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This paper presents a global sensitivity analysis based strategy for uncertainty quantification of the operating 
revenue and the carbon dioxide emissions in a crude oil distillation column. Aspen HYSYS is used for rigorous 
simulation of the column. A two-stage approach, which is executed by an interface between MATLAB and 
HYSYS, is implemented in this study. A multiplicative dimensional reduction method is applied to first identify 
which factors have the most influential to the model outputs, e.g. the operating revenue and the CO2 
emissions. In the second stage, the uncertainty quantification regressed by Gaussian prediction regression 
method is exploited. As a result, there is a good agreement between the predicted results by the Gaussian 
prediction regression method with that of the conventional Quasi-Monte Carlo approach, which shows that the 
computational efforts was reduced significantly compared to the conventional study (about less than 10 times). 
Furthermore, the Kernel points estimated by the Gaussian prediction regression method are generated to 
highlight influential factors identified in the first stage. 

1. Introduction 
A crude distillation unit (CDU) is among the largest energy-consuming processes owing to the large amount of 
energy consumption and high operating temperature (Kim, 2017). Previous studies recommended the 
employment of rigorous, simplified, and statistical/empirical models for the design and optimization of crude 
distillation units (Enríquez-Gutiérrez et al., 2015; More et al., 2010; Ochoa-Estopier et al., 2014). 
Nevertheless, uncertainties are sometimes correlated in the process design because of the connected 
process and various random factors. The complex nature of CDUs, including their interactions with the 
associated heat recovery network and the large number of degrees of freedom, renders their optimization a 
highly challenging task.  
The goal of an uncertainty quantification (UQ) is to assess the effect of the input uncertainties on the model 
output and consequently, on the system performance (Doostan & Owhadi, 2011). For considering the 
unknown factors, a global sensitivity analysis (SA), which is a widely used technique for selecting 
representative parameters from mathematical models (Saltelli, 2002; Sobol′, 2001), is required to reduce their 
quantity and select the ones to be incorporated. Monte Carlo  (Webster et al., 1996)  and  Quasi  Monte Carlo  
(QMC)  methods  are  representative  probabilistic  approaches  for  the  propagation  of  uncertainties in  the  
model  inputs  to  its  output (Abubakar et al., 2015). However, notwithstanding the simplicity of their 
implementation, the mean convergence rate was estimated at high number of simulations; this renders 
MC/QMC-based approaches computationally expensive, and they are used only as the final option. To 
overcome the problem, a convenient-to-evaluate function may be used to replace the original computational 
model (Schobi et al., 2015). Duong et al. (2016) studied the problem of UQ/SA of chemical processes using 
the standard polynomial chaos for systems with a small number of random inputs. Using an efficient-to-
evaluate surrogate model, Celse et al.(2015) studied the influence of each input on the construction of the 
model of the oil hydro-treatment process. Furthermore, to address a system with a moderate/large number of 
uncertain parameters, Duong et al. (2016) and Minh et al. (2017) recently developed a compressed sensing 
polynomial chaos technology and an efficient two-stage polynomial chaos approach to overcome the 
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computational limitation. In terms of our understanding, there is no report of the global SA that includes a 
discussion on the uncertain effects of process inputs on the process performance for the conventional CDU 
with large number of uncertainties. Thus, this work is expected to describe the uncertain effects of the process 
inputs on the process interests.  

2. Methodologies 
2.1 Multiplicative dimensional reduction method (MDRM) 

The readers could find the main content of this method in the literature (Minh et al., 2017). 

2.2 Gaussian prediction regression (GPR) 

We assume that m (< n) important inputs ( ( )1
, ...,

mm i iξ ξ ξ= ) were detected in the previous step. Let us 
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A GPR model is a generalization of the multivariate Gaussian random variables to an infinite dimension. It is 
defined as   

( ) ( ) ( )T
m m my h fξ ξ β ξ= +  (1) 

where  ( )mf ξ   is a zero mean Gaussian random process with the covariance function ( , )k ⋅ ⋅  , and ( )mh ξ
is a set of basic functions or a trend which transforms the original input space into a new feature vector ( )mh ξ
in Rm, a vector of basis coefficients. That is, the GPR is a statistical model that exhibits an instant response of 
the form  
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where ()  is a normal distribution in which the polynomial functions of the inputs can be normally used as 

the basis functions. It is noted that the latent function, f , is introduced for each observation. Various 

covariance functions are described in the literature (Kocijan, 2016; Rasmussen & Williams, 2005). In this 
study, the automatic relevance determination (ARD) squared exponential is used, which is defined as follows: 
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where 

1
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f m
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   is a vector of hyper-parameters. It is expected that similar values of inputs 
should exhibit similar responses. Thus, the covariance function can be used to characterize the similarity 

between two input vectors 
( ) ( )  ,  i j

m mξ ξ .  

Therefore, the GPR model is defined by the coefficient vectors β, hyper parameters ɵ,  and measurement 

noise variance, σ . The values for these parameters will be updated and learnt from the given data by 
maximizing the logarithm likelihood expressed in Eq. (15): 
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where Ip is an identity matrix of size p, and 
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where p r
H × is a matrix of values of the basic vector at training points, r is the number of basic function, and K 

is the covariance matrix at the training points.  

Regarding the estimated optimal parameters , ,β θ σ
  

, which are obtained by the maximization of the 

logarithm likelihood function, the density function of the response at a new data point 
*
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The mean value calculated in Eq(8) is used as the prediction for the new data, whereas the variance   is an 

indicator of the uncertainty of the prediction. One can use Eq(7) as a surrogate to sample large numbers of 
output responses and to estimate density functions and statistics of the output interest. 

3. Case study - crude distillation unit (CDU) 
Figure 1 demonstrates a rigorous CDU model as a substitute for the actual plant (HYSYS, 2007). The tower 
consists 29 stages in the main shell and three side columns associated with three pump-arounds for stripping 
the middle products. Furthermore, to separate the light components from the liquid phase, a pre-flash 
separator is used to enhance the separation efficiency of the tower (Errico et al., 2009). After leaving the pre-
flash separator, the crude oil enters the CDU furnace (see Figure 1). A significant amount of the main stripping 
steam is included at the bottom, which serves to strip any residue and prevent the excessive thermal cracking 
of crude oil because of the high temperature at the flash zone. A heat source (Q-trim) is introduced on this tray 
to “trim” the feed temperature as needed for the initial solution trials and facilitate a converged solution. Other 
light fractions of the crude were retrieved by side strippers at different locations using steam or reboilers. The 
presence of pump-arounds is an additional feature in the CDU. These units permit the reduction of the 
condenser cooling requirements by reducing the vapor flow in the column and allowing for heat recovery. The 
residue from the column contains valuable hydrocarbons, which is typically further separated in a vacuum 
distillation column (not discussed in this study). 
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Figure 1: Process flow diagram of CDU.  

4. Results and discussion 
According to the MDRM, a set of 160 Gaussian quadrature nodes was generated from the orthogonal 
polynomial toolbox (Gautschi, 2004) passed to HYSYS. A list of sixteen variables could be found in Minh et al. 
(2018). The operating revenue (Osuolale & Zhang, 2017) and the CO2 emissions (Gadalla et al., 2006) were 
calculated as the outputs in HYSYS spreadsheet cells and used for the global SA. The Sobol’s sensitivity 
indices were derived in step 2.1, which indicates the influential factors for the two outputs. For the operating 
revenue, three random variables such as the flow rates of the crude oil, naphtha, and diesel products 
were detected as being critical. Other random variables become non-influential factors that can be omitted in 
the next stage. The probability of the CO2 emissions is affected by the variation of the flow rates of the diesel 
steam, AGO steam, and the main stripping steam. 
The effective detection of the non-influential inputs from the SA step enables one to simplify the model. Two 
simulation sets of size 500 were considered for training the GPR (Clifton et al., 2012)  for the output. Because 
precise estimates of the process outputs are not accessible, the results of the proposed method were 
compared with those of the QMC method with a sufficient number of simulations. For an accurate estimation 
of the probability for the QMC method, the number of samples was selected from Chernoff bound following 
Tempo et al. (2012). Figure 2a compares the density functions of the operating revenue obtained by the GPR 
(with 500 training data points) and by the QMC methods (10 000 simulations) with three influential random 
inputs (flow rates of crude oil, naphtha, and diesel). Furthermore, these density functions were compared with 
that by the QMC method with all the sixteen random inputs (using the 10 000 simulations from Halton 
sequence). Similarly, as observed in Figure 2b, the density functions of the CO2 emissions were obtained 
using the GPR and the QMC methods with three critical random variables, namely, the flow rates of diesel 
steam, AGO steam, and the main stripping steam, which were then compared with those by the QMC method 
with all sixteen random inputs. Table 5 lists the statistical properties and computational time achieved by the 
proposed and QMC methods for the economic revenue/operating costs. The computational time of the 
proposed method includes the computational time for running 160 simulations for SA permitted by the MDRM 
and for constructing two surrogate GPR models with 500 quadrature nodes for UQ. The QMC/MC methods 
require a large number of simulations (approximately 10 000) to estimate the expected values, variances, and 
densities accurately; hence, they are computationally expensive. It was observed by comparing Figures 5 and 
6 that the proposed (MDRM + GPR) method can achieve acceptable results with only a small computational 
cost in comparison with the conventional QMC method.  
Furthermore, the Kernel scales obtained by the trained GPR model for the operating revenue were {0.0304, 
0.1202, and 0.0028}. According the ARDs mechanism, the GPR kernel scales imply that the random inputs of 
the flow rate of the crude oil and the diesel product are relevant (important) for the operating revenue. 
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Regarding the result of the GPR, the higher revenue was achieved associated with the increased crude oil 
flow rate and a high proportion of light product (such as diesel) in the feed. Meanwhile, the Kernel scale of the 
trained GPR model for the CO2 emissions were {0.7723, 0.5650, and 0.0475}, which indicates that the GPR 
identifies the flowrate of the main stripping steam as the most important input. 

Table 1: Statistical data and simulation times obtained by MDRM-GPR and QMC methods 

Methods  No. of simulations Runtime 
(sec.) 

Mean µ  
(Operating revenue) 

Mean µ 
 (CO2 emissions)

QMC (sixteen variables) 10,000 15,721.4 1.073e9 577.27 
QMC  
(three variables) 

10,000 14,756.8 1.071e9 577.79 

Proposed method  
(Operating revenue) 

660 1,603.1 1.071e9 - 

Proposed method (CO2 emissions) 660 770.4 - 583.21 

 

Figure 2: Density profiles of: (a) Operating revenue; and (b): CO2 emissions obtained by GPR and QMC 
methods. 

5. Conclusions 
The purposes of this work focused on UQ and SA for testing the model robustness against uncertainties in the 
CDU: obtaining a better understanding of the effects of inputs on the output, determining the key inputs that 
mainly influence the uncertainty of model outputs (such as the operating revenue and the CO2 emissions), and 
achieving a model simplification. HYSYS was used to obtain a rigorous simulation result. To handle a large 
number of uncertainties with the computational limitation, a two-stage SA approach was presented efficiently 
because the SA indices were first estimated by the M-DRM to screen the non-influential parameters and the 
GPR method was then applied to the UQ based on the simplified model from the previous step. There is a 
precise agreement with those of the conventional QMC method, and it is superior to the popular QMC 
approaches primarily in terms of the computational efforts. The results indicates that the operating net revenue 
is mostly dominated by the change of flow rates of crude oil and light fractionation (e.g. diesel product); 
whereas, the flow rate of main  steam for stripping any residue  significantly affected the CO2 emissions.  The 
proposed approach is expected to offer an effective way to handle both SA and UQ for other complex 
chemical processes associated with a large number of uncertainties. In the future work, another study of SA to 
focus on how to choose a blend of crude oils for the revenue and CO2 emissions to imitates a real refinery 
optimization process, and therefore provides a more realistic simulation regarding the practical application. 
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