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Energy efficiency studies are normally carried out using the specific energy consumption,
SEC, which describes the ratio between the total energy used and a useful output of the
process, usually measured in physical units such as tons of product (for example GJ/t) (EC,
2008). The total energy used is the difference between the energy inputs and the energy
outputs. In industrial processes the total energy used normally covers fuel, electricity and
steam.

Steam cracking of hydrocarbons to form light olefins is one of the most energy-intensive
processes in the chemical industry. The reaction is highly endothermic (energy-absorbing).
The total cracking energy requirement and the energy absorbed into the products can be
predicted to a certain extent with simulation software such as SPYRO (Spyro, 2008). In the
calculation of the specific energy consumption, however, the amount of energy absorbed
into the products and by-products is not considered.

The paper demonstrates the creation of a more precise energy balance for an endothermic
process. The method involves calculating the reaction energy by defining the enthalpy of
formation for the material streams. The approach enables the conversion energy requirement
of the process to be calculated without special software. It also allows one to calculate how
much energy is bound in the products and by-products in the chemical cracking reactions.
This can be used to develop the life cycle analyses further as the absorbed energy and the
bound CO, will be known. The approach is applicable to almost all industrial processes
involving chemical reactions and to almost any balance region.

1. Energy efficiency monitoring

Energy efficiency issues have become more important in recent years. The main driving
forces have been the threats of diminishing fossil fuel resources and climate change. These
concerns are exerting pressure to lower energy consumption and emissions. These trends
also facilitate the development of new processes and ways to value products. A way forward
would be indicate the energy consumed in chemical reactions versus the total energy used in
manufacturing.
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1.1. Energy efficiency indicators in industry
Energy efficiency in industry is most often monitored using the specific energy

consumption (SEC), which describes the ratio between the total energy used and a useful
output of the process. It is usually measured in physical units such as tons of product (GJ/t)
(EC, 2008):
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Usually, all energy is converted into primary energy. For an industrial process that
consumes fuel, electricity and steam (assuming the efficiency of electricity production is
40% and the efficiency in steam generation is 85%) the SEC is written as (EC 2008,
modified)
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SEC indicates a value for energy consumption per unit of production. The figure is most
commonly used to monitor the energy use of a process over time. The SEC is often further
processed into a dimensionless energy efficiency index (EC, 2008):
e e
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The energy efficiency index (EEI) compares the actual specific energy consumption to a
reference consumption. The benchmark is usually obtained from the plant’s historical data.

It can also be some other reference, such as a BAT (best available technique) value.

1.2. The scope of the study

Energy efficiency is calculated by taking into account the energy flows from and to the
process (Eq. 1). The approach can be used to monitor energy efficiency in processes where
no chemical reactions occur, e.g. paper drying in the paper industry. The situation becomes
different as endothermic chemical reactions take place and a part of the energy input is
consumed in the conversion process.

In this paper, a more complete energy balance is created for an olefin production unit by
defining the enthalpy of formation for the material streams. The study evaluates the new
information gained by using such an approach. A balance is created for an entire chemical
process. The case plant is Borealis Polymers Oy’s olefin production unit in Porvoo, Finland.
At the case plant, the SEC is calculated using Eq. 2 with some modifications in the
efficiency terms.

2. The case study

2.1. The process and the case plant
Lower olefins, i.e. ethylene, propylene and butadiene, are mainly produced by thermal
cracking in the presence of steam. The endothermic reaction is called cracking or pyrolysis.



The name refers to the decomposition of a compound by heating. Olefins can be produced
from a variety of raw materials. Typical raw materials are naphtha, gas oil, butane, ethane
and propane. The raw materials of the case plant consist of eight different hydrocarbon
fractions. Steam cracking of hydrocarbons to form light olefins is one of the most energy-
intensive processes in the chemical industry.

The manufacture of olefins (ethylene, propylene and butadiene) comprises several process
steps. Steam cracking is the first step (Figure 1). In steam cracking, the hydrocarbon raw
material and the dilution steam are preheated before entering the furnace. Preheating occurs
in the furnace convection section. The temperature of the furnace is 500-680 °C and the
cracking temperature inside the coil is up to 850 °C. The cracking reaction is endothermic.
After leaving the furnace, the product is cooled down quickly. This is to avoid secondary
reactions and the formation of undesired by-products. After cracking, the gas is led to
purification and separation sections. The process by-products include hydrogen-rich gas,
pyrolysis gasoline and pyrolysis fuel oil.
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Figure 1. An olefin production flow chart (Auvinen, 2008).

2.2. Calculation of reaction energy
The creation of an energy balance using the enthalpy of formation of the material streams is

challenging: most of the streams are complex mixtures and their composition varies as a
function of time. In addition, their exact composition is often unknown, so average and
estimated values must be used.

Energy that is absorbed or released to convert the raw-materials into products and by-
products is called the reaction energy. That is calculated as (Lampinen, 1996):

Ah = hproducts - hreactants (4)

where Ah is the amount of heat released (Ah < 0) or absorbed (Ah > 0) in a chemical
reaction, hyroques is the enthalpy of the products and hreaciants is the enthalpy of the reactants.



In combustion, the enthalpy is negative as the reaction is exothermic. The enthalpy for a
compound under given conditions in Eq. 1 is calculated as (Lampinen, 1997):
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where T is temperature, p is pressure, ¢, is specific heat, v is specific volume and AH(T,po)
is the standard enthalpy change of formation as follows (Lampinen, 1997):

nA+mB —> AB, 6)
AH¢ (To, po) = hangm(To, Po) = hangm — (nhy + mhg) )
hansm = AHH(To, Pg) + (nhy+mhg) ®

Chemical properties for the different compounds are listed e.g. in the Chemical Properties
Handbook (Yaws, 1999).

2.3. The energy balance calculations
The energy balance of the process can be written as:

Ew+s + Ee + Ef: Emf+ Ec + El (9)

where E. is energy from water and steam, E. is energy from electricity and E; is energy
from combustion of fuels, E,¢ is energy absorbed into the material flow (i.e. the reaction
energy that is needed to carry out a chemical reaction) and E. is cooling energy (energy to
sea water). E; covers various energy losses and differences caused by simplified calculation
methods and inaccurate data. The schematic presentation of the energy balance calculations
is presented in Figure 2.
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Figure 2. The energy inputs and outputs of the process (Auvinen, 2008)

Water and steam enthalpies are taken from tables and diagrams. Electricity consumption
data and the heat flux into the sea water are obtained from the plant personnel. The energy
contents of feedstock, products, fuel gas, air of combustion and flue gases are calculated at
the standard state using Eq. 5. All gaseous components were treated as an ideal gas, in



which case the enthalpy is independent of the pressure. The impact of temperature was
taken into account. Its affect was found to be rather small.

2.4. Results of the case study

2.4.1. The specific energy consumption

The energy efficiency evaluation (Eq. 1) is based on measured energy consumption. The
monitoring covers energy inputs, i.e. electricity, steam and water, less energy outputs, i.e.
condensate and heat flux into sea water. A trend of the SEC can be drawn based on plant
data (Figure 3). Factors affecting the SEC include the capacity utilisation rate, feedstock
composition and new installations.
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Figure 3: Specific energy consumption (SEC) based on monthly values of the case plant
during 2000...2005 with the floating averages from the previous 3 months (SEC3), 6 months
(SEC6) and 9 months (SEC 9)(Auvinen, 2008).

2.4.2. Results from the traditional SEC calculation approach

Figure 4a presents the input data of the SEC (Eq. 2 with some modifications in the
efficiency terms). The data represents the situation in 2004. The “Total process energy use”
covers all energy inputs, i.e. fuels, electricity and steam. Conversion into primary energy,
i.e. the effect of the Eq. 2 efficiency factors, is indicated separately as “Primary energy
+8%”. The traditional way of creating an energy balance contains information on the “Heat
flux into sea water”. The principles of the calculation are presented in Figure 2. Note that in
Figure 4a, E+s and E; represent differences in stream inputs and outputs according to the
Figure 2.

2.4.3. Results covering the reaction energy

Figure 4b presents the additional information that is gained by calculating the enthalpy of
formation of the material streams. The approach enables the amount of energy absorbed into
the products to be identified and the amount of losses (E; in Eq. 9) to be determined. Note
that in Figure 4b, E,.s; and E; represent the differences in stream inputs and outputs
according to the Figure 2.
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Figure 4. a) Information available in the traditional energy efficiency measurement, SEC, in
the year 2004, b)Energy consumption and its division into energy absorbed into products,
heat flux into sea water and losses in the year 2004 (Auvinen, 2008).

3. Conclusions

Typically, the energy efficiency is calculated by taking into account the energy flows from
and to the process (Eq. 1). This approach is applicable to processes where no chemical
reactions occur. The paper presents a new approach to constitute a more complete energy
balance for a process with endothermic chemical reactions. This new approach takes into
account the chemical energy of the material streams by calculating the enthalpy of
formation of the substances. Based on the presented approach, new information is gained to
support the energy efficiency evaluation: 1) the calculated reaction energy represents the
theoretical minimum energy requirement of the process. Knowledge of the minimum energy
requirement can be used as an additional indicator explaining the SEC behaviour (Figure 3).
2) The approach also allows the energy required to convert each product and by-product to
be calculated. That is used to allocate the total energy use and the related CO, emissions to
the products and by-products. 3) The approach indicates the share of energy that is bound in
the products and by-products. This information can complement the life cycle analyses.
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