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The application of the direct Lyapunov method to the stability analysis of systems
controlled by type-2 fuzzy logic controllers (FLC) is presented. The method is an
extension of a method proposed for type-1 fuzzy systems. It is usually applied to
systems described by state equations and controlled by fuzzy controllers using state
variables as inputs but has been extended to controllers that have the error and the
integral of error of the controlled variable as inputs.

The proposed method allows to modify the controller rule base so that the controlled
system is stable in the operating range defined by the manipulative variable constraints.
The method is applied to the stability analysis of a bioreactor and of a CSTR controlled
by type-2 FLCs.

1. Stability analysis of systems controlled by FL.Cs

Fuzzy controllers are mainly used for the control of non linear systems. Fuzzy
controllers themselves are non linear systems. For the stability analysis of systems
controlled by FLCs traditional linear stability analysis based on the frequency response
methods (Bode and Nyquist criteria) or on the s-plane methods (Routh-Hurwitz and
Nyquist criteria) cannot be used. It is often said that the stability analysis of fuzzy
control systems is a weak point of this control technique. Actually many methods have
been successfully applied to this problem.

1.1 Methods for the stability analysis of fuzzy systems
A good covering of these methods can be found in Kandel et al. (1999). Two different

approaches can be used:

— aqualitative and intuitive approach

— the approach of the non-linear theory.

To the first type it belongs the energetic approach by Kinszka et. al. (1985). They use a
function, representative of the energetic level of the system analyzing the behavior of
the function when some parameters of the fuzzy controller change. If the energy
increases the system is unstable while if it wavers the system oscillates.

Many non-linear stability analysis methods have been extended to fuzzy control
systems. Kickert and Mamdani (1978) were the first to use the describing function
method. Enhancements to the same method were introduced by Leephakpreeda and
Batur (1997) who substituted the fuzzy controller with an appropriate describing
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Fig. 1 — Trajectory of a fuzzy control action on the rule table (a) and on the phase plane

(b)

function and then used the Nyquist stability criterion. Braece and Rutherford (1979)
proposed the phase plane analysis, limited to systems with no more than two inputs
(state variables). The trajectory of the system in the state plane can be seen in the rule
table (Fig. 1a) or in the state plane (Fig. 1b) that is segmented in areas where different
rules apply. If the trajectory converges to the origin the system is stable. A geometric
interpretation of the method was given by Aracil et al. (1988). The circle method was
proposed by Ray and Majumder (1984) and more recently by Ban and al. (2006). The
Popov method was proposed by Kandel et al. (1999).

However the attention of the majority of researchers has been paid to the Lyapunov
method.

1.2 The Lyapunov method for the stability analysis of fuzzy systems

Before exposing how the Lyapunov method is applied to fuzzy control systems a brief
presentation is given. We refer to the Lyapunov direct method for the global stability.
1.2.1. The Lyapunov direct method

Let consider a system defined by

x =f(x)

and let be x =0 an equilibrium point. If a scalar function V(x) exists such that the

following properties are verified at the same time:
1. V(x)is globally positive definite

2. V(x) is globally negative definite

3. V(x) is radially unlimited
then the equilibrium point is globally asymptotically stable. V(x) is called Lyapunov
function and the stability study consists in finding such a function.
1.2.2. Extension of the Lyapunov method to fuzzy control systems
The first to study the application of the Lyapunov stability method to fuzzy systems
were Tanaka and Sano (1991). They suggested a procedure to construct a Lyapunov
function. Xiu and Ren (2005) discussed the stability analysis based on the extended
Lyapunov method and the design techniques for Tagaci-Sugeno fuzzy control systems.
Wong et al. (2000) proposed a different procedure that is used here as basis for the
application to type-2 fuzzy control systems and that will be illustrated with some detail.
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A fuzzy controller consists of a set of rules. The generic rule generates a specific output
u; with a specific membership grade ;. The control action u will be a function of all u;
and ;. Let the controlled system be defined by

x = f(x) + b(x)g(w)

with x the state vector, f and b vectorial functions of x, g(u) a scalar function of the
output of the fuzzy controller u (sum of all u; Y, products divided by the sum af all p,, if
the defuzzification method of the average of centers is used).

Let consider an input z, to the controller: if the membership function of z, for the rule 1
is zero then the rule i is said to be inactive for z,, vice versa it is active.

An active region Z, of a fuzzy rule is defined as the region in which the rule is active
for any z (input) belonging to Z,. This means that every rule is usually active only in
part of the operative range of the controller.

A fuzzy subsystem associated with the rule i is constituted by the system controlled
only by u; the output of the rule i.

Wong et al. (2000) demonstrated that it is possible to analyze individually the Lyapunov
stability of subsystems associated with every rule instead of analyzing the stability of
the whole system. This extremely facilitates the analysis.

For each rule it is necessary to determine the range for which the rule is applied and the
required value of the manipulative variable.

By substituting these values in the derivative of the Lyapunov function, this should be
negative for all the values of the range, in order the system be stable.

The rules for which the derivative of the Lyapunov function is positive are the rules that
may lead the system to the instability. They must be modified and the method may
provide indications on how to modify them in order to make the system stable.

2. The Lyapunov method for the stability analysis of type-2 fuzzy
systems

A type-2 FLC, just as a type-1 FLC, contains four components: Rules, Fuzzifier,
Inference-engine and Output-processor. The Output-processor of a type-1 FLC is just a
Defuzzifier, while the Output-processor of a type-2 FLC contains two components: the
first maps a type-2 fuzzy set into a type-1 fuzzy set and the second performs the
defuzzification on the latter set.

A type-2 fuzzy set R, characterized by a type-2 membership function pz(x,u) where
x e Xxand,uelJ, c[01], is given by
P L e 1
ol raew e (1)
in which 0 <pz(x,u) <1.

In (1) pux(x,u) is a secondary grade and the domain of a secondary membership

function is called the primary membership of x.

Uncertainty in the primary memberships of a type-2 fuzzy set, A , consists of a bounded
region that is called the Footprint of Uncertainty (FOU). The FOU characterizes type-2
fuzzy sets and is defined as the union of all primary membership functions:
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The FOU is associated with the concepts of lower and upper membership functions and
models the uncertainties in the shape and position of the type-1 fuzzy set.

The application of the Lyapunov stability method proposed by Wong (2000) to systems
controlled by type-2 fuzzy controllers must take into account the form of the type-2
fuzzy sets considering the upper membership functions only, since the lower
membership range is included in the upper one. If fuzzy sets need to be changed in
order to make the system stable only the upper membership functions have to be
modified.

3. Application of the method

3.1 Control of a bioreactor

The first example regards the control of a simple bioreactor with only two components:
substrate (x;) and biomass (x;). The dynamic model and parameter values are the same
used by Bequette (1998). The manipulative variable to control the substrate
concentration is the dilution rate that is also a bifurcation parameter, as shown in the
equilibrium curve reported in Fig. 2 .

It easy to note three regions: two regions are characterized by stable equilibrium points
(low and high branch) and one (in the middle, delimited by LP (limit point) and BP
(branch point) characterized by instability.
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Fig. 2 - Bioreactor equilibrium curve

The proposed Lyapunov function, positive definite and radially unlimited, is given by:
1
V(xy,xp) = E(Xlz + X%)
The time derivative is :
V(x1,x2) = (x1% +x2%7)
It is easy to verify that the derivative of the Lyapunov function is negative in the lower
an upper branches, while it is positive in the intermediate region.
To control the bioreactor substrate a type2-FLC with zero order Sugeno inference has

been designed with both the state variable as inputs. Each controller input uses 7 type-2
fuzzy sets with Gaussian membership functions. The rule set contains 49 rules.
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The application of the proposed stability method requires the verification of the
Lyapunov criterion for any subsystem constituted by a rule and the system to be
controlled.

The derivative of the Lyapunov function is calculated for each rule i, with reference to
the membership functions of the inputs used in the rule i. It is necessary to verify that
the derivative is always negative between the extremes of the membership functions
range in order the subsystem composed by the i-rule be stable. It was found that the
derivative is negative for all the subsystems related to the 49 rules. Therefore the
controlled system is globally stable.

3.2 Control of a CSTR

The second example concerns a CSTR that presents saddle-node and Hopf bifurcations.
The model and all details of the reactor can be found in Perez and Albertos (2004). A
type-2 FLC for the control of the reactor temperature, that uses the error and integral of
error of the controlled variable, has been implemented. The controller has been
optimized using a neural network algorithm to reduce the number of rules from 49 to 9.
The performance of the controller is very high despite the limited number of rules.

For this system the candidate Lyapunov function and its time derivative are:

)
Vi(x3) = —(X3)
2
|
T 25.15-19.79- xsx3(x3 — 0.0353)
19.79x 5 + 241.05

with x; and x; dimensionless concentration and temperature.

The procedure for the stability analysis is similar to the one used in the previous
example with only a difference: in this case, because a PI fuzzy feedback control is
implemented only on x;, the value of the state variable x, that corresponds to the
extreme value of the membership functions relative to the errors must be determined
directly from the equilibrium conditions of the system.

In this case the derivative of the Lyapunov function is negative for six rules and positive
for the other three.

Despite that the control of the reactor, simulated using several different set point and
disturbance changes, has proved to be stable. To be sure that the system is stable in all
conditions we should anyway modify the three rules for which the derivative of the
Lyapunov function is negative. This has been carried out, but the modification of rules
leads to a stable system but also to a deterioration of the controller performance.

V(x3) = 0.0555x5 —1.5x3 +111-10°x,x5¢

4. Conclusions

The extension of a method for the stability analysis of systems controlled by type-1
FLCs has been extended to the analysis of systems controlled by type-2 FLCs. The
method usually applied to systems described by state equations and controlled by fuzzy
controllers that use state variables as inputs can be applied also to controllers that have
the error and the integral of error of the controlled variable as inputs.
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The method allows to carry out the stability analysis of complex non linear fuzzy
systems through the analysis of a number of subsystems, that although tedious it is
easier than the analysis of the whole system, that may be unpractical if not impossible.
The analysis allows to identify rules that have to be modified in order to have a stable
system, but does guarantee that the stabilized system has a good control performance.
To obtain that it could be necessary to redesign the controller by changing all the
controller rules.

References

Aracil J., Garcia-Cerezo A. and Ollero A., 1988, Stability analysis of fuzzy control
systems: a geometrical approach, Artificial Intelligence, Expert Systems and
Languages in Modeling and Simulation, Elsevier S. Ps.. North Holland, 323-330.

Ban, X.J., Gao, X.Z., Huang, X.L. and Yin, H., 2006, Stability analysis of the Simplest
Takagi-Sugeno Fuzzy Control System Using circle Criterion, IEEE World Congress
on Computational Intelligence, 9628-9633.

Bequette B.W., 1998, Process dynamics: modeling, analysis and simulation, Prentice
Hall, New Jersey, 530-534.

Braae, M. and Rutherford, D.A., 1979, Theoretical and Linguistic Aspects of the Fuzzy
Logic Controller, Automatica, 553-577.

Kandel, A., Luo, Y. and Zhang, Y.-Q., 1999, Stability analysis of fuzzy control systems,
Fuzzy Sets and Systems, 105, 33-48.

Kickert ,W.M and Mamdani, E.H., 1978, Analysis of a fuzzy logic controller, Fuzzy
Sets and Systems, 70, 29-44.

Kiszka, J.B., Gupta, M.M. and Nikiforuk, P.N., 1985, Energetic stability of fuzzy
dynamic systems, IEEE Trans. System Man Cybernet, 783-792.

Leephakpreeda,T. and Batur, C., 1997, Stability Analysis of a Fuzzy Control System,
Thammasat International Journal of Science and Technology, 2(1), 1-5.

Perez M. and Albertos P., 2004, Self-oscillating and chaotic behaviour of a PI-
controlled CSTR with control valve saturation, Journal of Process Control, 14, 51-
59.

Ray, K.S. and Majumder, D.D., 1984, Application of circle criteria for stability analysis
of linear SISO and MIMO systems associated with fuzzy logic controllers, IEEE
Trans. System Man Cybernetic, 345-349.

Tanaka K. and Sano M., 1993, Fuzzy stability criterion of a class of nonlinear systems,
International Journal of Information Sciences, 71, 3-26.

Wong, L. K., Leung, F. H. F. and Tam P. K. S., 2000, An Improved Lyapunov Function
Based Stability Analysis Method for Fuzzy Logic Control Systems, Electronics
Letters, 36, 1085-1086.

Xiu, Z.H. and Ren, G., 2005, Stability analysis and systematic design of Takagi-Sugeno
fuzzy control systems, Fuzzy Sets and Systems, 151, 119-138.





