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In the manufacturing process of modern space and aeronautics industry, chemical industry, industry and 

manufacturing industry, the safe and efficient operation of equipment has played an increasingly important 

role. In order to realize the early diagnosis of critical equipment failure, this paper uses the e-nose gas sensor 

technology to qualitatively and quantitatively analyze the odor volatilized by the oil generated by equipment 

failure and the odor emitted by the wire during the heating process. The experimental results show that the 

linear discriminant analysis and artificial neural network method can be applied to the e-nose gas sensor array 

to perform accurate qualitative separation of the odor. The curve change of the response stability amplitude is 

in accordance with the related law of the gas sensor output stability and concentration change. With the 

increase of the gas concentration, the larger the stability amplitude K, the smaller the response time constants 

TP1 and TP2, and the higher the confidence. By establishing a mixed gas response model, it is conductive to 

the separation of the gas sensor array signals of the mixed gas. 

1. Introduction 

The development and application of technologies such as manned spaceflight, deep sea exploration, and 

large aircraft have placed increasing demands on the safe operation of equipment systems (Bhattacharya and 

Dan, 2014). If the air in the cabin is slowly accumulating or sudden accidents have caused air pollution, it will 

pose serious threats to personnel safety (Zou and Huang, 2015; Rusinov et al., 2013). For large equipment 

with extremely high sealing requirements, their requirements for safety and reliability are increasing, e-nose 

gas sensors or gas sensing arrays can analyze and determine the type and concentration of odors and 

convert the information into electrical signals and output in the form of frequency (Zhou et al., 2014). The e-

nose system consists of a gas sensor array, a signal preprocessing unit and a pattern recognition unit (Qin et 

al., 2017). The gas sensor commonly used in e-noses includes metal oxide type, which has high sensitivity, 

fast response time, low price, low power consumption, high operating temperature, but it is sensitive to 

humidity, in actual application process, humidity must be strictly controlled (Yin and Zhao, 2016). 

The signal preprocessing of the e-nose system is a converter of the whole process, and the process includes 

the extraction of feature parameters, feature extraction and selection of recognition modes (Yang et al., 2016; 

Li et al., 2013). At home and abroad, a large number of research results have been obtained in the application 

process of e-nose technology, which has been widely used in food, chemical and medical fields. In terms of 

qualitative and quantitative identification of odors, its technology has gradually matured, and some research 

has also applied artificial neural networks to the e-nose gas sensor arrays and used a nonlinear modelling 

method to identify the mixed odors (Feipe et al., 2018; Jiang et al., 2012; Gu et al., 2011). There are few 

studies on the application of e-nose technology to the diagnosis and detection of critical equipment failure. 

The only research abroad has applied it to the diesel engine exhaust gas detection, there is still a lot of 

research content to be further explored (Zhou et al., 2010; Xiong et al., 2016). In this paper, the e-nose 

technology is applied to the odor detection of equipment abnormal state, and the signal of the gas sensor 

array is analyzed in-depth for the early warning of the test equipment failure. 
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2. Equipment abnormal odor simulation experiment and response analysis 

The power transmission device is the core part of the equipment, long-term damage or aging is easy to cause 

oil leakage or oil spill, which not only causes environmental pollution, but also may even cause fire or other 

accidents (Mortellec et al., 2013). In order to simulate the response of the e-nose gas sensor array to the oil 

volatile gases, the diesel oil, engine oil, gear oil and equipment wires that are commonly used in the power 

transmission system are taken as test objects, 10 e-nose gas sensors were used to detect the odors 

volatilized by three kinds of oil and the odor emitted during heating of the wire respectively (Bai et al., 2016; 

Lima et al., 2015). The working steps of the e-nose gas sensor include sampling-sample washing-desorption-

injection-cleaning-cooling, etc., and the maximum working temperature is 300 °C. By analyzing the response 

value of the sensor, it is found that the 2# sensor’s response value signal is much larger than the other 9 

sensors, which is very sensitive, and the 2# sensor is removed from the odor recognition process of 

equipment abnormal state. 

3. Qualitative identification of equipment abnormal state odors 

3.1 E-nose gas sensor array signal data preprocessing 

The data preprocessing of the sensor array signals is the most important environment for the odor 

identification process (Mao, 2018). The acquired odor response is converted into electrical signals or digital 

signals, and the main content includes baseline correction and normalization of the data. Baseline correction 

of the data can compensate for the error caused by temperature to the sensitivity of the gas sensor. 

Normalization can achieve dimensionality reduction and convert the spatial data of the higher dimension into 

the surface data of the lower dimension. Figure 1 shows the load matrix obtained by the singular value 

decomposition method. The figure shows the singular value decomposition of the modeled sample set Xmodel 

during data processing. The interpretation rate of the first four principal components of the load matrix P to the 

original variables is obtained. The state of the gases volatilized by diesel oil and gear oil are relatively stable 

and the identification effect is better. 
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Figure 1: The load matrix obtained by the singular value decomposition algorithm 

3.2 Qualitative identification of abnormal odor based on linear discriminant analysis and artificial 
neural network 

Linear discriminant analysis can transform the linear inseparable problem into a linear separable problem, and 

the decrease or increase of the dimension can find a linear separable problem with better separation. Figure 2 

shows the linear discriminant analysis (LDA) of four kinds of odors. It can be clearly seen that the four-sample 

aggregation are quite dispersed, and the four different kinds of odors can be clearly distinguished. 

Aggregation of the same odor samples is concentrated, by LDA we can effectively characterize the four kind 

of gases, and the identification effect is optimal. It has been found that the application of artificial neural 

networks to e-nose gas sensor arrays can greatly improve the predictive ability of fault diagnosis of critical 

equipment, so that early detection and early processing can be achieved. The gas sensor array can be 

composited several times by a simple nonlinear function, and any continuous function can be realized at any 
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precision to accurately perform qualitative separation of the odors. In order to achieve the qualitative 

identification of the four kinds of odors, we selected a total of 36 gas sample sets of the three kinds of gases 

with different concentrations. By using 9 gas sensors to identify the three kinds of gases, input the gas sensor 

array data into the neural network, the output of the network is the identification result, the expected output is: 

Diesel oil: [IA, IB, IC] = [1, 0, 0] 

Gear oil: [IA, IB, IC] = [0, 1, 0] 

Heating wire gas: [IA, IB, IC] = [0, 0, 1] 
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Figure 2: LDA linear discriminant analysis of four kinds of odors  

4. Application of e-nose technology in equipment fault detection 

4.1 Quantitative analysis of equipment abnormal state odor 

0 10 20 30 40 50 60
0

100

200

300

400

500

600

700

L
0
=100 ml

L
0
=50 ml

L
0
=20 ml

L
0
=10 ml

L
0
=5 ml

L
0
=1 ml

G
/G

0

t/s
0 10 20 30 40 50 60

0

100

200

300

400

500

G
/G

0

t/s

 Original curve

 Fitting curve

 

Figure 3: 2# sensor response curve of different                Figure 4: Comparison of the sensor response 

concentrations of diesel oil volatile gas                             fitting results with the actual response 

According to existing researches, it is difficult to express the abnormal odor of the equipment fault itself with a 

single signal value, and it is necessary to establish a mathematical model for the gas sensor array signals. 

From the analysis in Section 2, it is found that the 2# gas sensor is much more sensitive to gas than other 

sensors, but the response of the sensor is relatively smaller than others. For quantitative analysis, we only use 

the 2# sensor for experiments. Figure 3 shows the response curve of 2# sensor for gas volatilized by diesel oil 

with different concentrations, it can be seen that the growth curve with time shows a trend of rapid growth first 

and decline later. The main reason is that the concentration of volatile gases in the sealed bottle is 

continuously reduced due to the replenishment of clean air. Figure 4 is a comparison of the sensor response 

fitting results with the actual response. The sensor array curve is similar to the sensor transfer function curve, 

and the fit of the two curves exceeds 94%, which can better reproduce the sensor response process. Table 1 

shows the identification results and confidence of 2# sensor transfer function model with different odor 
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concentrations. As the gas concentration increases, the larger the stability amplitude K, the smaller the 

response time constants TP1 and TP2, and the higher the confidence. Figure 5 shows the reconstructed 

response signal curve, it can be seen that the reconstructed response signal better reflects the odor response 

characteristics of the gas sensor. Figure 6 is a graph showing the response stability amplitude K varies with 

the gas sampling volume L0, and the curve conforms to the related law between the gas sensor’s steady state 

output value and the concentration change. Figure 7 shows the curve of response time constant Tp1 varies 

with gas sampling volume L0, the response time decreases with the increase of odor concentration, when the 

concentration L0> 10ml, the response time decreases linearly with the increase of concentration. 

Table1: Identification results and confidence of 2# sensor transfer function model with different odor 

concentrations 

L0(ml) K Tp1 Tp2 Confidence degree/% 

1 40.003 12.438 2.480 88.84% 

5 184.518 12.017 2.200 90.83% 

10 262.001 12.013 2.788 91.45% 

20 353.363 11.782 3.256 92.32% 

50 519.730 11.422 2.233 94.02% 

100 724.624 10.753 2.060 94.28% 
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Figure 5: Reconstructed response signal curve              Figure 6: Response stability amplitude K varies 

with gas sampling volume L0 
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Figure 7: Response time constant Tp1 varies with gas sampling volume L0 

4.2 Blind separation of equipment abnormal state mixed odor 

The oil gas volatilized by abnormal equipment and other odors are mixed together, it’s often a mix of gases, 

and we need to establish a mixed gas response model for it. Assume that there is no chemical reaction 
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between the gases volatilized by the abnormal equipment, and the gas distribution is uniform, and the 

concentration between the gases is not dependent, use an e-nose gas sensor to perform independent 

analysis. Figure 8 shows the response curve of the sensor array of one experimental sample. By analyzing the 

correlation coefficient matrix between the nine sensors, the correlation coefficient is between 0.3387-0.9877, 

and the linear correlation between the nine sensors is large. Figure 9 is a response curve of an e-nose gas 

sensor array to the diesel oil gas, it can be seen that the response of the gas sensor to the diesel oil gas is not 

much different. Figure 10 is the response curve of the diesel/gear oil mixed gas of the e-nose gas sensor 

array, it can be seen that the response curve of the diesel/gear oil mixed gas and the diesel oil gas response 

curve are different, which is conductive to the separation of the gas sensor array signals of the mixed gas. 
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Figure 8: Response curve of sensor array of one            Figure 9: Response curve of e-nose gas 

experimental sample                                                        sensor array to diesel oil gas 
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Figure 10: Response curve of diesel/gear oil mixed gas for e-nose gas sensor array  

5. Conclusion 

In this paper, the e-nose technology is applied to the odor detection of equipment abnormal state, and the 

signal of the gas sensor array is analyzed in-depth. The specific experimental conclusions are as follows: 

(1) The linear discriminant analysis can realize the aggregation degree analysis of four odor samples, which 

can effectively identify the four gases qualitatively and the identification effect is optimal. The artificial neural 

network is applied to the e-nose gas sensor array to realize any continuous function at any precision, so as to 

accurately perform qualitative separation of the odor. 

(2) With the increase of gas concentration, the larger the stability amplitude K, the smaller the response time 

constants TP1 and TP2, and the higher the confidence. The response time decreases with the increase of odor 

concentration. When the concentration L0>10ml, the response time decreases linearly with the increase of 

concentration. 
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(3) By analyzing the correlation coefficient matrix between the nine sensors, it is found that the linear 

correlation is large, and the response of the gas sensor to the diesel oil gas is not much different, but the 

response curve of the diesel/gear oil mixed gas and the response curve of diesel oil gas are different, which is 

conductive to the separation of the gas sensor array signals of the mixed gas. 
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