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A stochastic phenomenological model for the description of antisolvent crystal growth
processes is here presented. The size of each crystal is supposed to be subjected to a
geometric Brownian motion and its evolution in time is described in terms of a Fokker-
Planck equation. A deterministic growth term is added to the model and is expressed as
a simple logistic equation. A comparison with experimental data will be presented.

1. Introduction

Antisolvent aided crystallization is an advantageous technique of separation where the
solute is highly soluble or heat sensitive. The driving force in crystal formation is the
super-saturation that establishes the thermodynamic equilibrium for the solid-liquid
separation.

The development of rigorous mathematical models describing the dynamic of crystal
growth in crystallization processes is based-on population balances. At the core of the
structured population dynamics, the number of crystals in a fed-batch crystallizer is
increased by nucleation and decreased by dissolution or breakage. Structured population
balances models provide detailed information regarding the crystal size distribution in
the crystallization unit. However, they demand a great deal of knowledge on the
complex thermodynamic associated with the solute and solvent properties to be
adequately incorporated in the population balances. Some important contributions in
this subject have been reported in the literature (Worlitschek and Mazzotti, 2004;
Nowee et al., 2008). In the present work we propose a simple unstructured population
model, where the crystals are classified by their size and the growth of each individual
crystal is supposed to be independent by the other crystals and is governed by the same
deterministic model. In particular, a stochastic phenomenological model for the
description of antisolvent crystal growth is derived and the time evolution of the crystal
population is described through a Fokker-Planck Equation.

2. Mathematical Model

In the proposed model, the crystals are classified by their size, L and the growth of each
individual crystal is supposed to be independent by the other crystals and is governed by
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the same deterministic model. In order to take into account the growth fluctuations and
the unknown dynamics not captured by the deterministic term, a random component can
be introduced (Gelb, 1988). This random component can be thought as a Geometric
Brownian Motion, GBM, (Risken, 1996; Ross, 2003; Mantegna and Stanley, 2000)
where the intensity of the fluctuations depends linearly by the crystal size. The
stochastic model can thus be written as a Langevin equation of the following type:
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In Equation 1, w(L,#0) is the expected rate of growth (the deterministic model
introduced below), L is the size of the single crystal, 7 is the time, 0 is the vector
parameter defined in the model, and n(t) is a random term assumed as Gaussian additive
white noise i.e., E[7(t)]=0 and E[7(t) n(t+7)]=2DX 7), where D is the additive noise
intensity. Equation 1 implies that the crystal size L behaves as a random variable,
characterized by a certain probability density function (PDF) y(L,f) depending on the
state variables of the system, i.e. the size L and time ¢.

It should also be noted that, when the GBM assumption holds, the PDF is a lognormal
distribution, at least in the limit case of constant p value (Ross, 2003). When p also
depends on L, some (minor) distortions from the ideal lognormal case are however
expected. This feature is qualitatively observed for many (although not all) crystalline
substances (Eberl et al, 1990) and in the present case.

The Langevin Equation 1 can be further manipulated as follow:
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where the new variable y = In L is introduced. The random variable, y, thus can be
described in terms of its probability density distribution, y(y,f), at any instant of time ¢
and should follow the linear Fokker-Planck Equation, FPE (Risken, 1996):
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The diffusion coefficient D determines the random motion of the variable y that takes
into account the fluctuation in the particle growth process (Matsoukas and Lin, 2006).
As it regards the deterministic part of the model, our purpose is to choose a model as
simple as possible, with a parsimonious number of adjustable parameters. To this end,
the Logistic equation is possibly the best-known simple sigmoidal asymptotic function
used to describe the time dependence of growth processes in an unstructured fashion
(c.f., Tsoularis and Wallace, 2002; Grosso et al., 2007), i.e.:
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In Equation 4, y is the exponential of the size of the single crystal, the crystal growth
rate  and the equilibrium mean crystal size K are considered constant for each
experimental condition and they depended on the anti-solvent flow rate. The present
growth model can be regarded as the simplest model taking into account mild
nonlinearities. In spite of this simplicity, this model provides the main qualitative
features of a typical growth process: the growth follows a (linear) Malthusian law at low
crystal size values and saturates at a higher equilibrium value. Using the selected growth
model, the FPE can be written as:
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along with the boundary conditions (Risken, 1996):
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Finally the evolution in time of the probability density is described in terms of a linear,
partial differential equation depending on the parameters r (linear Malthusian growth
rate), K (crystal size asymptotic value) and D (diffusivity) that are assumed to depend
on the feeding conditions. Indeed, the antisolvent crystallization kinetics is affected by
the antisolvent feed rate and, the parameters appearing in the model can be finally
related to these operating conditions.

The numerical integration of Equation 5 was accomplished by exploiting the routine
DASPG, from IMSL, in order to solve the resulting implicit system of algebraic
ordinary differential equations obtained by means of collocation on finite elements.
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3. Experiments

The experimental data used in the present work are those reported in Nowee et al.
(2008). In particular, four experiments were selected under three constant antisolvent
feeding profiles — one experiment at a feedrate of 0.83 mlmin', (low feed rates,
hereafter we refer to this experiment as run A), two at a medium rate of 1.64 ml.min™'
(run B) and one at a higher rate of 3.2 ml.min" (run C). The first acquisition time, 7,, for
each run will be the initial condition used for the FP model calibration. Figure 1a shows
a typical crystal size distribution observed experimentally. In particular, we refer to the
distribution observed for the Run B at time 7 = 26.5 min. The crystal size distribution
shows a bimodal shape: at high sizes the distribution of the crystals follows a symmetric
bell shaped curve when analyzed in the logarithmic scale, whereas a significant tail is
observed at lower sizes. The presence of a low size tail is mainly due to secondary
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nucleation phenomena that lead to a not negligible ratio of crystals still nucleating even
after the principal nucleation has taken place. This aspect is more evident in Figure 1b
where the corresponding cumulative distribution function (CDF) is reported in the
normal probability scale (solid line). One should remind that, if the CDF was normal,
this kind of plot would appear as linear, whereas other distribution types will introduce
some curvature. For the present case, a significant deviation from the ideal linear case is
observed only in the region of very small crystals. Thus one can conclude that the basic
shape of the particle size distribution reminds a log-normal one. This scenario is
compatible with a decaying nucleation rate accompanied by a surface controlled growth
(Kile et al., 2005), and confirms that the GBM assumption is a reasonable choice for the
present experimental scenario.
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Figure 1: (a): particle size distribution at time t = 26.5 min (Run B); (b) experimental
Cumulative Particle Size Distribution vs the crystal size (logarithmic scale), the
corresponding adjusted Cumulative Distribution obtained by removing the low crystal
size tail (dashed line), ideal Gaussian distribution is represented by the dotted line.

Tails at low size values come from secondary nucleation, whose mechanism is not
described by the current model. Therefore, the experimental PDF will be filtered by
removing the points at low size values, with a shape-preserving piecewise cubic
interpolation. For sake of completeness, the adjusted Cumulative Distribution obtained
by removing the low crystal size tail (dashed line), is also reported in the figure 1B,
where it is possible noticing a qualitative agreement with the Gaussian ideal case.

4. Results and Discussion

The parameters, 0 of the model (i.e. the velocity growth rate, r, the saturation value K
and the diffusion D) are assumed to depend on the feeding rate condition V5. As a
consequence the model calibration is carried out separately for every run. Eventually,
the parameters to be estimated are: = [log(D), r, K] (parameter log(D) was used
instead of D in order to reduce the statistic correlation between the parameters). It
should be noted that direct measurements of the Particle Size Distribution are available
at N different spatial locations and at M different time values for every operating
condition, i.e. anti-solvent flow rate. The parameters 0 are estimated by using the least
square criterion, thus searching the minimum of the objective function:
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In Equation 7, Wied(yi.4) is the probability density function evaluated through numerical
integration of Equation 5, at time # and size coordinate yy, while the distribution
Wexp(Vio1) 1s the experimental observation of the PSD for the size coordinate yy at time .
The model calibration is thus carried out by comparing N point observations of the
distribution (N ~ 40), monitored at M different times (M between 6 and 10, depending
on the experimental run). The minimum search is carried out by the Levenberg-
Marquardt method. As it regards the supplementary run at intermediate feeding rate,
this was used for an a-posteriori model validation. The parameter estimation values
together with an estimation of the mean square error (MSE) are given in Table 1 for the
experimental runs. For sake of completeness the M value for every run is also reported.

Table 1: Point estimation of the parameters for the three runs
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M log(D) r K MSE
Run A 10 -2.402 1.788e-2 4.8779 7.96e-4
Run B 7 -2.391 1.800e-2 4.8640 2.84e-4
Run C 6 -1.702 8.475e-2 4.6781 4.09e-4

The Mean Square Error is rather small, thus revealing a good agreement between
experimental points and model predictions. The comparison is also carried out by
reporting the time evolution of the first moment of the distribution, i.e., the mean,

u@)= | Lu(L. e

Figure 2 shows the first moment experimentally observed (square points) compared
with the theoretical predictions (solid line) for the three runs as a function of time. The
agreement is rather good at each time and the FPE model, driven by its deterministic
part (the logistic growth term), correctly describes the increasing trend of the average
crystal growth. In Figure 2b we also report experimental data provided by the second
experimental run (cross points), (not used for the parameter inference), demonstrating
that the model has good predictive capabilities.

5. Conclusion

A stochastic phenomenological model for the description of antisolvent crystal growth
processes is here proposed. The crystal size is considered as a random variable, whose
probability density evolution in time is described in terms of a Fokker-Planck equation.
The model is tested on data provided in a bench-scale fed-batch crystallization unit
where anti-solvent is added to speed-up the crystal formation process. The FPE
formulation appears as a powerful predictive tool, as confirmed by the excellent
agreement with the experiments.
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Figure 2: Mean of the Crystal Size Distributions vs time for the different feeding rates.
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