CHEMICAL ENGINEERING TRANSACTIONS Volume 17, 2009 1299
Editor Sauro Pierucci

Copyright © 2009, AIDIC Servizi S.r.I., ISBN 978-88-95608-01-3 ISSN 1974-9791

DOI: 10.3303/CET0917217

Scheduling of an integrated forest biorefinery

using multi-parametric programming
Petteri Pulkkinen*, Risto Ritala
Department of Automation Science and Engineering
Tampere University of Technology; Box 692 33101 Tampere Finland
petteri.pulkkinen@tut.fi

Implementation of an integrated forest biorefinery complicates the existing pulp and
paper processes considerably and leads to even more challenging production control.
Integrated forest biorefineries are cost efficient in a situation where parameters like
product demand, raw material supply and prices are stable. However, these parameters
vary with respect to time and are often subject to unexpected deviations. Having ways
to systematically consider uncertainty is as important as having the scheduling model
itself. Methodologies presented in this paper aim at producing feasible, robust, and
optimal schedules - an optimization problem involving hard constraints and
uncertainties, based on dynamic and multi-parametric programming techniques is
presented. As a result a complete map of optimal schedules can be obtained as a
function of parameters.

1. Introduction

The need to decrease the use of fossil fuels, and to find renewable raw materials for
various industrial production processes, encourages examining the advantages of
biorefineries. Integration with existing industrial plants reduces the capital and
operating costs of making biomass products and hence also the production costs of the
end products. Cost competitiveness and environmental sustainability will be key issues
in future markets for biomass-based products. This paper concentrates in creating
methodology for the cost efficient production scheduling of forest integrates. The
processes have typically several raw materials and end products. The methods consider
flexibility of production, uncertainties of supply, demand and prices of raw-materials
and products. One way of proactive scheduling is using sensitivity analysis and
parametric programming. These methods can offer analytical results to problems related
to uncertainty. Sensitivity analysis is used to determine how a given model output
depends upon the input parameters. Parametric programming serves as an analytic tool
by mapping the uncertainties in the optimization problem to optimal solution
alternatives. From this point of view, parametric programming provides the exact
mathematical solution of the optimization problem under uncertainty.

In this paper the problem of process scheduling under uncertainty is studied using multi-
parametric programming. Based on the uncertainty type (prices, demands, and
processing times), the scheduling formulation results in different parametric problems
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including multi-parametric mixed integer linear (mpMILP), quadratic (mpMIQP), and
general nonlinear programming (mpMINLP) problem. In the literature, the multi-
parametric programming method has been mainly applied in online optimization,
process control, and process synthesis (Pistikopoulos et.al., 2007a; Pistikopoulos et.al.,
2007b). Multi-parametric linear programming and multi-parametric quadratic
programming problems are well studied due to the relatively smaller problem
complexity (Bemporad et.al., 2002; Borelli et.al., 2003). General multi-parametric
nonlinear programming problem is not well addressed because the exact solution of
mpNLP is very complex (Acevedo & Salgueiro, 2003). Existing multi-parametric
mixed integer programming methods are based on the solution of mpLP or mpQP
subproblems. (Acevedo & Pistikopoulos, 1997; Dua & Pistikopoulos, 1999). The
general multi-parametric mixed integer quadratic programming is hard to solve. Dua
et.al. (2002) proposed a methodology to address this problem for the special case
derived from optimal control problem.

In order to study the suitability of multi-parametric programming an example case was
developed. In the example case the uncertainties in product demand, raw material
supply and prices are incorporated into scheduling model. The time dependency of the
parameters adds dynamics into the problem. Therefore an optimization problem
involving hard constraints and uncertainties, based on dynamic and multi-parametric
programming techniques is presented. The profitability is studied as a function of state-
transition cost Q, Eq. 3. An advantage of the proposed methodology is that the complete
map of optimal schedules can be obtained as a function of parameters; rescheduling can
be performed via simple function evaluations without any further optimization.
Presented numerical examples illustrate the potential of the proposed methodology.

2. Description of the case and results

There are many alternatives how to execute the biorefinery concept. Concepts brought
to daylight need to be operated optimally. This paper presents a generic model for the
integrated biorefinery and tests the methodology for the optimization of production. At
first a static case is studied and a parametric solution generated, then predictions of
parameters are added and the dynamic case solved.

The example process consists of 4 sub processes. Two raw material flows are
transferred into four products. There are no intermediate storages — what comes in, goes
out. The operating conditions are presented in the Table 1. Figure 1. presents a flow
chart of the process.

Table 1 The operating conditions of the process. The divisions of the raw material/sub
product flows are defined as well as the production costs of the sub processes.

X4 X; X3 X4 Production cost / sub process
EP1 0,7 - - - 1 €/unit
EP2 0,18 - 0,6 - 0,5 €/unit
EP3 0,12 0,2 0,4 0,2 1 €/unit

EP4 - 0,8 - 0,8 2  €/unit
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Figure 1 A flow chart of the example process.

In this case example the uncertainty is present in the raw material prices and in their
availability. Now only right hand side and objective uncertainty exists, the critical
region of mpLP is formed by linear inequalities. 8, defines the uncertainty in the raw
material prices and 6, and 6; in availability. On the basis of the Eq. 1 (Li & Ierapetritou,
2007) the problem is defined with:

min(c + DTH)x
s.t. (1)

Ax<b+ FO
DO< P

The Eq. 2 defines the cost function and the constraints of the problem.

min[- (4.82+ 6, )x, — (7.6 + 6, )x, — (0.9+ 6, Jx; — (3.6 + 6, )x, |

s.t.

X1 +x, <25000+ 6,, x5 + x4 <15000 + 6,
-a<03x-x3<a )
-b<0.12x - 0.2x, + 0.4x; — 0.2x4 < b Tolerances for recipes

—Cc<Xxy—x4<cC

X 20,x20,x320,x, 20

0<6,<4,0<60,<1500,0<6,; <1500

One advantage of using parametric programming techniques is that for problems such as
process planning and scheduling, a complete map of all the optimal solutions can be



1302

obtained. Moreover, as the operating conditions fluctuate, the new set of conditions
does not have to re-optimized since the optimal solution as a function of parameters, or
the new set of conditions, is already available.

As a result of the optimization a complete map of all the optimal solutions is available,
Table 2. presents profit and raw material flow rates as a function of 6;, 6, and 6;. The
3D space of 8,, 6,and 0; has been divided into seven regions; they are presented in the
Figure 2.. Also the sensitivity of the profit to the parameters can be identified. The
profit is more sensitive to 6;; in CR 5 to CR 7 it is not sensitive to 85 at all. Thus, for
any value of 0, that lies in CR 3, the uncertainty in the availability of raw material 1 will
not affect the profit. This type of information is useful for solving reactive or on-line
optimization problems. Such problems usually require a repetitive solution of
optimization problems so as to compute the actions that must be taken at regular time
intervals. This requirement comes from variations, such as demand fluctuations, during
plant operation and to optimally control the plant under such dynamic behaviour.

Figure 2 A 3D presentation of the parametric solution

Table 2 Parametric solution of the example case.

CR  Optimal solution CR Optimal solution

1 Profit(6) = -400000, + 2.476,+ 8.736;+ 194793 4 Profit(6) = 400006, + 6.26,+ 2.20; + 194061
X1 =1.43 6,— 1.436 + 13857, X1 =04 6,+0.46; + 13857, x, = 0.66, - 0.46; + 11240
x;=-0430,+1.436,+ 11143 x3=0.126,+0.1260; + 4328, x4, =-0.126,+ 0.886; + 10672
x3=10.436,—0.436; + 3957 5 Profit(6) = 3979066, + 7.280,+ 192965
x4 =-0.436,+1.436; + 11043 x1=0.636; + 14156, x, = 0.386; + 10843

2 Profit(#) = -400006, + 5.53,+ 3.286; + 193652 x3=0.196; + 4047, x, = 0.386; + 10743
X1 =0.876,— 0.436; + 14065 6 Profit(6) = 405216, + 7.386,+ 195191
x,=0.136,+0.430; + 10934 x1=0.636; + 13969, x, = 0.386; + 11031
x3=-0.136,+ 0.566; + 4165 x3=0.196; + 4391, x, = 0.386; + 11131
x4=0.136,+0.430; + 10834

3 Profit(d) = - 403726, + 13.16,+ 195713 7 Profit(6) = 403666, + 7.386, + 194853
x1=1.16; + 14389, x, = 0.676; + 10983 x1=0.636; + 13906, x, = 0.386; + 11094

X3 =0.3360; + 4117, x4, =0.676; + 10883 X3 =0.196; + 4372, x, = 0.386; + 10994
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In the dynamic case the parameters 6;, O,and 0; are time dependent. Figure 3. (left)
presents the time series. The profitability is studied as a function of state-transition cost

03

T
min I dt _— Q_ + fytaﬂc (xa H(t))
(0 i i dt
b 3

g\ (x,0(1) <0

The problem is solved with dynamic programming with respect to the inequality
constraints g, defined by the static case. The variables x; ... x, that describe the raw
material flows change now as a function of 6(f) and Q. Q is the same for all variables.
Increasing the state-transition cost forces the optimization algorithm to search solutions
with less dramatic control actions. Figure 3. (middle) presents examples of the variable
x; as a function of Q. In order to minimize the overall cost the optimization must
balance between the profitability and the state-transition cost. Figure 3. (right) presents
the profit as a function of Q. The profit decreases fast as the state-transition cost
increases.

Allthough the static example case provides parametric solution to the problem, the
addition of state-transition cost makes the control actions more realistic. The parametric
solution may suggest too radical changes to the process. Obviously this is case
dependent and the selection of parameters is difficult. The results from the example case
presented here are merely suggestive. However, they indicate that the presented
methodology can be applied to optimize the production of the integrated biorefinery
processes, since the problems that arise can be modeled in the similar manner as the
example case — multiple raw materials are processed in sub processes creating a
selection of sub products and end products.

2.62
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2.58

2.56

2.54

252

Figure 3 Left: Time seris of the parameters 0,, O,and 0s;. Right y-axis is for 0,
Middle: Variable x; as a function of state-transition cost Q.
Right: Profit as a function of state-transition cost Q.
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Conclusions

The need to maximize the production of main and side products as well as power
production is in the background of the development of biorefineries. There are many
alternatives how to execute the biorefinery concept. When the biorefineries are brought
from the conseptual level to reality, proper methods for the optimal production plannig
are needed. These methods should consider flexibility of production, uncertainties of
supply, demand and prices of raw-materials and products as well as variable costs of
production.

The studies with the example case show that the combination of parametric and
dynamic programming can be utilized in the optimized scheduling of integrated
biorefineries. The problems that arise can be modeled in the similar manner as the
example case — multiple raw materials are processed in sub processes creating sub
products and end products.
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