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Energy management of complex industrial plants covers the supply side (utility plant)
as well as the demand side (process plant). The energy optimization concept itself can
be characterized as a closed-loop optimization in the former case, while in the process
plant the focus is rather on continuous improvement of energy efficiency. Energy
demand modeling and forecasting is an important aspect that touches both sides. The
better models and predictions imply the better decisions can be made and the larger cost
reductions achieved. The paper provides an industrial research perspective on the area
of plant-wide energy optimization, while the primary focus is on the process of building
predictive models of various types, and on their subsequent exploitation under different
optimization scenarios.

1. Introduction

Current environmental, legislative, and economic conditions require plants in energy
intensive industries to pay special attention to monitoring and optimization of energy
efficiency and carbon emissions. In oil refineries and other big industrial complexes like
petrochemicals, chemicals, pharmaceuticals, or paper-making plants, the utility plant is
responsible for the major supply of energy — primarily steam and power — to the process
plant. The energy can either be generated in own facilities, or purchased from local
distribution companies. Frequently, the utilities have a contract allowing them to sell
excessive amounts of energy back into the electricity grid and take advantage of
variable tariffs. Depending on local conditions, the industrial utility plant may also
serve as a source of heating for neighboring residential areas. The typical energy flows
are illustrated in Figure 1.

Although both industrial utility and process plants are tightly interconnected, their
operational and business objectives are different. In the utility plants, the generation of
energy directly is the primary business objective, which is also consistently addressed
throughout the facility by adopting hierarchical solutions for closed-loop real-time
optimization of individual pieces of equipment (boilers, turbines) or their groups
(several steam boilers connected to the same header). In contrast to that, the process
plants are primarily driven by the objective to produce appropriate mix of products to
meet orders coming from the downstream industries. Energy contained in the consumed
utilities is the second largest operating cost — after the cost of raw materials — and the
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general desire is to reduce this cost as much as possible, but never in a way that could
threaten timely delivery of products. This is why in the current operating practice the
production optimization is handled independently of the energy efficiency optimization.
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Figure 1: Major flows of energy in industrial utility and process plants

2. Utility Plant Energy Management

Energy management in the industrial utility plants includes optimization applications
organized in several layers (Havlena, 2007).

e The basic level is focused on real-time optimization of individual pieces of
equipment — basically the pressure control related devices like boilers, letdown
valves and vents, but also other types of more complex equipment including
turbo generators or condensing turbines. Multivariable predictive control
techniques fit very well into this area as described e.g. by Findejs (2008).

e The second level applications deal with the problem of optimal allocation of
load between several pieces of equipment running in parallel. This task is
usually executed in real-time to ensure fast response to dynamically changing
conditions and requirements coming from the process plant.

e Lastly, the third level applications optimize operation of the utility plant over
significantly longer periods of time — ranging from hours to days — taking into
account multiple possible configurations of the utility plant that can be selected
for meeting the energy demand requirements. Flexible starts and stops of some
pieces of equipment are assumed, which are mathematically translated into
MILP type of optimal scheduling problem.

The concrete implementations may differ so that the second level applications can either
be bundled with the real-time optimization components into one solution package, or
the load allocation problem can be solved as a subtask of the multi-period MILP
optimizer. Solution details and practical results achieved when optimizing operation of a
CHP plant using the second approach were described by Schindler (2004) or more
recently by Matik et al. (2008).

Both approaches also differ in the way how they deal with varying energy demands. In
the closed loop approach this variable usually is considered as the disturbance variable
that comes from the outside of the utility plant and in the relatively short time frame
from 5 to 60 minutes they cannot be efficiently predicted.



On the other hand, the utility plant scheduling application cannot generate reliable
schedules without having a reasonable energy demand predictions for the given time
interval. Generally, those demand predictions can be combinations of two different
types of demand: (a) internal demand of the process plant that is dictated by production
objectives and needs in individual technological processes; (b) external demand of local
districts and residential areas that is driven by behavioral patterns of their inhabitants.

2.1 External Demand Modeling

External residential energy demand is affected mainly by weather conditions, calendar-
based variables, and seasonal effects. (Beran et al., 2006) Ambient temperature usually
has the key impact, while the other environmental factors like Aumidity, wind speed,
cloud cover, or sun irradiation can sometimes be used for better interpretation and finer
modeling of the demand data. Calendar-based variables can efficiently help with
capturing the behavioral patterns. These variables include time of day, which is defined
on closed interval <0;1> where 0 corresponds to 0:00 and 1 to the midnight, and also
categorical variables like day of week, holiday and special day, which cause clustering
of similar days into coherent groups.

Modeling of the residential demand has been area of active research in the recent
decades and the various techniques adopted to solve this problem could be categorized
as artificial intelligence-based methods — including neural networks, expert systems, or
support vector machines - and statistical methods, represented by e.g. similar day
method, exponential smoothing and time series regression methods. (Weron, 2006)

2.2 Internal Demand Modeling
Internal demand of the process plant is primarily given by the production plan or

schedule that determines what products to make, by when, and how much. In a theory,
there should be a good matching between such high-level production schedules and
amounts of energy consumed in the process plant. However, there typically are more or
less significant deviations caused by changing process conditions, operating modes,
specific product grades, feedstock properties (e.g. type of crude oil being processed), or
environmental conditions like ambient temperature. Techniques for developing suitable
predictive models are discussed in the paragraph 3.2.

For purposes of utility plant optimization, it is necessary to translate schedules for
individual process units into corresponding unit-level energy demands, and aggregate
them consequently into one figure representing the whole process plant.

3. Process Energy Management

Due to significant complexity of the overall site optimization, a hierarchical top-down
approach is adopted nowadays as the standard, which includes production planning,
scheduling, and real-time optimization layers. Outputs of corporate planning tools are
fed into plant-wide production planners and schedulers that generate targets for
individual processing units. Those are further projected into real-time optimizers (multi-
unit or single-unit) in the form of limits. Given the overall complexity and primary
focus on production, the currently used production planning and scheduling tools
perform just material balance calculations without paying much attention to the energy



intensity of the developed schedule. Utility costs are normally considered only at the
process unit level.

3.1 Energy Management at Process Unit Level
Process unit operators have responsibility for meeting production targets, formulated in

terms of feed and product quantities and qualities, while minimizing operating costs on
given unit. This is where the energy demand modeling comes into play.
Predictive models of internal energy demand — covering electricity, steam, and fuel —
are used for estimation of the future amounts of energy needed by major process units
like atmospheric and vacuum distillation, or fluid catalytic cracking. The energy use is
determined primarily based on the currently executed production schedule and its
parameters, which can be:

e Discrete variables — modes, regimes, campaigns, types of raw materials, etc.

e Continuous variables — typically production volumes and qualities

e Time variables — start times and end times of planned modes and campaigns
The energy use is also influenced by changing key process variables and environmental
conditions like ambient temperature, both typically not captured in the schedule.

Predicted energy Fuel energy (preheat, tower, total)
targets Steam energy (tower, side strippers, total)
t Power energy (tower, pump-arounds, total)

Products
Feed q
Saturated gas flow rate
Feed flow rate D Naphtha flow rate
Feed temperature Ccbu Kerosene flow rate
API densflty Diesel flow rate
Assay/blend properties AGO flow rate
Residue flow rate
' Naphtha distillation D86 90% Rec
) Kerosene distillation D86 10% Rec
Disturbances Diesel distillation D86 90% Rec
Weather Diesel sulfur wt%

Figure 2: Variables used for energy target modeling on refinery crude distillation unit

Predictive models can be used for two different purposes: (1) generate estimates of
expected energy consumption, which is consequently used as the operating target for
unit operators; (2) advise operators on possible operational improvements in situations
when the unit is deviating significantly from the expected energy use. Different level of
detail is needed for each.

Energy targets = f(Production targets, Disturbances) (1)

Energy target models are not intended to provide precise numbers, and one of their
important outcomes is the estimated variance of energy consumption, which indicates
how consistently is the unit operated and controlled.

Energy = f(Production targets, Action variables, Disturbances) 2)



Models used for advising operators must be based on more detailed modeling, requiring
to capture relationships between production quantities, qualities, energy consumption
and action variables.

3.2 Modeling Approaches
The most popular modeling techniques used in the process industries include first
principle models represented by various commercially available flowsheeting tools, and
then also statistical data-driven modeling techniques, which build models by fitting
relevant process data.
The first principle models have the advantage of being based around fundamental
understanding of the physics and chemistry of given process, and if accurate, can be
used within a wide range of operating conditions. The downside is that these types of
model are relatively costly to build and maintain, and sometimes also not easy to tune.
The data-driven models can be derived by some form of statistical regression or non-
linear fitting of data using various black-box modeling techniques. The data-driven
models are more easily to build, they are also more robust and better dealing with
natural variations in process measurements, but on the other hand, they are not useful
outside the data set used to generate them.
When creating the high-level energy target models for a process unit, the first choice
usually is a simpler statistical model like the ordinary linear regression, which allows to
calculate energy consumption based on actual production parameters. This approach
works well until it is possible to effectively select input variables for the regression,
using e.g. the domain knowledge about given process unit. When this is impossible, it is
necessary to apply more sophisticated techniques for multi-dimensional problems:
e Dimensionality reduction — transformation of original variables into lower-
dimensional set of new variables using e.g. Principal Component Analysis.
e Multivariate statistical techniques — e.g. linear or non-linear Partial Least
Squares methods
e Statistical learning techniques — neural networks, regression and classification
trees, ensemble methods like bagging or boosting.
Creating efficient detailed energy optimization (i.e. operator advisory) models is
significantly more challenging because the set of considered variables is extended by
the action variables. In this case the first principle models may represent viable
alternative to the data-driven models. But also now it is necessary to consider overall
effort needed for model setup and maintenance. An interesting strategy may be to use
the first principle model for systematic evaluation of many possible process states.
Running the model with changing input variables may help to generate a lookup table
that can be subsequently used as a fast method for optimization purposes.
Another approach may be represented by the local modeling techniques (Atkeson et al.,
1997), which are based on the idea of using simple models around actual process states
instead of complex global models. The local model is usually generated on-the-fly and it
attempts to fit the training data only in the region around the given operating point. The
local model itself cannot be used to find the global optimum values of action variables
but it can advice about directions for possible improvement and this strategy can be
applied recursively.



A serious practical problem, which is common to any real life applications of modeling
in the process industries, is the frequent occurrence of data quality issues, including
missing values and measurement errors (outliers). Modeling methods must be robust
enough to be able to cope with the imperfect data.

The missing data points can be generally treated in three ways: they can be imputed,
ignored or this problem can be eliminated by the choice of a suitable modeling
technique. Simple linear imputation is the least appropriate as it can spoil subsequent
modeling and optimization processes. In spite of that, ignoring the missing data points
can be a better method for handling such problems. However this method is reasonable
only if there is only a small portion of records with missing values. Lastly, a quite
efficient approach can be to choose a modeling method that is specifically designed for
dealing with the missing data, like e.g. the classification and decision trees do.

4. Conclusion

The paper summarized energy optimization concepts used in the industrial utility plants
and process plants, as well as related types of predictive models, which include:

e Models for external energy demand of residential areas represent a well
studied research field. The prediction accuracy can be very good because a
relatively small number of influencing variables needs to be considered, and
the daily consumption profiles are usually smooth.

e Models for internal energy demand of individual process units represent much
bigger practical challenge because specifics of every unit must be considered,
always starting with a different set of variables, which is considerably larger
than that used for external demand modeling. The high-level models can be
used for setting energy targets based on existing production plan, while the
detailed models may be used to advise operators to take appropriate actions
aiming at improved energy efficiency.
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