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Numerical optimisation methods are common in nonlinear parameter identification, but
they may end up in a local optimum value. Genetic algorithms are able to escape local
optima and continue the search towards a global optimum value. This paper shows that
they are useful in identifying parameters for the nonlinear model of the activated sludge
plant. The number of identified parameters in the model is seven: three coefficients in
Haldane’s equation, two yields, oxygen kinetic constant, and the oxygen transfer
coefficient. The results are good, and show a good correlation with the actual values.

1. Introduction

There are several models for the biological wastewater treatment in the literature.
Common features in these models are nonlinear dynamics, high number of parameters
describing the kinetics and stoichiometry of the reactions, several operating points,
sensitivity to parameter values, and so on.

Dissolved oxygen (DO) control is critical for the good operation of activated sludge
processes. Too high DO leads to high energy consumption and bad quality, and too low
DO leads to low pollutant removal. Several control methods are in use — starting from
conventional PID controls to model predictive control and various adaptive or fuzzy
control strategies (Ertunc et al., 2009, Oliveira et al., 2005). More advanced control
methods need models for the controller design and tuning and face the problems with
parameter identification of nonlinear activated sludge models.

This paper introduces the use of genetic algorithms for the nonlinear parameter
identification of the activated sludge process. The data for modelling was produced by a
Chemostat model built in Simulink® environment. The model is based on mass balances
and Haldane kinetics. The parameters identification uses the values of dissolved oxygen
concentration as the system output, because its measurement in practice is easier than
other state variables and, as mentioned before, it is also a common control variable.

2. Process model

In this paper, data for identification trials are produced using the model of the aeration
basin of the activated sludge process. The activated sludge process is modelled as a
Chemostat bioreactor using substrate, biomass, and dissolved oxygen mass balances
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(Equation 1) and Haldane kinetics (Equation 2) that describe the inhibition of the
reaction by high substrate concentration.
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In the above equations, S, X, and O are the concentrations of substrate, biomass, and
dissolved oxygen, the subscript in refers to their values in the input flow, Q is the flow
rate, V is the liquid volume in the reactor, and Y is the yield.

Table 1 contains the values for eight parameters shown in the above equations: the
maximum growth rate (u,,,), saturation coefficient (), inhibition constant (X)), yield
coefficients (Yys Yy,), oxygen kinetic constant (kp), volumetric oxygen transfer rate
(k a) and the saturation concentration for dissolved oxygen (O;). With the chosen
parameter set, the system shows nonlinear bi-stable dynamics, i.e. it has two stable
operation points (Holck, 2008) (Sorsa and Leiviska, 2006).

Table 1. Parameter values for Equations 1 and 2 (Holck, 2008).

Parameter y,,, Ks K; Yys Yyxo ko kia O
Value 1.04 375 60 1.40 1.03 0.006 16.8 6

The model simulator is a Simulink® program. The solver used in the simulations is
ode45 that is capable of solving nonstiff differential equations, and uses the Runge-
Kutta method.

3. Data

The process has two distinct operation points: low conversion (OP 1) and high
conversion area (OP 2). Identification data sets were generated for both points by
applying two consecutive step changes of sizes +5 and -10 to the input concentration of
the substrate. This approach should also reveal the nonlinearity of the system.

Random disturbances were applied to the input concentration of substrate (S;,), and
biomass (X;,), and to the liquid volume in the reactor (V). The disturbances were taken
from the normal distribution and their means and variances are in Table 2. The
disturbance to ¥ is very small since it was assumed that the liquid level in the reactor
was in control.



1295

Table 2. The means and the variances of disturbances.

Variationin  S;, X;, V

Mean 0 10 100

Variance 1 04 1

Table 3 shows the total simulation time (%), the steady-state input concentration of the
substrate, and the size and time of the step changes in both operation points. The total
simulation time for the second operation point is longer than for the first operation
point. This is due to working in the low conversion area and with less biomass in the
system. Therefore, the reactions occur more slowly.

Table 3. Simulation time, substrate input concentrations and sizes and times for the step
changes in both operation points.

Step change 1 ~ Step change 2

tim Sy Size Time Size Time

OP1 120 40 5 50 -10 100
OopP2 275 75 5 100 -10 200

The identification bases on the concentration of dissolved oxygen. There are two
reasons for this: in practice, it is the easiest output variable to measure and secondly, as
mentioned in the introduction, several control strategies use the concentration of
dissolved oxygen as the controlled variable. Figures 1 and 2 later show the step
responses of dissolved oxygen in both operation points.

4. Identification with Genetic Algorithms

The model parameters in this paper are identified by using the real-coded genetic
algorithms. Genetic algorithms are an optimization method mimicking evolution. The
population consisting of chromosomes evolves towards the global optimum. The
possible solutions to the optimization problem are encoded into the chromosomes.
Binary or real-valued coding can be used. The link between the chromosomes and the
problem is the objective function, the fitness function.

The main stages in genetic optimization are parent selection, fitness evaluation,
variation, and population update. These stages are repeated until the optimum has been
reached. Typical parent selection mechanisms are the tournament and the roulette wheel
mechanisms (Davis, 1991). In tournament mechanism, a certain number of
chromosomes are selected randomly to participate in a tournament. The most suitable
chromosome is the winner and is selected as a parent. In the roulette wheel method, the
fitter chromosomes have a larger slot in the roulette, and have therefore better chances
to become a parent. The genetic operators — crossover and mutation — regulate the
variation: The crossover operator mates two parents to produce the offspring (1 or 2,
depending on the methods). Mutation adds random changes to the population so that the
optimization is not trapped into any local optimum.

Genetic algorithms (GA) have been used for both the structure and parameter
identification (Gray et al., 1998, Nyarko and Scitovski, 2004, Chang, 2007, Khalik et
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al., 2007, Wang et al., 2008). The most significant drawback of conventional methods
(such as gradient methods) is the lack of ability to overcome local optima. That problem
does not exist with GA since the optimal solutions are searched from multiple directions
and, basically, the whole search space is covered. Therefore, GA are more likely to find
the global optimum. The drawbacks of GA are that the exact solution may not be found
and the optimization is time-consuming with complex systems.

The parameter identification was performed for both operation points by using two
different crossover methods: the linear crossover and the arithmetic crossover with
crossover probability of 0.9. The mutation method was the uniform mutation with the
mutation probability of 0.05. The initial population was taken randomly from the
uniform distribution and each generation consisted of 200 chromosomes. Elitism was
also included and from each generation the best chromosome was transferred to the next
to ensure that the best result will not disappear from the population. The initial
population was subjected to genetic operations for 30 generations after which the best
chromosome was returned by the algorithm. To validate the results of the parameter
identification, the optimization was repeated for both operation points (and with both
crossover methods) 500 times.

The fitness function was the sum of the squared prediction error, SSE that compared the
predicted value of dissolved oxygen with its actual value.

Seven parameters were identified from the step response data, i.e. all parameters in
Table 1 except O;. The feasible range allotted for the parameters is very important in
genetic optimization, and the ranges for the seven parameters are in Table 4.

Table 4. Parameter ranges for genetic optimization.

Parameter g, Ks K Yus Yxo ko kia
Range 0-2 0-10 3090 0-5 0-20 0-0.1 10-40

5. Results and discussion

Table 5 shows the best parameter sets for both operation points and crossover methods.
The table shows also differences between the actual parameters and the identified
parameters in percentages. Table 6 shows the statistical values of the fit: SSE, Mean
error (EM), Standard deviation (SD), and correlation (R2) between the predicted and
actual responses. It also shows the number of iterations (NI), where the best parameter
sets were achieved.

Figures 1 and 2 together with the correlation coefficients in Table 6 show that genetic
algorithms perform well in parameter identification. There is also only a little difference
between the used crossover methods even though some of the identified parameter
values differ a lot from the actual values. There are two reasons for the big differences:
the random disturbances applied to the system inputs in data sets generation and also the
fact that the parameters are identified for both operation points separately. The
parameter that differs the most from the actual parameter values is ko regardless of the
crossover method used. Its value is very small and its search area is much larger than
the relative search areas for the other parameters.



Table 5. The best set of parameter values and their differences from the actual ones for
both crossover methods (CM) and operation points (OP). L means Linear Crossover
and A means Arithmetic Crossover. Difference is in percentages.

Parameter OP CM g, Ks K; Yy Yvo ko kia
Value 1 L 091 716 792 1.65 138 0.016 18.6
Difference -125 909 321 179 340 167 10.7
Value A 097 6.16 725 155 211 0.05 33.1
Difference -6.7 643 208 107 105 733 97.0
Value 2 L 0.74 7.13 33.1 0.007 146 0.013 252
Difference -28.8 90.1 -44.8 -99.5 -41.7 117 49.9
Value A 0.60 673 81.6 182 243 0.045 329
Difference -42.3 795 359 30.0 136 651 96.1
Table 6. Statistical values for the model validation.
OP CM SSE*10" EM*10° SD*10° R2 NI
1 L 2.37 2.45 4.48 0.998 462

A 2.96 7.08 5.96 0.998 397
2 L 2.40 1.94 2.36 0991 142

A 2.92 2.81 1.77 0.990 105

In the future, the parameter search areas should be studied more to ensure that the
parameter ranges do not include impossible values for the real process. This would help
to cut out unrealistic parameter sets. It would also be essential to perform sensitivity
analysis for the model parameters. SSE is only one of the many possible fitness
functions. Other functions should be tested to find out whether different fitness
functions have a significant influence to the identification results. During the
optimization, the fitness function is evaluated hundreds of times. Cutting down the
runtime of the whole genetic algorithm is important to improve the efficiency of the

solution.

5.8

Figure 1. The actual and predicted concentration of dissolved oxygen for Operation

Point 1. Linear Crossover (a) and Arithmetic Crossover (b). Denotations: === predicted,

— actual.
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Figure 2. The actual and predicted concentration of dissolved oxygen for Operation

Point 2. Linear Crossover (a) and Arithmetic Crossover (b). Denotations: --- predicted,
— actual.
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