CHEMICAL ENGINEERING TRANSACTIONS Volume 18, 2009

Editor Jifi Kleme$

Copyright © 2009, AIDIC Servizi S.r.1., ISBN 978-88-95608-04-4 ISSN 1974-9791
DOI: 10.3303/CET0918127

Web-Based Object-Oriented Modeling Environment for
the Simulation of Chemical Processes

S. Kuntsche, H. Arellano-Garcia, G. Wozny

Chair of Process Dynamics and Operation, Berlin Institute of Technology
Sekr. KWT-9, Str. des 17. Juni 135, 10623 Berlin, Germany

In this work, a new equation system oriented modeling environment for process
engineering is presented. The project is aimed to safe time and energy of engineers
during the formulation of the equation systems and the desired problem statements.
While code generation in several languages based on symbolic equations is one of the
key tasks of the software, further aims are improved cooperation via internet and better
accessibility of research results of co-workers. A motivation is given on how the
modeling aspects focused in this project can facilitate research and development
processes.

1. Introduction

1.1 Research and global cooperation
Research and development processes consist in general of the enrichment of existing

knowledge, i. e. research done previously by other researchers is used as fundament for
further investigations that deliver new results. These new results are made available
(either on a public or on an enterprise wide level) for other researchers who in turn use
the new results as fundament for their research. Thus, one can consider the ongoing
research process as a cyclic procedure of retrieving published results and publishing
new ones. Accordingly, research work is based on a cooperation that is independent
from the location of the co-workers. The means of communication in that cooperation is
publications or technical documentation. In process engineering new findings are often
achieved by computer simulation, which in many cases means to solve large equation
systems numerically. This goes along with analytic determination of derivatives and
with programming of functions and derivatives. New results are achieved by alternating
equations or by adding new ones. All these steps are time consuming and error-prone
(Grossmann & Westerberg, 2000). The same applies to keeping documentation and
publications up to date and consistent with the program code. The problem is that the
mathematical information and its equivalent programming code are kept in different
documents and that these documents are updated independently and without an enforced
systematic (Brandt et al., 2008). On the other hand, the simulation problems are fully
described in the literature or documentation in the form of symbolic equations and
programming is thus only an auxiliary procedure.

Please cite this article as: Kuntsche S., Arellano-Garcia H. and Wozny G., (2009), Web-based object-oriented modelling environment
for the simulation of chemical processes, Chemical Engineering Transactions, 18, 779-784 DOI: 10.3303/CET0918127

1.2 Description of established modeling tools
To facilitate mathematical modeling, many software tools and standards have been

developed. A thorough overview over modeling aspects and approaches addressing the
respective difficulties is given in Zerry (2008). In this contribution, only a few tools and
aspects shall be considered. The most basic approach of computer modeling is using a
plain programming language s. a. FORTRAN and writing equations and jacobian matrix
in a problem statement, which is subsequently solved by numeric methods taken from a
library or by iteration algorithms developed especially for the problem at hand. Apart
from that commercial software tools like AspenPlus or ChemCAD provide readily
tested models for most of the equipment used in process engineering. While the
approach of programming directly has the advantage of giving freedom in the problem
description, readily programmed models are easy to use and available for more and
more equipment and modeling approaches. However, it is often desired to adapt or
extend existing models such that standard models in flow-sheeting tools like AspenPlus
or ChamCAD cannot be used. Tools like gProms and MapleSim provide advanced
facilities to enter and organize large equation systems while they perform symbolic
determination of derivatives and provide powerful solving routines. Thus, these tools
allow the engineer to concentrate on the technical application described, and to divide
large problems into manageable parts. In particular MapleSim (among others) allows
symbolic description of mathematic equations, which further narrows the gap between
computer readable code and the information displayed in literature. In general, software
tools are used to reduce complexity for the user and to perform standard tasks, such as
numeric solving and determination of derivatives.

Established modeling tools work on local computers and do not provide generation of
documentation. Therefore errors due to redundancy of data may arise in cooperation
(Yang et al., 2004).

2. Addressed Aspects in Modeling

Symbolic modeling

As described in the introduction, the transfer of mathematical equations from symbolic
formulation in literature into a code that can be evaluated by a computer is very
important in modeling. The process of documentation can be considered as another
transfer process of information, which is as important as the former one. The
optimization of these transfer process are not yet addressed by current software. The
project presented in this work aims to facilitate this part of modeling. The first step to
do this, is to work with symbolic description of equation systems in order to avoid
differences between the display in literature and in the computer code. Symbolic
presentation of equations in numerical software is already offered by several tools on
the market (see above). The aim in this project is to establish an engine for the
evaluation of symbolic equations that is as close as possible to literature. At the same
time, several ways of equation editing will be offered so that a choice for the most
comfortable and efficient interface can be left to the user. One step towards literature
and documentation is the mandatory description in a notation object for all symbols
used in an equation or equation system.

Problem reformulation

One obstacle encountered when programming equation systems in languages like C or
FORTRAN is that the decision for the iteration variables and design values is a fixed
part of the code. In general, a reclassification, i. e. making one or more iteration
variables design values, and replacing them by former design values, takes much
programming effort and testing time. In the tool proposed, this step takes place before
automated programming and can be undertaken without much work of the engineer.

Reusability and modularity

Well tested and long established equations and models should not be rewritten over and
over again. Researchers need to use model parts from co-workers. It is obvious that
different authors use different notations (Soetjahjo J., et al. 1998). However, the naming
of variables in the documentation should be independent from their original model,
since authors implementing model parts from others might want to present some of the
imported equations in their own publication, consequently using a different notation.
Thus, appropriate translation and name tracking methods are provided. Furthermore, a
model library will be established to provide the standard equations and full equations
systems for standard equipment in process engineering.

Internet cooperation

To strictly avoid redundancy of data, the tool will work on a server and its user interface
will be accessible via internet browser. The modeling server will provide work spaces
for groups of users, where models can be created and used independently from the
location of the respective group member. A model library containing standard equations
and model parts will be provided on that server.

Output

As a first step, the software will generate numerical program code representing the
problem described symbolically. This code can be executed on the server or an
executable can be downloaded for local execution depending on the expected numerical
burden. The program code itself can be downloaded by researchers, who want to use
their own solvers. Furthermore, documentation is generated on the basis of the
mandatory descriptions in the modeling structures, e. g. the nomenclature.

3. Results

In this section, the handling of the software developed in this work is shown using an
example related to chromatography. The aim is to calculate the stationary-phase
concentration ¢ and the separation factor ¢ according to equations stated by Brooks

and Cramer 1995. The problem consists of two classes of equations:

«\ V-1
q
a;, =k, (cllj)

TexExpr [y ()=

fraci

Lambda \cdotlalpha_{j,i=1} tedot c ¥4

H

sum_{i=1{MCH\alpha_{j =1 jicdot {sigma_{j} + \nu_{} \dote_ {11
1

MathML Preview

Figure 1. Equation editing: In the basic approach tex expressions are translated to
Presentation MathML code, which can be analysed by the modelling tool.

) Aa, -c
g 7 @)

=N
.
Zaj,l '(O'J +V./)'Cj
=

As a first step, we create a notation xml-file for this example, where all identifying
elements are declared and provided with a description. After that the equations are
entered by the help of an equation editor. The tool works with the mathematical web
standard MathML. As entering the equations in MathML directly is an arduous task and
as engineers time should not be wasted in that step, the equations are entered in the tex
symbolic language. In further steps, the two equation classes are combined to an
equation system. The index j is given the maximum value 3 in the next step and the
equation system is instantiated accordingly. The result is shown in figure 2. Note that
the sum expression in the bottom of equation (2) is reformulated to inline summands.

Equ

e V=171
4,2

0 J=1

@ ad,v=],,'=1=kj=],1-=1'(_‘_y)

.
@) Aajori=1600

*
g..1— * * *
i=1 (aj:Lj:l'(GJ'=1+VJ'=1)'CJ"=1+aq‘=_‘:‘=1'(gj=]+vj=j Ci=atay=34=1 (07 =3Fv;=3)¢; _3)

Figure 2. Instantiation of the equations: Snippet showing equations (0) and (3), for
index j=1. The summation in the denominator in eq (3) has been resolved to an explicit
expression.

* evaluate the function valugs */

const double y0 = std_greek_alpha_j1 _i1-(std_k_j1_i1*pow((std_q_star_j1/std_c_star_j1},std_greek_nu_j1-1));
const double y1 = std_greelk_alpha_j2_i1-(std_k_j2_i1*pow{{std_q_star_jt/std_c_star_j1),std_greek_nu_j2-1)};
const double y2 = std_greek_alpha_j3_i1-(std_k_j3_i1*pow({std_q_star_j1/std_c_star_j1),std_greek_nu_j3-1));
const double y3 = std_q_star_j1-(std_areek_Lambda*std_greek_alpha_j1_i1*std_c_star_j1i(std_greek_alpha_j1_i
const double y4 = std_q_star_j2-(std_greek_Lambda*std_greek_alpha_j2_i1*std_c_star_j2/(std_greek_alpha_j1_i
const double y5 = std_g_star_j3-(std_greek_Lamhbda*std_greek_alpha_j3_i1*std_c_star_j3i(std_greek_alpha_j1_i

Figure 3. Generated code: Snippet of the code for the calculation of the function values
inC.

After successful instantiation, the variables have to be classified by the user into design
values and iteration variables. This is done by appropriate intuitive user interface
elements. The code generated subsequently is shown in figure 3. In this case the
translation of the problem is done to the language C. For the solution, a root finding
algorithm of the open source numeric library GSL (Gsl, 2008) is used. The simulation
results can be stored and subsequently be loaded as initialization values. The problem
can be reformulated easily by reclassifying the variables between design and iteration
values respectively and by reassigning their values. Such problem statements can be
stored separately.

Basic structure

An overview over the structure of the software is given in Figure 4. In this diagram,
oval elements represent program parts, while the rectangle boxes in the middle represent
the data structures carrying the model information in different levels of abstraction. The
rectangle boxes at the bottom and the top of the diagram give additional information on
program parts or data structures.

Modeling Interface rchive-! | Visual and structural
Requirements: Storage in Database preparation

o Math. Model
e 1(x), J(x),
* Intuitional « Unambiguous / i =
* Formulas form Word, | |« Allows modeling in the / Webpages,
TeX, OpenMath ... desired degree 7 Paper...
Doc-Tools
v v *—(Y/T
I
Math. Model Math. Model Data Model Analysed i
[in computer Data Model ,'
Presentation {—/~» Data files T i a
on the screen /) | XML/MathML Objects etc. : (x), J(x) \l rc?)gdr:@ Model results
) N\ I e) ,1(;() H for the
/ \ I i A2 S\ ! process
7 T | if] Solver !
! \| L
U§er/ Generators Transform. Ccmpillerl
Engineer Tools Execution

A

1 1

* Expertise User i Ir i ions: + Formal

. i . + Equation translation into

« Desired degree of Standardization: * Variables operations different

accuracy « correct Model XML + Name tracking + Derivatives languages

. etc. « readable MathML + Renaming of + Observation of

variables numeric settings
 etc.

Figure 4. Structure of the software. Model information is processed from left to right in
the diagram.

4. Conclusions

A simulation environment using symbolic mathematical formulations has been
established. The description of equation systems is kept close to the appearance of
symbolic formulations as it is found in literature. Thus, the gap between the problem
statement in literature and its representation in the simulation software is narrowed
considerably. The process of code generation into different languages has been
automatized so that time and energy is saved. Reformulating the simulation problem, i.
e. reclassification of design and iteration values, is made very easy in comparison to
reformulating program code. Sample cases could be executed successfully.

Outlook

Further steps will be the thorough testing and consolidation of the code. In a related
project the necessary model database will be set up and filled with standard equations
and model parts. The interface between literature and software will be improved so that
the process of entering equations comes closer and closer to a copy-paste procedure.

5. Acknowledgements

The authors acknowledge support from the Cluster of Excellence "Unifying Concepts in
Catalysis" coordinated by the Berlin Institute of Technology and funded by the German
Research Foundation.

References

Brandt, S. C., Morbach, J., Miatidis, M., Theillen, M., Jarke, M., & Marquardt, W. An
ontology-based approach to knowledge management in design processes. Comp.
Chem. Engg., 32 (1-2), 320-342.

Brooks and Cramer, 1995, Solute Affinity in Ion-Exchange Displacement
Chromatography, Chemical Engineering Science, Vol 51, No 15, 3847-3860

Grossmann, L.E., & Westerberg, A. W. (2000). Research challenges in process systems
engineering. AIChE J., 46, 1700-1703.

Gsl, 2008, GSL — GNU Scientific Library, <www.gnu.org/software/gsl/>

MapleSim, <www.maplesoft.com/products/maplesim/index.aspx>

Soetjahjo, J., Go, Y. G., Bosgra, O. H., (1998). Diag — a structural diagnose tool for
interconnection assignment in model building and re-use. Comp. Chem. Engg.Vol
22, Suppl., pp 933-936.

Zerry, R., 2008, MOSAIC, Eine webbasierte Modellierungs- und Simulationsumgebung
fur die Verfahrenstechnik. Shaker Verlag, Aachen, ISBN 978-3-8322-7148-0

Yang, A., Morbach, J.,, & Marquardt, W. (2004). From conceptualization to model
generation: The roles of ontologies in process modeling. In C. A. Floudas & R.
Agarwal (Eds.), Proceedings of the 6™ international conference on foundations of
computer-aided process design (pp. 591-594).

	presControfacciata.pdf
	
	
	controfacciataPART2.pdf
	

	
	
	

	presContents.pdf
	
	
	
	
	
	
	
	
	
	
	
	
	
	

	presIndiceAutoriLibro.pdf
	
	
	
	
	
	

	bbbbb
	183Glavic.pdf
	
	
	
	
	
	
	
	

	187Ozalp.pdf
	
	
	
	
	
	

	184Vlysidis.pdf
	
	
	
	
	
	

	68Tuomaala.pdf
	
	
	
	
	
	

	199Wozny.pdf
	
	
	
	
	
	
	
	

	40Azmi.pdf
	
	
	
	
	
	

	91Kostaras.pdf
	
	
	
	
	
	

	175Senneca.pdf
	
	
	
	
	
	

	136Kukulka.pdf
	
	
	
	
	
	

	85Atmakidis.pdf
	
	
	
	
	
	

	86Vondal.pdf
	
	
	
	
	
	

	42Chasanis.pdf
	
	
	
	
	
	

	82Jurena.pdf
	
	
	
	
	
	

	144Horvath.pdf
	
	
	
	
	
	

	123Eder.pdf
	
	
	
	
	
	

	134Miltner.pdf
	
	
	
	
	
	

	114Sinthupinyo.pdf
	
	
	
	
	
	

	170Pereira.pdf
	
	
	
	
	
	

	173Drapela.pdf
	
	
	
	
	
	

	36Leaver.pdf
	
	
	
	
	
	

	41Roy.pdf
	
	
	
	
	
	

	48Oosthuizen.pdf
	
	
	
	
	
	

	61Anglani.pdf
	
	
	
	
	
	

	43Al Dury.pdf
	
	
	
	
	
	

	74Pavlas.pdf
	
	
	
	
	
	

	79Beno.pdf
	
	
	
	
	
	

	132Sugano.pdf
	
	
	
	
	
	

	174Popela.pdf
	
	
	
	
	
	

	58Chen.pdf
	
	
	
	
	
	

	12Erder.pdf
	
	
	
	
	
	

	27Kopasz.pdf
	
	
	
	
	
	

	21Denes.pdf
	
	
	
	
	
	

	102Isopescu.pdf
	
	
	
	
	
	

	141Marik.pdf
	
	
	
	
	
	

	45Meszaros.pdf
	
	
	
	
	
	

	196Heckl.pdf
	
	
	
	
	
	

	203Ahmad.pdf
	
	
	
	
	
	

	202Wu.pdf
	
	
	
	
	
	

	167Perry.pdf
	
	
	
	
	
	

	139Hady.pdf
	
	
	
	
	
	

	54Sikos.pdf
	
	
	
	
	
	

	92Josceanu.pdf
	
	
	
	
	
	

	75Kuntsche.pdf
	
	
	
	
	
	

	3Kukulka.pdf
	
	
	
	
	
	

	119Arsenyeva.pdf
	
	
	
	
	
	

	33Hamlehdar.pdf
	
	
	
	
	
	

	155Siko.pdf
	
	
	
	
	
	

	65Turek.pdf
	
	
	
	
	
	

	66Gavernik.pdf
	
	
	
	
	
	

	67Kilkovsky.pdf
	
	
	
	
	
	

	112Kapustenko.pdf
	
	
	
	
	
	

	80Kim.pdf
	
	
	
	
	
	

	126Sugano.pdf
	
	
	
	
	
	

	127Tikilili.pdf
	
	
	
	
	
	

	143Iancu.pdf
	
	
	
	
	
	

	15Ng.pdf
	
	
	
	
	
	

	24Molokwane.pdf
	
	
	
	
	
	

	35Liu.pdf
	
	
	
	
	
	

	71Bartl.pdf
	
	
	
	
	
	

	99Rojas.pdf
	
	
	
	
	
	

	177Cerrato.pdf
	
	
	
	
	
	

	
	
	
	
	
	
	19Polley.pdf
	
	
	
	
	
	

	51Sivill.pdf
	
	
	
	
	
	

	97Garcia.pdf
	
	
	
	
	
	

	178Jonsson.pdf
	
	
	
	
	
	

	180Martinez-Patino.pdf
	
	
	
	
	
	

	7Kolev.pdf
	
	
	
	
	
	

	108Khoshgoftar.pdf
	
	
	
	
	
	

	118Madzivhandila.pdf
	
	
	
	
	
	

	156Mazhari.pdf
	
	
	
	
	
	

	181Meshalkin.pdf
	
	
	
	
	
	

	146Bonet-Ruiz.pdf
	
	
	
	
	
	

	186Ozalp.pdf
	
	
	
	
	
	

	81Tous.pdf
	
	
	
	
	
	

	83Recman.pdf
	
	
	
	
	
	

	198Elsaesser.pdf
	
	
	
	
	
	

	208Cuoci.pdf
	
	
	
	
	
	

