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Inhalable particulates (PM10) are those ones that present diameter less than 10μ in the atmosphere. The 
effects of atmospheric levels can cause since fatigue, burning eyes, nose and throat to serious risk of 
respiratory and cardiovascular disease manifestation, and an increase in premature deaths of sensitive groups 
(children, the elderly, and suffering from respiratory and cardiac diseases). Due to importance of this subject, 
the goal of this work is to verify the model, based on probability density function (PDF), that describes the 
annual concentrations of PM10, obtained from time series in the period of 2015 to 2017, provided from 
monitoring of two stations of Campinas City, Sao Paulo State, Brazil. Known the time series, it is necessary to 
group the original data into classes. The strategy employed in this study is to choose a representative 
statically bin, which it is evaluated by saturation of coefficient of variation with increase of the classes. After 
that, several PDFs were evaluated. The Kolmogorov-Smirnov and sum of the quadratic errors criteria were 
applied on the determination of the best fit.  

1. Introduction 

Air pollution is a global epidemic, caused by chemical and biological molecules, and particulate matter (PM), 
which results in various environmental and human health impacts (Li et al., 2017), and is believed to kill more 
people worldwide than AIDS, malaria, breast cancer, or tuberculosis (Rhode and Muller, 2015). The World 
Health Organization estimates that more than 6 million premature deaths were caused by air pollution 
exposure in 2012 (WHO, 2017).  
A critical component of air pollution is atmospheric PM, and it is a common proxy indicator for air pollution, and 
affects more people than any other pollutant. The major components of PM are sulfate, nitrates, ammonia, 
sodium chloride, black carbon, mineral dust and water (WHO, 2018). The PM includes fine particles with small 
diameters that remain suspended in air and do not settle (Gamble and Lewis, 1996). PM10 denotes particles 
with an aerodynamic diameter of 10 µm or less, and PM2.5 denotes those with a diameter of 2.5 µm or less. 
These particles are respirable and 80 % or more will deposit somewhere in the respiratory system (Gamble 
and Lewis, 1996), while the thicker particles can aggravate preexisting respiratory problems, especially in 
children and elderly, increasing the risk of emergency hospitalization and premature death (Carneseca et al., 
2012). High concentrations of air particulates can have environmental impacts, such as degraded atmospheric 
visibility (Li et al., 2017). Particulate sources include electric power plants, industrial facilities, automobiles, 
biomass burning (Rhode and Muller, 2015; Ljungman and Mittleman, 2014). Air quality measurements are 
typically reported in terms of daily or annual mean concentrations of PM10 particles per cubic meter of air 
volume (m3). Routine air quality measurements typically describe such PM concentrations in terms of 
micrograms per cubic meter (μg m-3), and the WHO recommends PM10 limit value of 20 µg m-3/year and 50 µg 
m-3/day. Then, decision-makers and researchers need accurate and reliable estimates of air pollution 
exposure and the related health impacts (WHO, 2016). In this aspect, the statistical distribution model can 
describe air pollutant concentrations in an organized and efficient manner including extreme and average 
concentrations (Giulia et al., 2017), as well as it is a tool of summarizing the information contained in the entire 
data set in a concise manner (Lu, 2002). Thus, information on the frequency distribution is necessary for 
developing air pollutant control strategies (Lu, 2003). 
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Many types of distributions have been used to fit the air pollutant concentration data. Gravill et al. (2006) 
analyzed PM10 and PM2.5 time series from June 1999 to May 2000, at central location in Athens (Aristotelous 
St.). Their results indicated Pearson type VI PDF as better fit for their data. Norazian et al. (2012) studied the 
data sets of PM10, for 2006 and 2007, in an industrialized area with high population and traffic density, in Shah 
Alam, Selangor, founding the Log-normal distribution as the best fit. Giulia et al. (2017) founded for NO2 
concentrations that Log-normal and Log-logistic model for winter and summer seasons were the best fits, 
while PM2.5 were fitted with the Log-normal model. Pietro and Cremasco (2017) founded, for a green area 
(Ibirapuera Park) in Sao Paulo City, the Gumbel model, in 2010 up to 2015, as indicates to express the 
atmospheric NOx concentration.  As can see the best fit of PDF depends on season, pollutant, and geography. 
The present work aims to study the atmospheric dispersion of PM10 from June 2015 (winter beginning in 
South Hemisphere) to June 2018 (end of fall in South Hemisphere) by time series from two monitoring stations 
at Campinas City, Brazil. 

2. Method 

Campinas City is located in the east-central portion of the State of São Paulo, 47o03’33” West Longitude and 
22o48’57” South Latitude, and it has an average altitude of 680 meters above the sea level, with tropical 
climate (type Cwa as Köppen). Campinas is recognized as the Brazilian capital of Science, Technology and 
Innovation, with the major national centers of R & D & I, with 1.1 million inhabitants (in 2015), and its GDP is $ 
18.8 billion, comprising 6 % of industrial activities, 47.5 % and 46.6 % of trade and services. Five major 
Brazilian highways intersect Campinas and connect it with major producers and consumers (Campinas, 2018). 
The time series of PM10 concentrations were directly exported from the electronic platform of the 
Environmental Sanitation Technology Company of the State of São Paulo (CETESB). These data are relative 
of an avenue with intense vehicle traffic in city downtown (Francisco Glicerio Av.), and from a green area 
(Taquaral Park), for start of winter of 2015 to end of fall of 2018 (June in Brazil). The sampling frequency is 1 
h, and it was necessary to filter these data due to the presence of lack of information in some hours or 
periods. As done in previous work (Prieto and Cremasco, 2017) this work is divided in two parts. In the first 
one, the original data were divided into bins (K) to found the optimal bin, based on the saturation of coefficient 
of variation, CV(%)=100σ/E(x), with standard deviation, σ, and the expectation value, E(X), given from 
discrete approach from moment technique based on PDF for each K as 
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To adjust the probability density functions (PDF) is done from the distributions present in Table 1. The 
adjustment method used was least squares, and the quality of the adjustments was evaluated using the 
Kolmogorov-Smirnov (K–S) test, that it is defined as the maximum difference between the sample cumulative 
probability and the expected cumulative probability (Lu, 2003) 

( ) ( )iimax xGxPmaxD −=                                                                                                                                  (3) 

with P(xi) and G(xi) as expected and observed cumulative frequency function. The Dmax value is compared 
with a critical theoretic difference, DC, for a certain significance level. Other criteria to observe the performance 
of the adjustment is the evaluation of the sum of the quadratic errors S(e²), defined as 

( ) ( ) ( )[ ]22 1
ii xgxp

K
eS −=                                                                                                                                  (4) 

where p(xi) and g(xi) are experimental and expected values of the frequency distribution. 

2. Results and Discussion 

The time series of PM10 concentration for the beginning of the winter in 2015 to end of the fall of 2018 are 
presented in Figure 1 for Taquaral Park, and Figure 2 for Campinas downtown. For all time series, the mean 
value, μ, is calculated as 
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Table 1: Probability density function (Pietro and Cremasco, 2017) 
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Figure 1: Times series of PM10 concentration for the year 2015 to 2018 – Francisco Glicerio Av. (Downtown) 
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Figure 2: Times series of PM10 concentration for the year 2015 to 2018 – Taquaral Park 

In Figures 1 and 2, for 2015, there is a description from winter to start of the summer; 2016 and 2017 all the 
seasons, and 2018 for summer to end of the fall. The majority picks of PM10 concentration are in winter, with 
increasing of this concentration in this season, which it is reduced in the summer and the fall, as showed for 
2018, in Taquaral Park. In Taquaral Park, also, presents the less values for PM10 concentration as expected 
due to green area nature. These observations are confirmed by Figure 3, for annual average of PM10 
concentration, that its done from Figures 1 and 2. Still from Figures 1 and 2 it was obtained experimental 
function density with different values of bins (starts with K = 2, minimum value, up to K = 30). Figure 4 shows 
the evolution of the coefficient of variation (Cv), calculated from Equations 1 and 2, with the increase of the 
bins. It is possible to check that Taquaral Park station presents, in all years, high dispersion of data points in a 
data series around the expected value than downtown station. This variability is associated with high and 
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more constant traffic in Francisco Glicerio Street than that one around Taquaral Park. From Figure 4, ones 
can be notice that is no more significant variation in Cv for 15 < K < 18, and so on. Therefore, it was adopted 
the distribution in 18 bins, which it is close with K = 20 founded in Pietro and Cremasco (2017). After fixed K = 
18, the functions present in Table 1 were adjusted.  
 

 
Figure 3: Evolution of PM10 average concentration for 
the year 2015 to 2018 

 
Figure 4: Evolution of the coefficient of variation 
with the increase of the bins 

Table 2: Maximum deviation (D) of the Kolmogorov-Smirnov test 

 2015  2016  2017  2018  

Station Downtown Taquaral Downtown Taquaral Downtown Taquaral Downtown Taquaral 

Normal 0.0331 0.1008 0.0440 0.1366 0.0757 0.0987 0.0541 0.0970 
Log-normal 0.0452 0.0619 0.0294 0.0441 0.0292 0.0101 0.0709 0.0718 

Logistic 0.0500 0.1140 0.0478 0.1438 0.0496 0.1082 0.0706 0.1103 

Gumbel 0.0119 0.0299 0.0083 0.0570 0.0355 0.0360 0.0333 0.0358 

Weibull 0.0282 0.0163 0.0453 0.0078 0.0746 0.0602 0.0110 0.0111 

Rayleigh 0.0411 0.0499 0.0485 0.0622 0.0655 0.0923 0.0102 0.0391 

Maxwell 0.0455 0.1110 0.0628 0.1296 0.0894 0.1452 0.0603 0.1005 

Gamma 0.0143 0.0363 0.0332 0.0781 0.0628 0.0405 0.0172 0.0296 

Beta 0.0141 0.0174 0.0230 0.0229 0.0500 0.0526 0.0210 0.0122 

Table 3: Sum of the quadratic errors [S(e2) x 104] 

 2015  2016  2017  2018  

Station Downtown Taquaral Downtown Taquaral Downtown Taquaral Downtown Taquaral 

Normal 23.31 43.71 40.67 33.51 63.72 58.64 17.93 23.35 
Log-normal 13.17 28.64 8.42 20.40 21.68 2.01 47.13 30.56 
Logistic 21.06 44.90 34.84 38.00 44.18 41.90 24.04 25.02 
Gumbel 1.15 21.48 2.87 7.61 17.07 15.74 13.26 10.87 
Weibull 6.35 19.31 17.25 1.50 48.39 34.25 5.50 8.27 

Rayleigh 17.93 46.63 35.82 110.20 69.70 55.34 5.72 24.85 
Maxwell 27.99 222.80 32.28 451.10 52.70 223.90 92.49 150.0 
Gamma 3.34 23.32 12.31 9.48 34.00 31.61 8.02 9.78 

Beta 1.32 14.13 3.53 7.67 31.19 17.88 9.85 7.95 

Once the bin was defined, the adjustment of the nine probability density functions was performed using the 
least squares methodology. The Kolmogorov-Smirnov test was used, and the maximum deviation (D) among 
accumulative distributions from each model and experimental data were compared to the critical deviation 
value, DC, with 5 % as significance level that is, for K = 18, DC = 0.30936. In cases where D < DC, the 
adjustment is approved. All distributions present in Table 1 attend these criteria, as shown in Table 2. From 
experimental PDF and models, it was applied the evaluation of the sum of the quadratic errors, S(e²), which 
results are in Table 3. If one adopts S(e2) < 5,0 x 10-3 as criteria, the Normal, Rayleigh and Maxwell models 
are excluded. Except those models and Logistic, the Log-normal, Gumbel, Weibull, Gamma and Beta 
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distribution presents DC < 0.1. For Taquaral Park, the Weibull and Beta are the most indicates, while for 
downtown Gumbel model has the best fit, including a good performance for all situation analyzed in this work. 
Figures 5 to Figure 12 show the comparison of the adjustments of the Gumbel, Weibull and Beta models with 
the respective experimental PDF. 

 
Figure 5: Downtown 2015 
 

 
Figure 6: Taquaral 2015 

 
Figure 7: Downtown 2016 

 
Figure 8: Taquaral 2016 
 

 
Figure 9: Downtown 2017 
 

 
Figure 10: Taquaral 2017 
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Figure 11: Downtown 2018  

Figure 12: Taquaral 2018 

4. Conclusion 

This work shows that is possible to reconstruct the time series of PM10 concentration into an adequate PDF 
model, such as Log-normal, Gumbel, Weibull, Gamma and Beta distributions, particularly the Gumbel model 
that is adequate to different seasons and monitoring stations at Campinas City, Brazil, from June 2015 to June 
2018. It is important to mention the necessity of the previous knowledge of the bins number to do the 
appropriate analysis of the frequency distribution from original time series for air pollutant control strategy. 
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