௧ܻ௞ values 1 if
operation ݐ is performed in unit ݇; otherwise, it is set to zero. Eq. (3) computes the ending time of task ݐ, ܶ ௧݂, as its begin time ܶݏ௧ plus the processing time of ݐ, which is known a priori through parameter ݐ݌௧. Note
that ݐ݌௧ = ∋ ݐ ௜௦ whenݐ݌ ܬ) ௜ܶ ∩ ܵ ௦ܶ). Variables ܶ ௧݂ and ܶݏ௧ are defined as continuous positive in the
mathematical model. Eq. (4) establishes that the processing of product ݅ on stage ݏ, denoted by task ݐ ܬ)∋ ௜ܶ ∩ ܵ ௦ܶ), should not start until its processing in the previous stage (ݏ − 1), denoted with task ݐ′ ∈ ܬ) ௜ܶ ∩ܵ (ܶ௦ିଵ)), has been completed. The constraint (4) should be modified according to the storage policy adopted;
for UIS policy, Eq. (4) should be expressed as inequality while for NIS policy, the constraint becomes in
equality. On the other hand, Eqs. (5) and (6) are used to sequence any pair of tasks assigned to a same
processing unit. Remember that a multipurpose unit ݇ may process tasks belonging to different stages ݏ,
always that ݇ ∈ ௦. Following the general precedence concept, the sequencing constraints on a unit ݇ areܭ
defined for any pair of tasks (ݐ, ݐ ᇱ) whereݐ < ∋ ݐ ,ᇱݐ ܵ ௦ܶ, ᇱݐ ∈ ܵܶ௦ᇲ and ݇ ∈ ௦ܭ) ∩ ௦ᇲ). The binary sequencingܭ
variable ܹ௧௧ᇲ takes 1 as value when ݐ is processed before than ݐᇱ; otherwise, it is set to zero. If two tasks (ݐ,) ݇ are assigned to a unit (’ݐ ௧ܻ௞ + ܻ௧ᇲ௞ = 2) and task ݐ is chosen to be processed before task ݐᇱ, i.e. ܹ௧௧ᇲ = 1, then Eq. (5) forces that the begin time of ݐᇱ, ܶݏ௧ᇲ, will be greater than the ending time of task ݐ, ܶ ௧݂.
But, if task ݐᇱ is processing earlier than ݐ, i.e. ܹ௧௧ᇲ = 0, the reverse statement holds true and Eq. (6) becomes
active. The parameter ܯ is an upper bound for timing variables. Eq. (7) forces that the processing of product ݅
in a mixing stage ݏ ∈ ܵ# cannot begin until its intermediate products ݅ᇱ ∈ ௜ have completed their processingܣܵ
in the previous stage (ݏ − 1). Finally, the minimum completion time of all tasks, given by continues positive
variable ܭܯ, is computed by Eq. (8).
Once founding the optimal solution for the scheduling problem, the minimization of the number of units that
being used is chosen as a new objective. After solving the MILP model (1)-(8), the variable ܭܯ is bounded by
its optimal value (fixing it as upper bound) and a new model is generated considering two additional
constraints (9)-(10). In this instance, the objective function (1) is replaced for Eq. (9). ௞ܸ is a continuous
positive variable that, according to Eq. (10), is set to zero only when unit ݇ is not utilized in any stage. In this
case, we say that unit ݇ is unoccupied.

615

∑ ݁ݖ݅݉݅݊݅݉ ௞ܸ௞∈௄ (9)

௧ܻ௞ ൑ ௞ܸ ∀ ݐ ∈ ܶ, ݇ ∈ (10) ܭ

4. The MILP-based decomposition strategy
Due to the integrated scheduling and redesign problem of flexible manufacturing plants is strongly
combinatorial and NP-hard (Pinedo, 2016), the full space approach presented above may not be suitable for
solving real-world industrial problems. To take advantage of the robustness offered by the MILP model, it was
embedded within a decomposition algorithm, which iteratively solves the mathematical model but considering
a reduced space search, maintaining the number of assignment and sequencing decisions at a reasonable
level at each solver execution. Although the algorithm does not guarantee the convergence to the optimal
solution of the problem, it is capable to provide high quality solutions, sometimes the optimal one, with relative
computational effort even for large-size instances. The procedure is based on the general decomposition
technique presented by Kopanos et al. (2010), which is extended in order to deal with multipurpose units,
mixing operations and redesign constraints. As shown Figure 2, the algorithm is composed of three stages: (i)
construction stage, (ii) improvement stage, and (iii) redesign stage.

Figure 2: General structure of the MILP-based algorithm

4.1 Constructing an initial feasible solution

The first stage of the iterative procedure aims at finding an initial feasible schedule by considering the full set
of processing units. In order to minimize the MIP solver search space, this paper proposes to insert the
products ݅ ∈ ∋ ݅ ௙௜௡ one-by-one and to select them following the lexicographic order. When a productܫ ௙௜௡ isܫ
selected to be scheduled, its subassemblies ݅ᇱ ∈ ௜ are also scheduled. In the constructive stage, the MILPܣܵ
model (1)-(8) should assign and sequence all tasks ݐ ∈ ܬ) ௜ܶ ∩ ܬ ௜ܶᇱ) for reaching a feasible solution for the
problem. A boolean parameter called ܽܿ݁ݒ݅ݐ௧ is used by the algorithm to determine if task ݐ is scheduled at
iteration ݅ݎ݁ݐ. After each resolution of the MILP model, binary variables ௧ܻ௞ for tasks ݐ with ܽܿ݁ݒ݅ݐ௧ = are ݁ݑݎݐ
fixed. At end, the constructive step solution is saved in parameters ݏ ,ܭܯݏ ௧ܻ௞, and ݏ ௧ܹ௞.

4.2 Improving the initial solution

In this second algorithmic step, the initial scheduling solution given by the constructive stage is improved by
performing several rescheduling iterations. A rescheduling action consists of releasing a subset of products ݅ ∈ ௙௜௡ from the current schedule in order to find better unit assignments or sequencing for them. Note thatܫ
when a product i is selected, it means that all tasks ݐ ∈ ܬ ௜ܶ may be rescheduled. Moreover, tasks ݐ ∈ ܬ ௜ܶᇱ,
where ݅ᇱ ∈ ∋ ݅ ௜ may be also reassignment or reordered. Once all productsܣܵ ௙௜௡ and their sub-productsܫ
have been rescheduled, the procedure checks if the makespan has been improved. When true, the algorithm

616

starts the rescheduled iterations again from the beginning. Otherwise, the procedure terminates and reports
the current makespan as the best solution found. A key point to take into account in the improvement stage is
the number of products ݅ ∈ ௙௜௡ to be rescheduled at each model execution, given by parameter ܰ. The fewerܫ
the value of ܰ, the higher the number of iterations and smaller the solver search space, resulting in
manageable model sizes. However, as the value of ܰ increases, the number of iterations is reduced but the
feasible region becomes larger, and hence, the resulting mathematical models become more complex and
intractable.

4.3 Incorporating the redesign decisions

The last stage of the algorithm evaluates the redesign of the plant, determining the units that can be released
if the production plant is oversized. Hence, this step aims at minimizing the number of processing units
required to process all products within the makespan given by the improvement stage. Once founding the best
solution for the scheduling problem, the procedure fixes the value of variable ܭܯ and several rescheduling
actions are iteratively applied on the current scheduling, solving the MILP model (2)-(11) for each workstation ݑ ∈ ܷ. The procedure sets the value of parameter ܽܿ݁ݒ݅ݐ௧ in true for all tasks ݐ ∈ ܵ ௦ܶ, where ݏ ∈ ܵ௨, with the
goal of reallocating such operations in the smallest number of units ݇ ∈ ௨. The procedure ends when allܭ
workstations ݑ ∈ ܷ have been iterated.

5. Computational results
The MILP-based decomposition algorithm developed in this paper may be utilized for solving any multi-stage
batch scheduling problem arising in flexible job shop environments, such as pharmaceutical industries,
aerospace industries, automotive industries, printing industries, between others. In this work, the performance
of the proposed solution strategy is tested by solving two complex instances.

5.1 Example 1

The first example deals with the scheduling problem of a company that manufactures a product (mould)
composing of 5 different sub-products. The production line has 9 processing stages and 16 units (2
multipurpose). Three examples involving the production of 4, 6, and 8 final products, respectively, are
considered. The computational statistics and objective values for each instance are summarized in Table 5.

Table 1: Computational statistics for the three instances of case study 1

Final
product

MILP model Iterative algorithm
Cont.
var.

Bin. var. Eqs. Obj.
func.

CPU
(s) Gap % Initial

solution
Best
solution

Total CPU
(s)

4 194 2332 4685 979 127.7 0 1266 979 28.8
6 290 5166 10363 1355 3600 30.5 1633 1355 455.7
8 386 9112 18265 1772 3600 55.4 2030 1764 1145

Note that for the first problem instance, the decomposition strategy reports the optimal solution in less time
than the full space approach. For the case of producing 8 products, a quantity of 192 tasks must be assigned
and sequenced on 16 processing units. In spite of the complexity of the third problem instance, the
decomposition approach shows a good computational performance, reporting a high quality solution with a
modest CPU time.

5.2 Example 2

This example involves the manufacture of 25 products, each one formed by 2 sub-products. The production
process comprises 42 equipment units and 7 processing stages, where 13 units are multipurpose and 2
stages perform mixing operations. Note that a total of 225 tasks have to be assigned and sequenced in 42
processing units in order to find a feasible schedule. Such example results into a huge MILP model of 147951
equations, 2550 binary variables and 7202 continuous variables. As consequence, the full space approach
reaches a makespan of 238 days, with a gap of 24.2%, after the predefined CPU time limit of an hour. Instead,
the decomposition algorithm improves such solution by 3.5%, featuring a makespan of 230.3 days in just
652.3 seconds of CPU time.
The best solution for the scheduling problem is depicted in Figure 3a. Taking this schedule as basis, the
redesign stage reduces the number of units utilized from 42 to 35 without changing the makespan (see Figure
3a). If the company decides to relocate the unoccupied units to the workstation representing the bottleneck,
the makespan can be reduced up to 196.1 days, as shown Figure 3b.

617

Figure 3a: Best solution reported by the redesign stage - ܭܯ = 230.3 days
Figure 3b: Best solution reported after relocating some units - ܭܯ = 196.1 days

6. Conclusions
This paper has addressed the integrated scheduling and redesign problem of flexible manufacturing plants
dealing with multipurpose units. First, a rigorous mathematical model relied on the general precedence
concept was developed for solving the problem under study. In order to extent the use of the MILP model to
real-world applications, it was embedded within a three-stage decomposition algorithm, which solves
repeatedly the rigorous model but considering a reduced search space at each solver execution. The
computational results demonstrated that the algorithm converges efficiently to the optimal solution with low
computational efforts when small to medium sized instances are considered. For large-scale problems, the
iterative procedure reports better solutions than the rigorous mathematical model, also outperforming the
exact optimization approach in terms of CPU time.

Acknowledgments

The authors gratefully acknowledge the financial support from CONICET under Grant PIP 112 20150100641
and from “Universidad Nacional del Litoral” under Grant CAI+D 2016-UNL / PIC 50420150100101LI.

References

Castro, P.M., Grossmann, I.E., Zhang, Q., 2018. Expanding scope and computational challenges in process
scheduling. Comput. Chem. Eng. 114, 14–42. https://doi.org/10.1016/j.compchemeng.2018.01.020

Garey, M.R., Johnson, D.S., Sethi, R., 1976. The Complexity of Flowshop and Jobshop Scheduling. Math.
Oper. Res. 1, 117–129.

Guo, C., You, F., 2018. Robust optimization for batch process scheduling under uncertainty using piecewise
linear decision rule. Chem. Eng. Trans. 70, 1711–1716.

Harjunkoski, I., Maravelias, C.T., Bongers, P., Castro, P.M., Engell, S., Grossmann, I.E., Hooker, J., Méndez,
C., Sand, G., Wassick, J., 2014. Scope for industrial applications of production scheduling models and
solution methods. Comput. Chem. Eng. 62, 161–193.

Hegyháti, M., 2018. Batch process scheduling with eS-graph: A case study. Chem. Eng. Trans. 70, 115–120.
Kopanos, G.M., Méndez, C.A., Puigjaner, L., 2010. MIP-based decomposition strategies for large-scale

scheduling problems in multiproduct multistage batch plants: A benchmark scheduling problem of the
pharmaceutical industry. Eur. J. Oper. Res. 207, 644–655.

Kopanos G.M., Puigjaner L., 2019, Solving Large-Scale Production Scheduling and Planning in the Process
Industries, Springer, Switzerland.

Méndez, C.., Henning, G.., Cerdá, J., 2000. Optimal scheduling of batch plants satisfying multiple product
orders with different due-dates. Comput. Chem. Eng. 24, 2223–2245.

Méndez, C.A., Cerdá, J., Grossmann, I.E., Harjunkoski, I., Fahl, M., 2006. State-of-the-art review of
optimization methods for short-term scheduling of batch processes. Comput. Chem. Eng. 30, 913–946.

Pinedo, M.L., 2016. Scheduling: Theory, Algorithms, and Systems, Fifth Edit. ed, Scheduling: Theory,
Algorithms, and Systems. Springer, New York.

Shen, L., Dauzère-Pérès, S., Neufeld, J.S., 2018. Solving the flexible job shop scheduling problem with
sequence-dependent setup times. Eur. J. Oper. Res. 265, 503–516.

618

