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The bioactive sulfated polysaccharide from brown algae, fucoidan, can be used for a wide array of 
applications. As with other natural products, there are seasonal variabilities as well as variability within the 
investigated species, across regions, and from using different extraction procedures. In this study, the use of 
hot demineralized water and two variations of hot acidified water (10 mM sulfuric acid and 100 mM 
hydrochloric acid) as extraction solvents for microwave extraction of fucoidan from three different brown algae 
of the Fucus genus (F. vesiculosus, F. serratus, and F. evanescens) were investigated. The effect on yield of 
fucoidan from the different solvents at temperatures 80 °C, 100 °C, 120 °C was tested. The Fucus used in this 
study were harvested in the Baltic Sea in the Kiel Fjord, Germany, during Summer and Autumn of 2017. Air 
dried F. vesiculosus from Brittany in France was also analyzed and used for optimization of the extraction 
method and as a reference sample. The extraction procedure was adapted and modified from the method 
provided by Fletcher et al. (2017). The extracts were purified by performing dialysis. The results showed that 
fucoidan yield is maximized by extracting with 10 mM sulfuric acid for all species investigated. A large 
seasonal variance between species was observed, and large differences in yield were also dependent on 
species. These results suggest that to maximize fucoidan yield, one should tailor the extraction method to the 
specific algae species used, however, microwave assisted extraction (MAE) with 10 mM sulfuric acid proves a 
good general extraction method. 

1. Introduction 
The Baltic Sea and the North Sea are abundant in brown algae (Phaeophyta), which contain a group of 
sulfated, fucose-rich, polysaccharides called fucoidan, in their cell walls (Senthilkumar et al., 2013). The 
structure of fucoidans depends on the species, season, harvest location and plant maturity. The basic 
structure consists of a sulfated fucose backbone as well as small quantities of other sugars, such as xylose, 
uronic acids, rhamnose, and glucosamine (Nishino et al., 1991). Branched side chains are also often found in 
some brown algae species, with the molecular weight varying widely between species (Gupta and Abu-
Ghannam 2011). Fucoidan was first extracted and identified by Kylin in 1913 (Kylin, 1913), where it was 
named “fucoidin” from the many fucose units. Since then, insights into the structure and the properties linked 
to these structures have been the focus of fucoidan research. In recent years, fucoidan has gathered much 
interest in the search for drugs from natural products. Currently, the focus of fucoidan research is the 
application of fucoidan in the pharmaceutical industry. Some of the most studied properties of fucoidan are its 
anticoagulant activity (Church et al., 1989), its potential as an inhibitor of native (Baba et al., 1988) and 
recombinant HIV reverse transcriptase in vitro, and its ability to block cell invasion by different retroviruses, 
such as HIV (McClure et al., 1992). Sulfated polysaccharides have also been found to exhibit antiproliferative 
and antitumor properties for carcinoma cell lines (Riou et al., 1996). Studies into other fucoidan applications 
include their use in nutraceuticals, as functional foods, and as an additive in cosmetics (Bedoux et al., 2014). 
The biological activity of the polysaccharides is species dependent, but factors such as the extraction method, 
seasonal variation, harvest location, and plant maturity have also been reported to influence the bioactivity of 
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fucoidan (Fletcher et al., 2017). Essentially, fucoidan might be tailored to give certain health benefits based on 
the algae, location and the extraction procedure.The extraction procedure of fucoidan generally involves five 
steps: 1) drying until the algae dry weight remains constant, 2) a defatting treatment to remove lipids and 
pigments, 3) extraction, which may be repeated several times for a higher extraction yield, 4) purification and 
separation of fucoidan from other co-extractants by addition of solvents, and 5) dialysis. Microwave-assisted 
extraction (MAE) could provide a green alternative to the traditional extraction methods. Removal of co-
extracted compounds may also include membrane technology, which can help purify natural products (Roda-
Serrat et al., 2015). Some of the advantages of MAE include shorter extraction time, less solvent, higher 
extraction rate (Rodriguez-Jasso et al., 2011) and lower cost, over traditional methods of extraction of 
compounds from various matrices, especially natural products (Delazar et al., 2012). The heavy metals 
present in seaweed also promote the formation of heat during microwave-assisted extraction, making algae 
and seaweeds suitable candidates for this extraction method. In this paper, a range of extraction solvents (pH 
range 2-7) for MAE of a variety of Fucus species harvested from Germany and France was investigated to 
determine which combination of Fucus species, extraction solvent, harvest time, and extraction temperature 
resulted in the highest fucoidan yield. 

2. Materials and methods  
2.1 Algae pretreatment 

1000 g of three Baltic Fucus species, F. vesiculosus (FV), F. serratus (FS), and F. evanescens (FE) were 
harvested during Summer (3rd of July) and Autumn (10th of October) of 2017 in Kiel Fjord, Germany and 
subsequently kept frozen. 5000 g of air-dried FV reference material was obtained from the province of Brittany 
in France, 2018. The French algae was used to optimize the extraction method. The frozen algae from Kiel 
were freeze-dried at -80 °C for 72 h and subsequently ground using a Fritsch pulverisette 19 rotor mill through 
a 1 mm sieve. The FV from France was also ground under the same conditions. Dried samples were stored in 
sealed containers until analysis. 
The extraction procedure was adapted and modified for MAE from Fletcher et al. (2017). The process chain 
for the extraction is shown in Figure 1 20 g of ground, dried seaweed was submerged in 150 mL 85 % ethanol 
and mechanically stirred overnight at room temperature. The supernatant was decanted, and the algae was 
transferred to a 50 ml centrifuge tube for centrifugation, followed by removal of the remaining supernatant. The 
pellet was washed once with 150 ml ethanol, then with 150 mL acetone, and subsequently left to dry at room 
temperature until constant weight. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 1: Process chain for extraction and isolation of crude fucoidan 
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2.2 Extraction 

1.5 g of the washed seaweed and 25 ml of extraction solvent (demineralized water, 100 mM HCl, or 10 mM 
H2SO4) were added to the microwave vessels and placed into a microwave digesting system (Multiwave Go, 
Anton Paar, Austria). The samples were microwaved for 30 min. at either 80 °C, 100 °C, or 120 °C. Each 
analysis contained four replicates. After cooling, the vessel contents were transferred to a clean 50 ml 
centrifuge tube. The pH of the supernatant was determined and neutralized to pH 5-7 by addition of 1 M 
NaOH. A solution of 35 % CaCl2 was added to the tubes, corresponding to 1 % CaCl2 in the extract. The tubes 
were centrifugated at 4 °C for 45 min (5000 rpm) to precipitate the alginate. The supernatant was decanted 
into a clean tube and ethanol was added to give a concentration of 40 % v/v ethanol. The tubes were 
centrifuged at 4 °C for 45 min to precipitate laminarin, and the supernatant was transferred to a clean 50 mL 
centrifuge tube where ethanol was added to give a final concentration of 70 % v/v ethanol. The tube was 
centrifuged at 4 °C for 45 min to precipitate the extracted fucoidan. The extracted crude fucoidan was washed 
with ethanol, followed by acetone, and left to dry to a constant weight in the tube.  

Figure 2: Yield (weight percent) of crude laminarin from microwave extraction. Each solvent and temperature 
composition are expressed as means of 4 replicates with error lines showing the ± standard deviation. 

Figure 3: Yield (weight percent) of crude fucoidan from microwave extraction. Each solvent and temperature 
composition are expressed as means of 4 replicates with error lines showing the ± standard deviation. 

3. Results and discussion 
The results from alternating the pH and solvents for the Fucus vesiculosus harvested in Brittany, France, is 
shown in Figure 2 and Figure 3. Increasing the temperature and lowering the pH increased the yield of storage 
glucans (laminarin, Figure 2) and the yield of sulfated polysaccharides (fucoidan, Figure 3). Increasing the 
temperature seems to have the highest effect overall. The yield of laminarin was continually higher than the 
fucoidan yields, which is as expected with laminarin being the main storage polysaccharide in brown algae. As 

111



the hydrochloric acid yields are only marginally better than sulfuric acid as extraction solvent, both acids were 
used as extraction solvents for extraction of fucoidan from the algae harvested in Kiel Fjord, Germany. The 
results from the algae harvested in Germany are shown in Figure 4 and Figure 5. Fucus serratus (FS) appears 
to be more pH sensitive than the other algae used in this study, as the sulfuric acid (pH 4) is much more 
effective for fucoidan extraction than hydrochloric acid (pH 2). 

Figure 4: Yield (weight percent) of crude fucoidan from microwave extraction of Fucus vesiculosus (FV), 
Fucus serratus (FS) and, Fucus evanescens (FE). The algae were harvested July 3rd, 2017 in Kiel Fjord, 
Germany. Each bar is expressed as means of 4 replicates with error lines showing the ± standard deviation. 

 

Figure 5: Yield (weight percent) of crude fucoidan from microwave extraction of Fucus vesiculosus (FV), 
Fucus serratus (FS) and, Fucus evanescens (FE). The algae were harvested October 10th, 2017 in Kiel Fjord. 
Each bar is expressed as means of 4 replicates with error lines showing the ± standard deviation. 

Additionally, the fucoidan content for FS and Fucus evanescens (FE) are very seasonally dependent. In 
contrast, the fucoidan content from FV is not as affected by seasonal changes. These findings suggest that 
fucoidan production from FS should be performed by extraction with sulfuric acid and from algae harvested in 
autumn. The seasonal difference in fucoidan content is generally attributed to increased carbohydrate storage 
over the summer, as the algae prepares for winter. This may not be the case for all algae species, however; 
one study found no significant correlation between the level of fucoidan in Saccharina japonica, Sargassum 
pallidum, and Stephanocystis crassipes algal tissues and the annual dynamics in seawater temperature, 
salinity, and concentration of biogenic elements. It appears more likely that the maximum amount of fucoidan 
is accumulated in the algae during reproduction season, which varies across species (Skriptsova, 2015). 
Fletcher et al. (2017) found that the fucoidan content is lowest in the Spring and reaches a maximum in late 
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Autumn, before decreasing over the Winter. In accordance with the present study, Fletcher et al. (2017) found 
that FV has the highest content of fucoidan of the studied seaweed throughout the year, reaching a maximum 
of 12.2 wt% in December. Fletcher et al. (2017) reported that FS reaches its maximum of 7.5 wt% in 
November, which contrasts with this study. FS is more sensitive to the extraction method, and it seems like 
the algae might require individual optimization to maximize yield. This current study found that using sulfuric 
acid and MAE at 120°C for extraction of the German FV resulted in a yield of 11.10 wt% during Summer, 
which was the highest yield in this study. 
The algae used by Fletcher et al. (2017) were harvested off the coast of Aberystwyth in the UK. Rodriguez-
Jasso et al. (2011) used MAE on FV harvested in Praia Norte, Viana do Castelo (Portugal) in September 
2009. They varied the pressure and extraction time and found that MAE at 120 psi, 1 min, using 1 g algae and 
25 ml solvent gave the highest fucoidan yield (18.22 wt%), and that the main constituent of the extracted 
fucoidan was L-Fucose. Yuan & Macquarrie (2015) used MAE at three different temperatures for fucoidan 
extraction from Ascophyllum nodosum. They reported that the highest fucoidan yield (16.08 wt%) was 
obtained at 120°C for 15 min extraction. At higher temperatures and at longer extraction times, the fucoidan 
may be subjected to thermal degradation, as fucose is not very heat stable (Yuan and Macquarrie 2015). The 
difference in yield between these and the current study might be due to thermal degradation of fucoidan. The 
climate of both Kiel, and Aberystwyth are oceanic (Köppen classification Cfb), and they have cool summers 
and cool winters with a relatively narrow annual temperature range and few extremes of temperature. The 
difference in yield is likely not due to varying temperatures or elevated pCO2 during growth, but possibly due 
to differences in plant maturity and potentially the amount of daylight the algae receive. Age determination is 
quite complex, however. The age of a FV is usually based on the number of air vesicles (bladders), assuming 
one vesicle is formed annually. The correlation between age and the number of air vesicles is not very exact, 
however; some species of FV may only contain few or no vesicles if the currents are not very strong. 
Essentially, the difference in fucoidan yield may be skewed due to maturity. Some studies suggest that UV 
radiation and free radicals formed and stimulated by fluctuations in the surrounding environment promote 
higher contents of fucoidan, due to the antioxidant function of fucoidan in the cell wall (Holtkamp 2009). 
Fucoidan content may also be affected by the life cycle of organisms that feed off the algae. These organisms 
digest fucoidan using fucoidanase (Silchenko et al., 2013). The regional difference in fucoidan yield, between 
the German and the French FV, is quite significant, indicating that environmental conditions do affect the 
fucoidan content. Fucoidans are believed to stabilize the cell wall by crosslinking between matrix cellulose 
microfibrils, which strengthens the cell wall (Deniaud-Bouët, et al. 2014). This crosslinking supposedly protects 
the cell wall from mechanical, chemical and osmotic stress, and key environmental factors seemingly affects 
the fucoidan content of algae directly (Zvyagintseva et al., 2003). Due to the sulfate groups, fucoidan can bind 
cations (mainly K+, Na+, Ca2+, Mg2+) and participate in anion exchange with the environment. This exchange 
enables the algae to adapt to water salinity fluctuations and to the toxic effects of heavy metals (Skriptsova, 
2016).  

4. Conclusions 
The Fucus species with the highest fucoidan yield, across seasons and solvent-temperature compositions, 
was FV. The extraction yield for all the algae was improved when microwaved with 10 mM H2SO4 at 120°C. 
These results imply that it is important to consider which algae to select for extraction, based on species, 
genera, time of harvest and harvest location when maximizing fucoidan yield. Future work on these extracts 
would include determining the sulfate content of the algae, the weight of the fucoidan fractions, as well as 
assessing the bioactivity.  
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