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Enhanced heat transfer surfaces are used extensively in the development of high
performance thermal systems. Progress has been made in the development of enhanced
tube design. Tubes that have been textured on both the inside and outside surfaces, with
different helix angles and patterns have been used in experiments that evaluate the heat
transfer of the tube. Heat transfer can be enhanced by altering the surface area that is in
contact with the fluid or varying the fluid dynamics. Enhanced surfaces increase heat
transfer because of the increased turbulence that results from the surface texture and the
increased surface area. Enhanced tube patterns produced by Rigidized Metals
Corporation show heat transfer performance gains between 7 and 30 percent.

A wide variety of industrial processes involve the transfer of heat energy between
fluids. In some cases unwanted deposits may accumulate on enhanced surfaces and
cause a resistance to energy transfer. These deposits reduce the heat transfer and can
restrict fluid flow. The enhanced tubes evaluated in the fouling study were exposed to
untreated lake water. Flow rates and temperature data were monitored for the duration
of both the heat transfer study and during the fouling evaluation. After the prescribed
time period, the tubes were taken off line and fouling evaluated. Transient observations,
heat transfer data, fouling rates and roughness measurements of the tubes are given. The
progressive change of surface appearance with increasing immersion times is presented.
Correlations that relate surface roughness measurements of the tubes to the rate of
fouling and heat transfer are compared for different cases. In general, the Rigidized
Metals Corporation enhanced tubing increases heat transfer and does not promote
fouling.

1.Introduction

Heat transfer enhancement has become popular recently in the development of high
performance thermal systems. Enhanced heat transfer surfaces create a combination of:
increased turbulence; secondary flow generation; reduction in thermal boundary layer
thickness and increased heat transfer surface area. These factors will provide an increase
in heat transfer. A variety of enhanced surface studies have been previously performed
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and include: a study of dimpled tubes by Kalinin et al. [1991] and J. Chen et al. [2001];
dimpled and helical tubes by Giovannini et al. [1991] and corrugated tubes by Marto et
al. [1979]. Webb [1981] proposed a performance evaluation for enhanced surfaces that
includes heat transfer, surface area, and pumping requirements.

Fouling is a very important and complex problem that extends into many fields;
including industrial, chemical, health, and natural processes. The development of
deposits is more rapid in fouling systems where nutrients are available. Fouling of
surfaces takes place as a result of complex chemical reactions that cause deposits to
form on process surfaces. A fouling conditioning film forms immediately upon contact
and is a prerequisite for further fouling to occur. It is then followed by an accumulation
phase which is characterized by rapid growth. Finally a pseudo-steady state fouling
takes place when the accumulation becomes constant. Fouling formation depends on
environmental factors, fluid properties and conditions, surface properties, and the
geometric configuration of the process surface. Heitz et al. [1996] found that in systems
with higher shear forces, the deposits may grow only to a few micrometers, while in
other systems the deposits can reach several centimeters.

Costenton et al. [1987] defined biofouling as a process in which the surfaces collect
growth and form biofilm. ]. Muller-Steinhagen [2005] and Taborek [1972a, 1972b]
have identified several distinct fouling  mechanisms:  crystallization,
particulate/sedimentation, and biological/organic material. Efficiency of fouled process
systems is reduced by the loss of flow through the tubes and a reduction in heat transfer
resulting from an increase in thermal resistance. The economic impact of corrosion and
fouling has been documented by Brennenstuhl et al. [1992].

2.Experimental Details

Smooth and enhanced steel, copper and stainless steel tubes were evaluated at the Great
Lakes Research Center of the State University of New York College at Buffalo for
varied amounts of time using surface water from Lake Erie. Enhanced heat transfer
tubes were produced by Rigidized Metals, smooth tubes were stock items. Heat transfer
of the non textured stainless steel tubes were compared to Rigidized textured enhanced
tubes. Temperature of incoming lake water was preheated in separate tanks and
maintained at approximately 70°F and 100 °F before entering the apparatus. Inlet
water flow was constant at 0.035 liters/second. After the prescribed time, the tubes were
drained and the samples dried.

The first step after drying was to observe and photograph the surface appearance of each
tube. Photographs of the tube surfaces were taken using a Hitachi Digital Camera at two
times magnification. This captured the characteristics of the deposits on each tube
surface, inside and outside. Observations regarding each tube were made, with weights
and surface roughness measurements taken. Surface roughness measurements were
taken using PocketSurf I, a portable surface roughness gage with a traverse speed of
0.2” (5.08mm) per second and a probe radius of 0.0002” (5um). Outside surface
roughness measurements were taken at three different locations along the axis and along
the entire length of the tube.



3.Results and Conclusions

Fouling observations including visible film, color change, corrosion, and deposit
characteristics are given in Table 1. Surface roughness comparison is given in Figure 1
and weight gain measurements are given in Figure 2. The graphs show the increase in
the surface roughness as a function of the time the tube was exposed to lake water. Each
material showed an increase in the surface roughness from the original sample to the
maximum sample time.

Comparing the increased surface roughness values over the time period shows a gradual
increase in the roughness values with increasing immersion time. Figures 1 and 2 show
that copper and textured stainless steel consistently had lower surface roughness than
the other two samples. It is reasonable to say that this material/surface would reach
steady state earlier than the other samples. Figure 1 shows that a textured inside surface
reaches a maximum accumulation rate approximately at the same time period as the
other samples and approaches steady state sooner than the other samples. Figure 2
shows that fouling accumulated the slowest on textured stainless steel. This is contrary
to what would have been expected, and was due to the fluid dynamics produced by the
textured surface. A further examination of textured heat transfer surfaces is under
investigation.
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Figure 1. Inside Surface Roughness Increase for Various Tube Materials/Finish (70
OF inside tube fluid temperature and 100 °F ambient fluid temperature, flow rate of
0.035 litres/sec )



Table 1. Surface Appearance Observations for Various Materials vs. Time
(Inside Temperature 70 °F/ Outside Temperature 100 °F, Flow Rate 0.035 liters/sec)

Tube Original 30 Day 60 Day 90 Day

Materials

Copper Smooth Dusting tan deposits | Same as 30 day no | Overall tan deposits w/

Outside shiny over green corrosion | visible difference. corrosion  overall  outer

Surface surface. unevenly distributed top surface uneven distribution.
half only. Thicker deposits and greater

coverage area than 60 day.

Copper Smooth Thin layer of sediment | More sediment than | Film overall inside- more

Inside shiny on bottom of inside tube | 30 day sediment than 60 day

Surface surface.

Stainless Smooth Very slight tan deposits | Extremely slight tan | Thick tan deposits much

Steel shiny finish.. deposits outside less | heavier than 60  day

Textured than 30 day. concentrated on top of pipe.

Outside

Surface

Stainless Smooth Slight sediment on inner | Sediment inside | More sediment inside tube

Steel shiny finish. | bottom bottom-more than 30 | than 60 day.

Textured day.

Inside

Surface

Stainless Smooth Inconsistent tan deposits | Very slight dusting | Heavy tan deposits on upper

Steel shiny finish. | overall of tan deposits, less | Y2 considerably thicker than

Outside than 30 day. 30 or 60 day.

Surface

Stainless Smooth Sediment deposits lower | More sediment | Less sediment inside than 60

Steel Inside shiny finish half of inside inside lower % than | day

Surface 30 day

Table 2. Surface Appearance Observations for Various Materials vs. Time
(Inside Temperature 100 °F / Outside Temperature 70 °F, Flow Rate 0.035 liters/sec)

Tube Materials

Original

90 Day

Copper
Outside Surface

Smooth shiny surface.

deposit

Tan deposits,
areas  on
corrosions under deposits.

strands of thicker
sides-  green

Copper
Inside Surface

Smooth shiny surface.

Sediment heavier inside than 90day.

Inside Surface

diamond shaped texture.

Stainless Steel Smooth shiny finish with | Thicker tan deposits concentrated on
Textured diamond shaped texture. top of pipe- some areas of rust color
Outside Surface film.

Stainless Steel Textured Smooth shiny finish with | Sediment in lower bottom of pipe

Surface

Stainless Steel Smooth shiny finish Flaking tan deposits- thicker than 90
Outside Surface day
Stainless ~ Steel  Inside | Smooth shiny finish Sediment in lower bottom of pipe
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Figure 2 Fouling weight gain for various tube materials /finish ( 70 °F inside tube
fluid temperature and 100 °F ambient fluid temperature, flow rate of 0.035 litres/sec )
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