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The mathematical model and experimental procedure, previously developed to describe
the electrodialytic (ED) recovery of the sodium salts of some mono-carboxylic acids
from aqueous solutions, were slightly modified to determine the effective process and
design parameters of ED stacks directed to recover the sodium salt (Nayltac) of a bi-
carboxylic acid, i.e. itaconic acid.

1. Introduction

Electrodialysis (ED) is a unit operation for the separation or concentration of ions in
solutions based on their selective electromigration through semi-permeable membranes.
Its largest area of application is in the desalination of brackish water for the production
of potable water and de-ashing of milk whey (Fidaleo and Moresi, 2006a).

Itaconic acid (HOOC-CH=CH-COOH, C,H,0,) is used as monomer or co-monomer for
plastics, resins, synthetic fibres and elastomers (Milson and Meers, 1985) and it is
produced by submerged culture fermentation with Aspergillus terreus in a medium
containing molasses as the sugar source at 32-40°C and pH of 1.8-4.0 under 0.25 to 0.5
volumes of air per volume of medium per minute for 48-72 h (Milson and Meers, 1985).
Use of ED was suggested to enhance the mycelial itaconate productivity in wood waste-
(Kobayashi, 1967, 1978; Nakagawa et al., 1975), pretreated beet juice- or molasses-
(Nakagawa et al., 1991) based media.

The aim of this work was to extend the mathematical model and experimental procedure
previously set up for the recovery of some target sodium salts of mono-carboxylic acids
(Fidaleo and Moresi, 2004, 2005b, 2006b) to the recovery of sodium itaconate to
determine all the engineering parameters needed to design and optimise ED units
dedicated to the downstream processing of itaconic acid fermentation broths.

2. Materials and Methods

A laboratory-scale electrodialyser (Aqualyzer P1, Corning EIVS, Le Vesinet, F),
previously described (Fidaleo and Moresi, 2005a), was used. Several batch recycle runs
were carried out by varying electric current intensity (I=0.75, 1.5 A) under constant feed
solute concentration (cp~55 g Napltac dm™), superficial velocity (vs=5.9 em s), and
temperature (T=20°C). The feed solution was prepared by dissolving itaconic acid with
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deionised water and adding the corresponding stoichiometric amount of NaOH, this
solution being also used as the electrode rinsing one. The instantaneous Nayltac
concentrations (c;) in the diluting (D) and concentrating (C) streams were indirectly
estimated by measuring the electric conductivity (y) at 20°C with a WTW conductivity
meter mod. Inolab Cond Level 1. Limiting current tests at 20 °C were performed to plot
voltage (E)-current (I) curves using stacks composed of 19 cation- (CMV) or 19 anion-
(AMV) exchange membranes by varying cg, I and vs in the ranges of 0.7-43.4 g dm>,
0.04-5 A, 5.9-10.9 cm s respectively.

3. Results and discussion

3.1 Determination of ion transport numbers in solution

The primary current-carrying species for the binary electrolyte sodium itaconate
(Na,ltac) were supposed to be sodium (Na") and itaconate (Itac”) ions. The equivalent
conductivity (A) was expressed as a function of the square root of the salt molar
concentration (VC) by using the Kohlrausch limiting law:

A=—2% N -bJC (D
v'|z"C
with
Ag=ho Ao )

where v' (=1) and z (=-2) are the stoichiometric and charge number for the Itac” anion.
The least squares method was used to fit A against VC (Fig. 1), thus allowing the
equivalent conductance at infinite dilution (A¢=9.2540.07 S m* kmol™) at 20°C to be
estimated. By extracting the Na™ equivalent conductance at infinite dilution at 20°C
(A =4.495 S m* kmol™) from Prentice (1991), it was possible to calculate the transport
number for the Na™ ion as equal to 0.49 and that for the Itac” one as 0.51, because the
sum of the transport numbers must be equal one.
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Figure 1 Equivalent conductance of Na,ltac at 20°C vs VC.

3.2  Mass and volume balances in an ED system
The differential mass and volume balances in the dilute (D) and concentrated (C) tanks
of the electrodialyzer unit can be written as follows:
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where t*, t*, are the cation or anion transport numbers in cation and anion-exchange
membranes; t, and ty the effective solute and water transport numbers; Vy, is the water
molar volume; Cc and Cp, are the instantaneous molar concentrations of Na,ltac in tanks
C and D, while V¢ and Vp the corresponding volumes; 1, I, N and F are the process
time, current intensity, number of cells (each one being composed of a couple of
compartments), and Faraday constant (=96,500 C mol™), respectively. By plotting the
net increment (or decrement) in C or D solute (An) or water (Any) masses vs. the
number of moles of elementary electrical charge transferred (ng=NI 1/F), as shown in
Fig. 2, it was possible to estimate t, and ty, these being equal to 0.970+0.004 and
12.940.1, respectively.
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Figure 2 Net increment or decrement in C (closed symbols) or D (open symbols) solute
(a) and water (b) masses vs. the moles of elementary electrical charge transferred (ny) at
vs= 5.9 cm s™', 20°C and different current intensities (0,®: [=0.75 A; o,m: [=1.5 A).

3.3  Overall potential drop across an ED stack
The overall stack voltage (E) may be written as a sum of several terms (Fidaleo and
Moresi, 2005a,), that is:

E=Eg + Res+N {Ej + Ep + [Rys + R + R+HR] 1} Q)

where E,; is the thermodynamic potential and overpotential of electrodes; E; the junction
potential difference across boundary layers, Ep the Donnan potential difference; R,
Rps, and Ry are the electric resistances of the electrode rinsing solution, C and D bulk
solutions and boundary layers, respectively; R, and R, are the AMV and CMV
membrane resistances. Any of the ohmic resistances (Ry) can be estimated by applying
the 2" Ohm’s law:

R, = [ ©)
)Xa
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where a is the effective surface area involved in the ion flow pattern while y and s are
the electric conductivity and thickness of the electrolyte solution involved.

3.4 Limiting current tests

A series of E-I experiments using CMV or AMV membranes allowed the limiting
current intensity (I or Lim,) and overall stack resistance to be determined (Cowan and
Brown, 1959). By plotting Ijm. or Lim. vs. the solute concentration (C), two linear
graphs were obtained (Fig. 3a), the ratio between their corresponding slopes
Lim o/ Tiim.c=(t -t )/(t75-t") being equal to 1.22. This allowed the ion transport numbers in
AMYV and CMV membranes to be evaluated (Krol et al., 1999) as follows: t,'= 1.02 and
t,=0.95. Therefore, the current within the electro-membranes is almost exclusively
carried by the counter ions, even if the anion-exchange membranes appear to be less
selective than the cation-ones. For vg ranging from 5.9 to 10.9 cm s, E-I curves were
coincident and linear with constant intercepts (i.e. Eq~2.6 V) and slopes for 1<0.75 Iy,
this being an indirect confirmation of negligible contribution of solute polarisation.

By neglecting the contribution of E;, Ep and Ry, the overall potential drop across an ED

stack consisting of only anion- or cation-exchange membranes can be derived from Eq.
(5) and (6) as:

E=E¢[RiNi+Ry(Ni-1)+2Rggs]1 @)

where Ry and Ny are the resistance and overall number of the generic k-th electro-
membrane used. Eq. (7) was used to evaluate the apparent membrane pack resistance

(Ryp) as

RMP=E-E _2hERS=Rka+h(Nk_1)l (8)

I g XERrs Ane X

In the circumstances, Ry should be a linear function of the inverse of the bulk-solution
electrical conductivity (), its intercept and slope being proportional to the electro-
membrane resistance (Ry) and membrane gap per unit effective membrane surface area
(h/ay,), respectively.
As shown in Fig. 3b, such a linear pattern held for both the anion- and cation-exchange
membrane packs.
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Figure 3: Main results of limiting current tests referred to CMV () or AMV (0)
membranes: (a) limiting current intensity (Ijy,) vs. solute molar concentration (C) and
(b) electrical resistance of membrane pack (Ryp) vs. the reciprocal of conductivity (y).

Thus, use of the least squares method to fit the cationic membrane set of data yielded
the following couple of unknown parameters:

R.=0.19+0.02 ; a,. = 51.7 cm?

It can be noted that the effective membrane surface area (ay,.) was 16% greater than the
exposed surface area of electrodes (ag=44.6 cm”) and significantly different from the
geometrical membrane surface area (an,=72 cm?), but in line with the values recently
reported for the same electrodialyzer by Fidaleo and Moresi (2004, 2005a, 2005b,
2006b). Once the membrane gap per unit effective membrane surface area (h/a,,.) had
been assessed, it was possible to calculate the anionic membrane resistance (R,) as a
function of y and observe that R, hyperbolically decreased from 2.1 to 0.5 Q as x was
increased from 0.5 to 12 S m™ (this corresponding to a solute concentration ranging
from 0.0038 to 0.1 kmol m™). The least squares fitting of R,-vs.-(1/%) data via the
following equation:
R:=R,tk/y O]

allowed the couple of unknown parameters R, and k to be estimated as 0.57 Q and
0.07 QS m™, respectively.

3.5 Prediction of the voltage applied to the membrane pack

As an example, the above model and design parameters (t;, R,, R, ane) were used to
predict the instantaneous voltage applied to the membrane pack (Eyp=E-E¢-R.;l) for a
batch desalination under 1=0.75 A, v,=5.9 cm s and T=20°C. Fig. 4 shows quite a
satisfactory agreement between the experimental and calculated Eyp values against the
diluting compartment conductivity (yp).
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Figure 4 Comparison between the experimental (0) and calculated (-) voltage applied to
the ED membrane pack (Eyp) as a function of the experimental conductivity in the
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diluting compartment (yp) throughout a desalination run performed at [=0.75 A, v=5.9
cm s™ and T=20°C.

4, Conclusions

The sequence of independent experimental trials (such as solute- and water-transfer, and
limiting-current tests) and the mathematical modelling, previously set up to assess the
main process and design parameters of ED stacks dedicated to the recovery of the
sodium salts of some mono-carboxylic acids (Fidaleo and Moresi, 2006a), was slightly
modified to estimate the itaconate anion transport number and anionic membrane
resistance and yielded quite a satisfactory prediction of the ED recovery of sodium
itaconate.
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