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In this work, two different commercial macroscopic adsorbent materials (Na-ZSM5 zeolite in spherical pellets 
and TiO2 cylindrical pellets) has been tested in the removal of model organic food dyes (Patent blue V, E131) 
and they were regenerated using an innovative techniques based on non-thermal plasma process. The 
adsorption experiments were carried out using a pyrex cylindrical reactor and liquid samples were analyzed in 
continuous mode by spectrophotometric measurement at λ = 636 nm. The results demonstrated that these 
materials were able to remove Patent blue V dye, with removal efficiency equal to 80% for the zeolite and 95% 
for TiO2 pellets after 400 min of treatment time. The adsorbent materials have been used for several cycles 
until their saturation. In particular, after seven adsorption cycles, the adsorbing capacity was reduced of about 
60 and 20% for zeolite and TiO2 pellets, respectively. Subsequently, the materials were regenerated by non-
thermal plasma and reused in the adsorption system. The results evidenced that the regeneration by non-
thermal plasma was able to induce the complete degradation of the absorbed organic substance and 
consequently restoring the initial adsorption capacity of both macroscopic adsorbent materials. 

1. Introduction 

Human, domestic and industrial activities require the use of a large amount of water. The direct consequence 
of this use is the production of wastewater. Therefore, it is necessary to purify the wastewater through 
processes able to remove the persistent contaminants that are among the main causes of problems in the 
aquatic ecosystem. In particular, dyes coming from textile and food industries are important pollutants in water 
effluents (Vaiano et al., 2016). Food dyes are one of the most widely used and dangerous additives in food 
industry (beverages, jelly sweets, candies, ice-cream, etc.). Approximately 10–20% of the dyes are lost during 
manufacturing process, resulting in large amounts in wastewater (Gao et al., 2011). The occurrence of food 
dyes residues in wastewater affects aquatic environment by colouring water and impeding light penetration. 
Moreover, they are suspected to cause carcinogenic effects, hypersensitivity reactions, and genotoxic effects 
on human health (Zhou et al., 2014). One of the food dyes most difficult to remove from wastewater and 
particularly subject to studies on the effects on human health is Patent blue V. It is a dark blue synthetic food 
dye and it has been banned in Australia, America and Norway since it can cause allergic reactions, with 
symptoms such as pruritus, skin rash, nausea and hypotension (Šafařıḱ and Šafařıḱová, 2002). Furthermore, 
the release into the water environment of this dye causes serious environmental damage (Šafařıḱ and 
Šafařıḱová, 2002), and for this reason, the removal of this dye is thus of primary concern and needs special 
attention (Bangash and Alam, 2006). Because of the low biodegradability of dyes, conventional biological 
treatment processes are not very effective in the removal of dyes from wastewater (Mafra et al., 2013, Li et al., 
2017). Therefore, chemical and chemical-physical processes (e.g., coagulation, flocculation, adsorption, 
chemical oxidation) are typically used in food dyes wastewater treatment (De Caprariis et al., 2018). 
Adsorption is a widely used technology for wastewater purification. This process is based on the mass transfer 
of the contaminant: in this way the solid material (the adsorbent) can remove the dissolved contaminants 
present in the water by attracting them on its surface. Therefore, it involves the interphase accumulation of 
concentrated substances at a surface or at the interphase. This separation technique finds wide application in 
the removal of dye from aqueous media (Brahim et al., 2014). Consequently, materials such as activated 
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charcoal, chitin, silica gel and natural clay have been used with great success (Bangash and Alam, 2006). 
However, commonly, the adsorbents materials lose their adsorbent proprieties and become themselves a 
contaminant. The most commonly used adsorbent is activated carbon due to its high specific surface area 
(Foo and Hameed, 2009, Cantarella et al., 2019). The major limitation of activated carbon is the lack of 
adsorption efficiency after regeneration (Gong et al., 2009) and that, once exhausted, the spent carbon may 
have to be handled as a hazardous waste when disposed of (Liu et al., 1996). For overcoming the 
disadvantages of the adsorption technique, various studies related to the regeneration of adsorbents have 
been conducted (Kulkarni and Kaware, 2014). The regeneration step is a very important aspect from economy 
and environmental point of view to be taken into account. The regeneration can reduce the need of new 
adsorbent and also reduce the problem of disposal of the spent adsorbent. Various regeneration methods 
have been used with different degrees of success (Wang et al., 2006) and different regeneration techniques 
are available including wet air oxidation (Shende and Mahajani, 2002), chemical (Mittal et al., 2009), thermal 
regeneration (San Miguel et al., 2001, Meshkat et al., 2019) or solvent treatment (Dutta et al., 2019)). 
Nevertheless, these techniques are normally limited either technically or economically. For example, some 
adsorbent materials can be regenerated by temperature and pressure swing adsorption (PSA) and then 
reused. However, the thermal desorption process requires additional energy in order to generate high-
temperature gas or steam, and the PSA process requires a vacuum pump, which needs large power, to 
achieve a low-pressure flue gas; these require additional costs (Kuroki et al., 2009). An interesting alternative 
to the conventional regeneration methods is represented by non-thermal plasma based process. This 
technique has attracted growing interest of researchers due to the optimized energy consumption and cost-
effectiveness (Sultana et al., 2015). Non-thermal plasma allows to obtain highly reactive species (Gupta et al., 
2018) able to remove and degrade the organic substance adsorbed on the surface of the adsorbent material, 
restoring its initial capacity. The application of this technology for various purposes is already widely reported 
in the literature, including the treatment of surfaces and the regeneration of materials (Morent et al., 2008). 
Among the non-thermal plasma (NTP) technology, the dielectric barrier discharge (DBD) reactor is an 
example of NTP system characterized by the presence of one or more dielectric layers between electrodes 
(Aziz et al., 2019, Iervolino et al., 2019). DBD reactor has been efficiently used to modify/clean surfaces of 
materials, and may offer an interesting alternative for adsorbents regeneration (Qu et al., 2009). Therefore, the 
aim of this work was to evaluate the ability of NTP technology in the regeneration of zeolites and TiO2 pellets, 
used for the adsorption of the Patent blue V (PB) from aqueous solutions. As a practical technique for 
industrial applications, repetitive operations of adsorption and non-thermal plasma regeneration of zeolites 
and TiO2 pellets were conducted to demonstrate the effectiveness of the regeneration process.  

2. Experimental 

2.1 Adsorption tests 

The commercial Na-ZSM5 zeolite in spherical pellets (ZEOcat Z-400, pellets size: 1.2-2 mm, SiO2/Al2O3 ratio: 
400) were provided by ZEOCHEM. The commercial TiO2 pellets were providing by Sigma-Aldrich in a 
cylindrical shape (height: 6-10 mm and diameter: 3.2 mm). The adsorption tests were carried out with PB 
initial concentration equal to 2.5 mg L-1 and ZEO or TiO2 pellets amount equal to 20 g. The total volume of 
aqueous solution was 35 mL. The experiments were realized using a pyrex cylindrical reactor (I.D. = 2.6 cm; 
height = 9 cm). The continuous mixing of the aqueous solution was realized by external recirculation of 
wastewater through the use of a peristaltic pump (Watson-Marlow). Liquid samples were analyzed in 
continuous mode by spectrophotometric measurement at λ = 636 nm. The used instrument was a Perkin 
Elmer UV-Vis spectrophotometer. The analytical system is composed by a flow UV-Vis quartz cuvette and an 
additional external peristaltic pump (Gilson) for the recirculation of the liquid.  

2.2 Non thermal plasma regeneration tests 

The regeneration of the adsorbent material was performed through the action of non-thermal plasma 
technology (Figure 1) using a dielectric barrier discharge (DBD) reactor. In particular, the experiments were 
carried out in a cylindrical quartz reactor (length: 42 cm; ID: 2.42 cm; OD: 2.5 cm) equipped with two 
openings: one for the air inlet, and another for the outlet of the gas to be analyzed. The reactor consisted of 
two electrodes and a dielectric barrier. The dielectric was a quartz tube. The electrodes (two copper wires) 
were placed at a distance of about 1.25 cm. In particular, the inner electrode was housed in a quartz sheath 
placed in the centre of the reactor and the outer electrode was wrapped around the external surface of the 
quartz tube for a length of 8.3 cm. The tube, the inner and the outer electrodes were placed concentrically. 
The frequency and voltage of power supply were regulated by PVM500/DIDRIVE10 (UNLIMITED). Electric 
parameters were measured and recorded using a digital oscilloscope Tektronix TDS 3032 (300 MHz 
bandwidth, 2GSamples/s) and a high voltage probe Tektronix P6015A. The applied voltage was equal to 38 
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kV. The carrier frequency of sine wave was constant and equal to 20 kHz. The overall electrical consumption 
of the system was about 45 W. The discharge takes place at the interface between the gas (air flow rate: 60 
NL h-1) and the adsorbent material. The reactor was filled with the zeolite or TiO2 pellets with an amount equal 
to 20 g. The CO2 production in the gas phase was monitored by continuous gas analyzer (Uras 14, ABB).  

 

Figure 1: Experimental setup for non-thermal plasma regeneration process. 

3. Results and Discussion 

3.1 Patent blue V adsorption test 

Figure 2 reports the results of adsorption tests carried out using ZEO (Figure 2a) and TiO2 (Figure 2b) for 
seven reuse cycles. No cleaning or regenerating step was carried out on the used ZEO or TiO2 pellets. After 
each reuse cycle, the treated solution has been discharged from the reactor and a fresh solution with the 
same initial patent blue concentration was fed for a new test adsorption. In the first cycle of adsorption, when 
the surface of both ZEO and TiO2 pellets are free from the PB molecules, the pollutant removal was equal to 
80% and 97% respectively, after 400 min of treatment time. Subsequently the first cycle, when a large number 
of molecules are already adsorbed on the surface of the adsorbent materials, the adsorption capacity 
substantially decreased until to reach a PB removal of only 20 % for ZEO and 80 % for TiO2 after 400 min in 
the seven reuse cycles. This last result indicates that the ZEO and TiO2 pellets have lost their initial adsorption 
capacity and a regenerative process is therefore needed for restoring the same initial efficiency in the removal 
of the target pollutant. 

 
 
Figure 2: Adsorption reuse cycles using ZEO pellets (a) and using TiO2 pellets (b). 
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3.2 Non thermal plasma regeneration results 

In order to evaluate the efficiency of the regeneration process, a parameter monitored during the process was 
the CO2 production. The analysis of CO2 production allows to evaluate the effectiveness of the regeneration 
process since it is representative of the mineralization of the organic substance adsorbed on the surface of the 
used materials. Figures 3a and 3b show the CO2 production during the application of non-thermal plasma on 
ZEO pellets and on TiO2 pellets, respectively. For both materials it is possible to observe that the maximum 
CO2 production is obtained after the first 5 minutes of treatment, confirming the immediate efficiency in the 
mineralization of PB by non-thermal plasma applications and therefore the regeneration of the adsorbent 
materials. The application of the electric discharge allows the formation of O3 from O2 present in the air. 
Ozone, an extremely reactive molecule, has the main function of degrading the PB molecules adsorbed on the 
material. 
 

  
Figure 3: CO2 production during the application of non-thermal plasma treatment for ZEO pellets (a) and TiO2 
pellets (b) regeneration.  
 
In addition to the CO2 production, the effectiveness of the non-thermal plasma process in the regeneration of 
the adsorbent materials is demonstrated by the recovery of the adsorbing properties.  
 

 

Figure 4: Dye removal on ZEO pellets (a) and TiO2 pellets (b) before and after the first regeneration step. 

Figure 4 reports the comparison between the amounts of dye removed with zeolites (Figure 4a) and TiO2 
pellets (Figure 4b) before the regeneration step and the amount of dye removed after the regeneration step. In 
particular for the ZEO pellets it is possible to observe that the dye removal before the regeneration step was 
equal to 80% and after the regeneration with non-thermal plasma process it was equal to about 79%. As for 
the zeolites, also in the case of TiO2 pellets, the adsorption properties (97% of dye removal) are almost 
completely recovered after the regeneration process (95% of dye removal). It was also demonstrated that the 
non-thermal plasma based technology allows to obtain the regeneration of the adsorbent material without 

a) b) 
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damaging their properties and structural characteristics, even after several regeneration cycles. Repetitive 
operations of dye adsorption and non-thermal plasma regeneration were conducted to demonstrate this ability. 
The results were reported in Figure 5. As it can be seen, the adsorption properties of the zeolites (Figures 5a) 
and TiO2 pellets (Figure 5b) remains unchanged even after four regeneration cycles. 
 

 

Figure 5: Dye removal on ZEO pellets (a) and TiO2 pellets (b) before and after the different regeneration step. 

4. Conclusions 

In this work, two different commercial macroscopic adsorbent materials (Na-ZSM5 zeolite in spherical pellets 
and TiO2 cylindrical pellets) has been tested in the removal of Patent blue V dye and they were regenerated 
using an innovative techniques based on non-thermal plasma process. The results have shown clearly that 
both the used macroscopic adsorbent materials are able to effectively remove the Patent blue V dye from 
water. However, their adsorption capacity substantially decreased until to reach only 20% and 80% of Patent 
blue V removal after 400 min in the seven reuse cycles for ZEO pellets and TiO2 pellets, respectively. Using 
the non-thermal plasma based technology it was possible to regenerate, in a short time (after only 5 min), both 
the adsorbent materials. Therfore, it has been demonstrated that with the application of non-thermal plasma 
technology, the adsorbing capacities of zeolites and titania pellets have been completely restored, preserving 
the properties of the materials and their structural characteristics, also after repetitive operations of adsorption 
and non-thermal plasma regeneration. 
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